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Introduction

Big Data: Sources
@ Internet, sensors, cameras, simulations, ...

Aims:

Extract information, 'knowledge’
Build predictive models
Simulate scenarios

Separate 'structure’ and 'noise’

Complex and high—dimensional data (’big data’)
e Functional Data (discretely observed processes, measurement
curves, ...)
@ Image data, video data

e High—dimensional (vector) correlated data
e Time series structure (temporal correlations) W
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Overview: Stochastics Group

Overview of Activities Related to Data Science

Questions we address:

@ How to monitor (possibly high—dimensional) data streams?
@ How to monitor image streams?
@ How to analyze spatial-temporal correlated data?

@ How to analyze high—dimensional highly-correlated vector
time series? — focus of this talk.

RWTH
Isw

A. Steland HD Asymptotics



Overview: Stochastics Group

Image Data (1)

Example: Preprocessing & analysis of electroluminescence images
of solar panels.

PVStatLab—Project: PV-Scan (with TUV Rheinland, ISC
Konstanz, Wroctaw UoT, BMWi funded),
http://www.pvstatlab.rwth-aachen.de

Figure: Example: Preprocessing using robust regression
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Overview: Stochastics Group

Image Data (Il)
Example: Image Analysis. Image as a random field {¢;;}.

HO : E(fu) = E(guv)y
for all (i,j) € C, (u,v) € D

Hy - E(fu) ?é E(fUV)a
for all (i,j) € C, (u,v) € D

Figure: Regions C and D

Aim: Asymptotic significance test taking into account spatial

correlations (ongoing work), detection of defects. |
IsW
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Overview: Stochastics Group

Recent Related Publications:

1. Sovetkin, E. and Steland, A. (2015). On statistical
preprocessing of PV field image data using robust regression. In:
N. E. Mastorakis, A. Ding & M. V. Shitikova, Advances in
Mathematics and Statistical Sciences, Vol. 40.

2. Steland, A. (2015). Vertically weighted averages in Hilbert
spaces and applications to imaging: Fixed sample asymptotics and
efficient sequential two-stage estimation, Sequential Analysis, 34
(3), 295-323.
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Overview: Stochastics Group

Monitoring of Multivariate Data and Image Streams

@ Aim: Nonparametric detection of changes
@ Observe discretely sampled function representing the true
signal(s) resp. image(s)
@ Approaches: Hilbert-space valued r.e., random fields,
Shannon/Whittaker
Recent Related publications:

1. Prause, A. and Steland, A. (2015). Detecting changes in
spatial-temporal image data based on quadratic forms. In: Stochastic
Models, Statistics and Their Applications, 139-147.

2. Prause, A. and Steland, A. (2015). Sequential detection of
three-dimensional signals under dependent noise, submitted.

3. Prause, A. (2015). Ph. D. thesis (finished) RWTH
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Introduction

Large—Sample Approximations of
High—Dimensional Vector Time Series

e project with R. v. Sachs (since 11/2013)
e new DFG project just started
Setting:

Massive data set with observations on a large number of variables
(features).

Focus: Analyze Dependencies

RWTH
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Introduction

High-dimensional variance-covariance matrices play a crucial
role in those areas, since they provide information on the
dependence of the coordinates (2nd order).

The sample covariance matrix is regarded a poor estimator, since it
is not consistent w.r.t. to the operator norm if the dimension is
larger than the sample size (d/n — ¢ > 0).

Previous works: Banding/tapering (Bickel & Levina, 2008),
Thresholding (Chen at al., 2013), Shrinkage (Béhm and v. Sachs,
2009), ...
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Introduction

Basic problem: Observe a large number, d = d,, of variables, n
repetitions (over time).

Preliminary data analyses (preprocessing):
Frequently, e.g. by preprocessing methods, one may classify the
variables in (a small number of) groups, such that

@ the within-group correlation is high but

@ the between-group correlation is low/negligible.

We are faced with the problem to model and analyze
high-dimensional data for highly correlated variables.
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Projection-Based Analysis

Observe d = d,, time series
vy v u=1,....d 1<i<n,
This means, we are given a vector time series of length n,
Y= (YW, vy 1<i<n,

of dimension d,, constituting the (n x d,)-dimensional data matrix

) (Y’_(J)

>1§i§n,1§j§dn '

We focus on second moments and thus assume E( Yi(j)) = 0 for all
i=1...,nand j=1,... d,.

RWTH
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Projection-Based Analysis

Assume for a moment that Y,1,...,Y,, is stationary. Generic
copy:
Y, = (YW, . . yly

Unknown (d, x d,)-dimensional sample variance—covariance matrix

T, =E(Y,Y) = (E(Y(V)y(u)))

1<v,u<d,
Sample variance-covariance matrix
5 1 En: / 1 /
zn = - YniYni = *ynyn (1)
n < 1 n
1=

Unpleasant properties for d,, >> n, when studied as a

matrix-valued estimator of X, i.e. in dimension d, X d, —
ISW
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Projection-Based Analysis

But typically, one is interested in a (set of) linear combination(s)
w’ Y, of the coordinates. Consider projections

Th=w,Y,
for weighting vectors
w, = (wy,...,wg,), n>1,
of weights w; = wy,j, not necessarily non-negative, with

dn
sup [[walle, = sup Y |wj| < oo (2)
neN nENl/_1

Amongst others (later), such projections allow to study single
covariances between coordinates. SW
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Projection-Based Analysis

The projection w), Y, has variance w/, X ,w,. Canonical estimator
Var(w.Y,) = w'.Z w,

behaves well for weighting vectors which select a finite number of

coordinates.

Change-point problem: Test for a change in the variance of such

a projection,

o2(i) = Var(w,Y,), 1<i<n.

n
as a consequence of a change of the variance-covariance matrix X,
in a high-dimensional setting.

RWTH
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Projection-Based Analysis

To proceed, let us more generally consider the quadratic form
Qn(vm Wn) = V;ann

for such weighting vectors v, and w,,.

Remark: Observe that even for X, = 011’ we have

| Qu(Vi, Wa)| = o[V 11'Wa| = 0] Y vai D (Wil < l|Valle, [ Wil -
i i

So, the ¢1 condition is a natural one and ensures that even full
covariance matrices are not mapped to oco.
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Framework and Assumptions

Model: The coordinates are linear processes

for coefficients {c :j€No}t, v=1,...,d, and mean zero
independent r.v.s. {ek} with

E’ek’4+6 < o0

for some § > 0.

Assumption A: The sequences {c,(j) :j € Np} satisfy

(v))2 ~3/2-0/2 3
sup max, Ic e |7 <<J (3)
ISW T
for some 0 < 6 < 1/2.
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Strong Approximation

Define

k
o = (Z y ) Yf“’) , (4)
=1

1<v,u<dy
k
Y= (Z EYI-(V) Yi(u)> : (5)
i=1 1<v,u<d,
for n,k > 1. To be precise, our results shall deal with
an = V;(ink - znk)wnu n, k Z 17
and the associated cadlag processes
Dn(t) = V;n_l/z(in,\_ntj - zn,\_ntj )Wna te [07 1]7 n=1.

If the dependence of the above quantities on v,,, w, matters, we
shall indicate this in our notation and then write

RWTH
an(Vnawn)aDn(t; VmWn)- ISW
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Strong Approximation

Recalling that £, = n_l}A:,,y,,, cf. (1) and (4), we have
Dp(1) =v./n(Z, — Ep)wp,  n>1,
is the centered and scaled version of the bilinear form
Q(vn,wp) = vf,)A:,,w,, = (/Zo\v(vi,Y,,,w;Y,,),
where

N 1 <&
>, =EX, ="- E(YniYni),
n; ( )

If {¥,i:1<i< n}is stationary, then X, simplifies to
Y, = E(YnY/);) (but our result are more general).

RWTH
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Strong Approximation

Result:

Within the model framework under certain additional technical
conditions, we may approximate the related processes by Brownian
motions:

|Dpt — anBn(t)| = o(t'/?),  forall t >0 as.,
as n,t — oo, and

sup |Dn(t) — anBn(|nt]|/n)| = o(1), as.,
te[0,1]

as n — 0o, as well as the CLT

|Dn(1) — anBa(1)| = o(1), a.s.,

as n — 00, i.e. Dy(1) is asymptotically (0, a?). A | VT
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Strong Approximation

Standardized sequential statistic:
Monitor the sequence of (standardized) deviations from an
assumed variance—covariance matrix X, via

Di(t) = a;l(vn,wn)Dn(t,vn,wn), t € [s0,1],

which can be approximated by a Brownian motion for large n.

Those results provide a basis for valid statistical inference.‘

RWTH
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Strong Approximation

Multivariate Extension:
Needed when projecting high-dimensional data in
lower-dimensional subspaces!

Theorem

Let {v,j,wp; : 1 < j < K} be weighting vectors of dimension d,
satisfying condition (7).

Then, under the assumptions of the previous theorem, there exists a
K~dimensional Brownian motion {B(")(t) : t € [0,1]} with coordinates
Bi = Bu(t;vni,wpi), t €10,1], i =1,...,K, such that

| Dt v, wai )i = (BalLnt /s v W) | = 01),  (6)

a.s., as n — oo, where || o || denotes an arbitrary vector norm on RX.

RWTH
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Strong Approximation

Corollary

Suppose that Y 1, ..., Y, is a d,—dimensional vector time series
satisfying Assumption (A). Then, after redefining the series on a
new probability space, there exists a Brownian motion such that

[Pyl )] — edenizibs ) = o)

as n — oQ.

The proofs rely on generalizations of Kouritzin (1995, SPA), who
applied Philipp’s (1986) results on strong approximations in Hilbert
spaces.

RWTH
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Discussion

...of the /;-condition:

dn
sup [[wille, = sup Y |wj| < oo (7)
neN neN =1
Ex. 1: {y-sparse vectors: w; > 0 only for i € {i1,..., i}, L fixed.

(classical 'low-dimensional’ case)

RWTH
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Discussion

...of the /;-condition:

dn
sup [[wille, = sup Y |wj| < oo (7)
neN neN =1
Ex. 1: {y-sparse vectors: w; > 0 only for i € {i1,..., i}, L fixed.

(classical 'low-dimensional’ case)

Ex. 20wy, = (w1, ..., wqg,)" with 37 |w;| < cc.
(most coordinates receive a negligible weight)
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Discussion

...of the /;-condition:

dn
sup [[wille, = sup Y |wj| < oo (7)
neN neN =1
Ex. 1: {y-sparse vectors: w; > 0 only for i € {i1,..., i}, L fixed.

(classical 'low-dimensional’ case)

Ex. 20wy, = (w1, ..., wqg,)" with 37 |w;| < cc.
(most coordinates receive a negligible weight)

Ex. 3: wyp=1/d, fori=1,...,d,.
(all dy, coordinates are taken into account.)
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Discussion

. of Assumption A:

()2 —3/2—0/2
. << 8
22§1g€*§><dnlcnj | J ®)

for some 0 < 6 < 1/2.
Assumption A...

° c,(;) — ™). At time n we observe d, sequences (not

depending on n). But we allow for arrays.

@ covers various short memory processes, e.g. ARMA
processes.

@ covers many long-range dependent series such as
fractionally integrated noise of order d € (—1/2,1/4 — 6/2),

(1 - L)dXt = €t RWTH
IsW
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Discussion

Define the scaled Frobenius norm by
1/2

Al = 1/2 So2] el = 0.

ij=1

Lemma

Suppose Assumption (A) holds true and that, for fixed t, the variances
f_j, j > 0, of the innovations satisfy

o0

21—3/2 0/252 ;<.
j=0

Then, as r — oco; we have
*
sup >,[t] - Zat _jCnjCnj'|| = o(1).
Jj=1 F
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Applications: Portfolio Selection

Consider Assets returns R, = (R,(,l), cee R,(,d”))’ corresponding to

the time period [n — 1, n] with mean vector p and covariance
matrix X = (0j)j.

Since ojj is the covariance between the return of asset i and asset
J, 1 <,j,< dp, it is not restrictive to assume that the entries of X
neither depend on n nor d,.

An investor holds at time n — 1 the position wj; in asset ;.
wp; > 0 long position, w,; < 0 short position.

W.l.o.g. the initial value (capital) at time n — 1 equals
dn _
Then the value at time instant n is w),R,,.

RWTH
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Applications: Portfolio Selection

Classical formulation of the portfolio selection problem: Risk =
Variance:

min Var(w/,R,) = w/,Xw,,, subject to w/,1 =1,

whose solution is known to be

W*I — (1/2—11)—11/2—1.

n

If that solution satisfies the no-short-sales condition, then

Iwplle, = T'wy; = 1.

Provided the vector time series of returns satisfies our assumptions,
our results provide the asymptotics for the optimal risk

Var((w?)'Y,)

associated to the optimal portfolio, when estimating X (nelesc‘rlNedﬁcm
w}) from an independent learning sample.
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Applications: Shrinkage

Shrinkage estimation is a well established approach for
regularization (Ledoit & Wolf (2004); Sancetta, 2008).
To improve properties such as EH)E,, — X,||2 or the condition

number, one estimates X, by a linear (convex) combination of }A:,,
and a well-conditioned target such as the identity.

Projecting X,, onto span{id,} leads to the target ZE,O) = ppidp,
where 1, = tr(X,) (shrinkage intensity).
We are led to the shrinkage estimator
T5(W,) = (1 — Wo)Z, + Wopnid, .
Optimizing W, w.r.t. the MSE
W, = argminyy, co,1 dn_lEHZZ(Wn) - Z,,H%_—
leads to explitic formulas for W)} and ensures a true improvement
~ RWTH
EI!Zi—XnII% < EHZn_Zn”%‘ 1w
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Applications: Sparse Principal Component Analysis LASSO

Let X, be a (n x d,)—-dimensional data matrix, independent from
Yh.

SCotLASS (Simplified component technique-lasso), Jolliffee
(2003): 1%t principal component (pc) solves

maxv' X' X,v, subject to [|v||7, < 1, [[v]l, < c.
v

Continue in this way under the additional constraints that further
components are orthogonal.

RWTH
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Applications: Sparse Principal Component Analysis

LASSO (Tibshirani, 1996 & 2011): Determine ¢1—sparse coefficient
vector in a high-dimensional linear regression in dim. p,

Yt = X;BO + €4, E(€t|xt) = 07

Given an estimator 3,, m, = X'3,, is used for prediction.
LASSO minimizes the ¢1—constrained least squares criterion

/8 = Z(Yt - X,tﬁ)2a ||B||€1 <c,
t

for some bound ¢ > 0.

Apply results with w,, = 3, estimated from indep. learning sample,
dn = pn, Y =X, Y = X; to infer Var(w/,X) given the learning
sample, provided {X;} satisfies our assumptions.
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Related Publication:
Steland, A. and R. v. Sachs (2015). Large sample approximations

for variance-covariance matrices of high-dimensional time series,

under revision.

Thanks for your attention.
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