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Abstract—In the present work, we investigate the power
allocation problem in distributed sensor networks that are used
for passive radar applications. The signal emitted by a target
is observed by the sensor nodes independently. Since these
local observations are noisy and are thus unreliable, they are
fused together as a single reliable observation at a remotely
located fusion center in order to increase the overall system
performance. The fusion center uses the best linear unbiased
estimator in order to estimate the present target signal accurately.
By using the proposed system model, fusion rule and objective
function we are able to optimize the power allocation analytically
and can hence present a closed-form solution to the power
allocation problem. Since the power allocation problem can be
subject to different power constraints, three different cases of
power constraints are discussed and compared with each other.
Furthermore, we demonstrate that all considered constraints lead
to signomial optimization problems which are in general quite
hard to solve. The main applications of the proposed results are
issues concerning the sensor selection and energy efficiency in
passive sensor networks.

Index Terms—Analytical power allocation, energy-efficient
optimization, distributed radar, network resource management,
information fusion.

I. INTRODUCTION

IN this publication, we consider a sensor network where
each of K nodes individually and independently receives

a signal from a jointly observed target source. The type of
the source and its signal are assumed to be abstract; only
the quadratic mean of the radiated target signal needs to
be known. The particular information about the target signal
at each sensor node (SN) is sent to a fusion center, which
combines the local observations into a single quantity in order
to increase the system performance. This setup is illustrated in
Fig. 1 whose technical components will be specified in detail
later. Both the sensing and the communication channels are
subject to additive noise. Moreover, we assume that the SNs
have only limited sum-power available for communication and
that each SN is in addition limited in its transmission power-
range. A potential application of our approach is passive
multiple-radar sensing, where an unknown target signal shall
be estimated, detected or classified. Instead of using a complex
single-radar system, this task is carried out by a network of
cheap and energy-efficient SNs. To achieve comparable system
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Fig. 1. Abstract representation of the distributed sensor network.

performance, a fusion center combines a multitude of local
observations into a single reliable quantity.

Distributed passive multiple-radar systems (DPMRSs) have
worthwhile applications nowadays. Physicists use this type
of radar to detect or to determine specific characteristics of
particles, for example, in the neutrino telescope ‘IceCube
Neutrino Observatory’ at the Amundsen-Scott South Pole
Station [2] in Antarctica, where a network with over 5000
nodes is implemented. They also use such radars for radio
astronomy to study celestial objects, for instance in the ‘Karl
G. Jansky Very Large Array’ of the National Radio Astronomy
Observatory [3] in Socorro County, New Mexico. Many other
applications of DPMRSs are military [4] and some few are
also for civil uses [5]. Because of the significance of DPMRSs
it is important to investigate the power allocation within
the sensor network in order to improve the radar accuracy
while the overall energy consumption is kept constant [6].
For comparing the performance of different power allocation
methods in energy-efficient systems, the problem thus arises
how to allocate a given sum-power to the SNs for transmitting
the local observations to a fusion center. The problem of
finding an optimum power allocation for a distributed radar
system and a closed-form of the objective function is ex-
tremely hard, and it is even harder to determine optimal points
under certain constraints. The main difficulty is associated
with finding an explicit representation of the objective function
as mentioned in [7]. In the more recent past, some methods
have been proposed to solve the power allocation problem. In
particular, the authors in [8] investigated some game-theoretic
approaches to solve the power allocation problem however
without focusing on DPMRSs. The investigation of the power
allocation only for localization is treated in [9], [10] and [11].
The capacity bound and the corresponding power allocation
in a single relay system is considered in [12] and [13]. An
optimal solution for the power allocation problem is given
in [14], where an active radar is considered instead of a passive
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radar system. Moreover, an optimum power allocation scheme
for decode-and-forward parallel relay networks, instead of
amplify-and-forward sensor networks, is investigated in [15].

In the present work, we treat the power allocation problem
in general and find analytical solutions in closed-form for
DPMRSs. The first key idea is the utilization of the average
deviation between the estimated and the actual signal values
as a metric for defining the objective function. The second
one is the application of a linear fusion rule to combine
the distributed observations. We also use amplify-and-forward
SNs in the network to obtain a simple system model. For
optimizing the power allocation, total and individual power
constraints are considered. Both lead to explicit policies for
the power allocation. These are the main contributions of the
present work.

We start with a description of the underlying technical
system in the next section. Subsequently, the power allocation
problem is specified and analytically solved. The achieved
results are then discussed and carefully compared with each
other.

Mathematical Notations:

Throughout this paper, we denote the sets of natural, integer,
real and complex numbers by N, Z, R and C, respectively.
Note that the set of natural numbers does not include the
element zero. Moreover, R+ denotes the set of non-negative
real numbers. Furthermore, we use the subset FN ⊆ N, which
is defined as FN := {1, . . . , N} for any given natural number
N . We denote the absolute value of a real or complex-valued
number z by |z|. The expected value of a random variable v
is denoted by E [v]. Moreover, the notation V � stands for the
value of an optimization variable V at an optimum point of
the corresponding optimization problem. Finally, vectors and
matrices are represented in bold typeface.

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

At any instance of time, a network of K ∈ N independent
and spatially distributed sensors, as shown in Fig. 1, receives
random observations. If a target signal r is present, then the
received power at SN Sk is a part of the radiated power
from the target source. Each received signal is weighted by
the corresponding channel coefficient and is disturbed by
additive noise. It is obvious that the sensing channel is wire-
less. All SNs continuously take samples from the disturbed
received signal and amplify them without any additional data
processing. The local measurements are then transmitted to
a fusion center which is placed in a remote location. The
communication to the fusion center is performed by using
distinct waveforms for each SN so as to distinguish the
communication of different SNs. Each waveform has to be
suitably chosen in order to suppress inter-user (inter-node)
interference at the fusion center. Hence, the K received signals
at the fusion center are uncorrelated and are assumed to
be conditionally independent. Each received signal at the
fusion center is also weighted by the corresponding channel
coefficient and is disturbed by additive noise, as well. The
communication channel between the SNs and the fusion center
can either be wireless or wired. The disturbed received signals

Fig. 2. System model of the distributed sensor network.

at the fusion center are weighted and combined together in
order to obtain a single reliable observation r̃ of the actual
target signal r.

Note that we disregard time delays within all transmissions
and assume synchronized data communication.

In the following subsections, we mathematically describe
the underlying system model that is depicted in Fig. 2. The
continuous-time system is modeled by its discrete-time equiv-
alent, where the sampling rate of the corresponding signals is
equal to the target observation rate, for the sake of simplicity.

A. Target signal

Often, the target source is not well-known. Thus, we
assume that we only know the quadratic mean R := E [|r|2]
with 0 < R <∞ of the complex-valued target signal r. This
knowledge is sufficient for further calculations. Furthermore,
the target signal during each observation step is assumed to
be static.

B. Sensing channel

Each propagation path of the sensing channel is described
by a corresponding random channel coefficient gk. For the
investigation of the power allocation problem, the concrete
realization of the channel coefficients is needed and hence
can also be used for postprocessing of the received signals
at the SNs. We assume that the channel coefficients are
complex-valued and static during each target observation step.
Furthermore, the coherence time of communication channels
is assumed to be much longer than the whole length of
the classification process. Thus, the expected value and the
quadratic mean of each coefficient during each observation
step can be assumed to be equal to their instantaneous values,
i.e., E [gk] = gk and E [|gk|2] = |gk|2. In practice, it is often
difficult to measure or estimate these coefficients because the
network is passive and is hence not able to sound the channel
actively. Thus, the results of the present work are applicable
for scenarios where the channel coefficients can somehow
be estimated accurately during each observation process or
they are nearly deterministic and thus can be measured before
starting the radar task. This is the case, for example for the
neutrino telescope where the SNs are installed deep in the
icecap.
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Furthermore, the channel coefficients are assumed to be
uncorrelated and jointly independent. Note that the channel
coefficients include the radar cross section, the influence of
the antenna, the impact of the filters, as well as all additional
attenuation of the target signal.

At the input of each SN, the disturbance is modeled by the
complex-valued additive white Gaussian noise (AWGN) mk

with zero mean and finite variance Mk := E [|mk|2] for all k.
Note that the channel coefficient and the noise on the same
propagation path are also uncorrelated and jointly independent.

C. Sensor nodes

We model each SN by an amplify-and-forward unit, where
the ratio of the output to the input signal is described by
the non-negative real-valued amplification factor uk. Thus, the
output signal and the expected value of its instantaneous power
are described by

xk := (rgk +mk)uk , k ∈ FK (1)

and

Xk := E [|xk|2] = (R|gk|2 +Mk)u
2
k , k ∈ FK , (2)

respectively. The average power consumption of each node is
approximately equal to its average output power Xk, if the
input signal is negligible in comparison to the output signal
and if the nodes have smart power components with low-power
dissipation loss. We assume that equality between Xk and the
average power consumption of each node is ensured. In the
present work, we also assume that the output power-range of
each SN is individually limited by Pk and that the average
power consumption of all SNs together is limited by the sum-
power constraint Ptot. Hence, the constraints

Xk ≤ Pk ⇔ (R|gk|2 +Mk)u
2
k ≤ Pk , k ∈ FK (3)

and
K∑

k=1

Xk ≤ Ptot ⇔
K∑

k=1

(R|gk|2 +Mk)u
2
k ≤ Ptot (4)

arise consequently.
Note that the sum-power constraint Ptot is a reasonable

approach to compare energy-efficient radar systems.

D. Communication channel

Analogous to the sensing channel, each propagation path of
the communication channel is described by a corresponding
random channel coefficient hk. But in contrast to the sensing
channel, we assume that the concrete realization of the com-
munication channel coefficients is measurable by using pilot
sequences at each SN. Accordingly, the channel coefficients
can be used for postprocessing of received signals at the
fusion center. We assume that the channel coefficients are
complex-valued and static during each target observation step.
Furthermore, the coherence time of communication channels
is also assumed to be much longer than the whole length of
the classification process. Thus, the expected value and the
quadratic mean of each channel coefficient can be assumed
to be equal to their instantaneous values, i.e., E [hk] = hk

and E [|hk|2] = |hk|2. Furthermore, the channel coefficients are
assumed to be uncorrelated and jointly independent. Note that
the channel coefficients include the influence of the antenna,
the impact of the filters, as well as all additional attenuation
of the corresponding sensor signal.

At the input of the fusion center, the disturbance on
each communication path is modeled by the complex-valued
AWGN nk with zero mean and finite variance Nk := E [|nk|2]
for all k. Note that the channel coefficient and the noise on
the same propagation path are also uncorrelated and jointly
independent.

E. Fusion center

The fusion center combines the different local observations
into a single reliable one by applying a linear combiner. Thus,
the received signals are weighted with the complex-valued
factors vk and summed up to yield an estimate r̃ of the actual
target signal r. In this way, we obtain

yk :=
(
(rgk +mk)ukhk + nk

)
vk , k ∈ FK , (5)

and hence,

r̃ :=
K∑

k=1

yk = r
K∑

k=1

gkukhkvk +
K∑

k=1

(mkukhk + nk)vk . (6)

Note that the fusion center can separate the input streams
because the communication channel is either wired or the data
communication is performed by distinct waveforms for each
SN. Consequently, if the communication channel is wireless
then a matched-filter bank is essential at the input of the fusion
center to separate the data streams of different SNs.

In order to obtain a single reliable observation at the fusion
center, the value r̃ should be a good estimate for the present
target signal r. Thus, we optimize the amplification factors
uk and the weights vk in order to minimize the average
absolute deviation between r̃ and the true target signal r. This
optimization procedure is elaborately explained in the next
section.

F. Some remarks on the system model

All described assumptions are necessary to obtain a frame-
work suitable for analyzing the power allocation problem,
without studying detection, classification and estimation prob-
lems in specific systems and their settings.

The accurate estimation of all channel coefficients is nec-
essary for both the radar process and the power allocation.
Sometimes it is not possible to estimate the transmission
channels; consequently the channel coefficients gk and hk

remain unknown. In such cases, the radar usually fails to
perform its task.

Since the channel coefficients gk are in practice difficult
to estimate or to determine, the present work rather shows
theoretical aspects of the power allocation than the practical
realization and implementation. Hence, the presented results
act as theoretical bounds and references for comparing real
radar systems.

Moreover, since the coherence time of communication
channels as well as sensing channels is assumed to be much
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longer than the whole length of the classification process,
the proposed power allocation method is applicable only for
scenarios with slow fading channels.

Note that only the linear fusion rule together with the
proposed objective function enable optimizing the power al-
location in closed-form. The optimization of power allocation
in other cases is in general hardly amenable analytically.

The introduced system architecture describes a baseband
communication system without considering time, phase and
frequency synchronization problems.

In order to distinguish the current operating mode of each
SN in what follows, we say a SN is inactive or idle if the
allocated power is zero. We say a SN is active if the allocated
power is positive. Finally, we say a SN is saturated if the
limitation of its output power-range is equal to the allocated
power, i.e., Pk = Xk.

An overview of all notations that we will use hereinafter and
are needed for the description of each observation process is
depicted in Table I.

III. POWER OPTIMIZATION

In this section, we introduce the power optimization prob-
lem and consecutively present its analytical solutions for dif-
ferent power constraints. First, we investigate the case where
the average transmission power of each SN is limited by the
output power-range limitation Pk ∈ R+, k ∈ FK . Afterwards,
we present the analytical solution of the power allocation
problem for the case where only a sum-power constraint
Ptot ∈ R+ for the cumulative sum of the expected power
consumption of each SN is given. Finally, we extend the
power allocation problem to the case where both constraints
simultaneously hold and present the corresponding optimal
solution.

A. The optimization problem

As mentioned in the last section, the value r̃ should be a
good estimate for the present target signal r. In particular, we
aim at finding estimators r̃ of minimum mean squared error
in the class of unbiased estimators for each r.

The estimate r̃ is unbiased simultaneously for each r if
E [r̃ − r] = 0, i.e., from equation (6) we obtain the identity

K∑
k=1

gkukhkvk = 1 . (7)

This identity is our first constraint in what follows. Note that
the mean of the second sum in (6) vanishes since the noise
is zero-mean. Furthermore, we do not consider the impact of
both random variables gk and hk as well as their estimates in
our calculations because the coherence time of both channels
is assumed to be much longer than the target observation time.
Note that equation (7) is complex-valued and may be separated
as

K∑
k=1

uk|vkgkhk| cos(ϑk + φk) = 1 (8)

and
K∑

k=1

uk|vkgkhk| sin(ϑk + φk) = 0 , (9)

where ϑk and φk are phases of vk and gkhk, respectively.

The objective is to minimize the mean squared error
E [|r̃ − r|2]. By using equation (6) and the identity (7) we may
write the objective function as

V := E[|r̃ − r|2] = K∑
k=1

(
Mku

2
k|hk|2 +Nk

)|vk|2 . (10)

Note that (10) is only valid if mk and nk are white and jointly
independent.

As mentioned in the last section, each SN has an output
power-range limitation and the expected overall power con-
sumption is also limited. Hence, the objective function is
also subject to (3) and (4), which are our second and last
constraints, respectively.

In summary, the optimization problem is to minimize the
mean squared error in (10) with respect to uk and vk, subject
to constraints (3), (4), (8) and (9). Note that the optimization
problem is a signomial program, which is a generalization of
geometric programming, and is thus non-convex in general,
see [16].

B. Power allocation subject to individual power constraint

In this subsection, we consider the power allocation problem
only subject to the output power-range limitations from (3). In
order to solve the optimization problem, we use the method
of Lagrangian multipliers and obtain the corresponding con-
strained Lagrange function (relaxation with respect to the
range of uk and |vk|) as

L1(uk, |vk|, ϑk;η1, η2, λk; �k) :=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)|vk|2

+

(
1−

K∑
k=1

uk|vkgkhk| cos(ϑk + φk)

)
η1

−
K∑

k=1

uk|vkgkhk| sin(ϑk + φk)η2

+
K∑

k=1

(
Pk − �k − (R|gk|2 +Mk)u

2
k

)
λk ,

(11)

where η1, η2 and λk are Lagrange multipliers while �k are
slack variables.

Equation (9) is only then satisfied, if all phases ϑk + φk are
equal to qkπ, qk ∈ Z, for all k ∈ FK . If there were a better
solution for ϑk + φk , then the first partial derivatives of L1

with respect to ϑk would vanish for that solution, due to the
continuity of trigonometric functions. But the first derivatives
would lead to equations η1 sin(ϑk + φk) = η2 cos(ϑk + φk)
which cannot simultaneously satisfy both equations (8) and (9)
for all η1 and η2. Thus, qkπ is the unique solution. Hence, we
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may consequently write a modified Lagrange function as

L̃1(uk, |vk|, qk;η1, λk; �k) :=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)|vk|2

+

(
1−

K∑
k=1

uk|vkgkhk| cos(qkπ)
)
η1

+

K∑
k=1

(
Pk − �k − (R|gk|2 +Mk)u

2
k

)
λk .

(12)

At any stationary point of L̃1, all first partial derivatives
must vanish, if they exist. This leads to

∂L̃1

∂|vl| = 2
(
Mlu

2
l |hl|2 +Nl

)|vl|
− η1ul|glhl| cos(qlπ) = 0 , l ∈ FK , (13)

∂L̃1

∂η1
= 1−

K∑
k=1

uk|vkgkhk| cos(qkπ) = 0 (14)

and

∂L̃1

∂λl
= Pl − �l − (R|gl|2 +Ml)u

2
l = 0 , l ∈ FK . (15)

Note that the first partial derivative with respect to ul, l ∈ FK ,
is not needed because the optimal point lies on the boundary
of the feasible set, as we will see later.

By multiplying (13) with |vl|, summing up the outcome
over all l, and using the identities (8) and (10), we obtain

η1 = 2V (16)

which is a positive real number due to definition of V . Because
of the last relationship and according to (13), the value of
cos(qkπ) must be a positive number and hence each qk must
be an even integer number. Thus, we can choose q�k = 0 for
all k ∈ FK , without loss of generality, and conclude

ϑ�
k = −φk , k ∈ FK . (17)

This solution gives the identity cos(q�kπ) = 1 which can be
incorporated into (13) and (14).

From (13), we deduce the equation

|vl| = η1
2

ul|glhl|
Mlu2

l |hl|2 +Nl
. (18)

Incorporating (18) into (14) yields the relationship

η1
2

=

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (19)

In turn, we replace η1

2 in (18) with (19) and obtain

|vl| = ul|glhl|
Mlu2

l |hl|2 +Nl

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (20)

Note that for each feasible uk, k ∈ FK , equation (20)
describes a feasible value for each |vk|. Since for each
uk > 0 the relation |vk| > 0 consequently follows, the feasible
optimal values of each |vk| > 0 are not on the boundary
|vk| = 0. Thus, finding optimal values for each uk, k ∈ FK ,

TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of all nodes;
FK the index-set of K nodes;
K̃ number of all active nodes;
K the index-set of all active nodes;

r, R target signal and its quadratic absolute mean;
r̃ the estimate of r;

gk, hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
Mk , Nk variances of mk and nk;
uk , vk non-negative amplification factors and complex-valued

weights;
ϑk phase of vk;
φk phase of gkhk;
yk input signals of the combiner;
Xk output power of kth SN;
Pk output power-range limitation of kth SN;
Ptot sum-power constraint.

leads to optimum values for each |vk|, k ∈ FK , due to the
convexity of (11) with respect to each |vk|. Hence, finding a
unique global optimum for uk, k ∈ FK , yields the sufficient
condition for the globally optimal solution of the minimization
problem (11).

By considering (16) and (19), we deduce the identity

V =
η1
2

=

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

, (21)

where the objective and η1 consequently are in terms of uk.
For the sake of simplicity and in order to compare the results
later on, we define two new quantities as

αk :=

√
|gk|2
Mk

⇒ αk ∈ R+ , (22)

and

βk :=

√
Nk(R|gk|2 +Mk)

Mk|hk|2 ⇒ βk ∈ R+ . (23)

By using the new quantities as well as (2), the equation (21)
is equivalent to

V =
η1
2

=

(
K∑

k=1

α2
kXk

Xk + β2
k

)−1

. (24)

According to (2) and (15), we calculate the factors

u2
l =

Pl − �l
R|gl|2 +Ml

⇔ Xl = Pl − �l , l ∈ FK , (25)

where �l is in the range 0 ≤ �l ≤ Pl. After replacing u2
k

in (21), or Xk in (24), with (25), we obtain

V =

(
K∑
l=1

α2
l

1 +
β2
l

Pl−�l

)−1

, (26)

which is strictly increasing with respect to �l and strictly
decreasing with respect to K . Thus, minimizing it leads to

��k = 0 ⇔ X�
k = Pk , k ∈ FK , (27)

u�
k =

√
Pk

R|gk|2 +Mk
, k ∈ FK , (28)
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and hence,

V � =

(
K∑

k=1

α2
kPk

Pk + β2
k

)−1

. (29)

By incorporating (28) into (20), we infer

|v�k| =
V �|gkhk|

√
Pk

√
R|gk|2 +Mk

Mk|hk|2Pk +Nk(R|gk|2 +Mk)
, k ∈ FK . (30)

Since ��k = 0 for all k ∈ FK , it follows that the optimal
point lies on the boundary of each uk, k ∈ FK , especially
on a corner, where the first derivatives of the objective with
respect to uk do not vanish in general.

The equations (17) and (27)–(30) describe the optimal
solution of the power allocation problem only subject to the
output power-range limitation per SN and hence are the main
contribution of the present subsection.

Note that the global optimality of the obtained results is
trivially reasoned, first because of the optimization of the
relaxed Lagrange function (11) with extended range of all
variables, and second since the global optimum point of the
relaxed problem coincides with the real range of all variables.

C. Interpretation of the solution

The solution of the power allocation problem has the
following interpretation: All K SNs are active and their output
power is equal to their output power-range limitation Pk.

By using the amplification factors from (28) and the weights
from (17) and (30), the single observation r̃ is an estimator
of minimum mean squared error in the class of unbiased
estimators for the target signal r. Hence, we obtain the
estimate

r̃ = r +
K∑

k=1

(mku
�
khk + nk)v

�
k (31)

from (6). The above equation shows that r̃ is equal to r with
some additional noise. Hence, r̃ − r is a zero-mean Gaussian
random variable with an absolute variance of V �, see (10)
and (29).

Note that r̃ is an unbiased estimator for r due to con-
straint (7). By similar methods we can also minimize the
mean squared error without restricting ourself to unbiased
estimators. Obviously, the optimal value of V will then be
smaller than that in (29).

D. Power allocation subject to sum-power constraint

In this subsection, we consider the power allocation problem
only subject to the sum-power constraint from (4), which
yields the constrained Lagrange function (relaxation with

respect to the range of uk and |vk|)

L2(uk, |vk|, ϑk;η1, η2, τ ; ξ) :=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)|vk|2

+

(
1−

K∑
k=1

uk|vkgkhk| cos(ϑk + φk)

)
η1

−
K∑

k=1

uk|vkgkhk| sin(ϑk + φk)η2

+

(
Ptot − ξ −

K∑
k=1

(R|gk|2 +Mk)u
2
k

)
τ

(32)

with additional Lagrange multiplier τ and slack variable ξ.
The first partial derivatives of (32) with respect to |vl| and

η1 are identical to those which are given in (13) and (14),
respectively. Thus, we also obtain the same results for ϑl,
|vl| and V as given in (17), (20) and (24), respectively.
Consequently, only the sum-power constraint remains unused,
thus far.

Note that because of the same statement as mentioned in
Subsection III-B, finding a unique global optimum for uk,
k ∈ FK , yields the sufficient condition for the globally optimal
solution of the minimization problem (32).

Since the minimization of the objective V in (24) is equiv-
alent to the minimization of Ṽ := −V −1, we only consider
the objective Ṽ in the following. Initially, we highlight three
important properties of Ṽ . First, the new objective function is
strictly decreasing with respect to each Xk, k ∈ FK , which
can easily be seen from the representation

Ṽ = −
K∑

k=1

α2
k

1 + β2
k/Xk

. (33)

Second, the objective function is twice differentiable with
respect to each Xk, k ∈ FK , because its first and second
derivatives exist. Third, the objective function is a jointly con-
vex function with respect to (Xk)k∈FK which can be shown by
calculating the corresponding Hessian H := ( ∂2Ṽ

∂Xk∂Xl
)k,l∈FK .

The Hessian is positive-definite because of

z′Hz =

K∑
k=1

2α2
kβ

2
kz

2
k

(Xk + β2
k)

3
> 0 ,

∀ z := (z1, z2, . . . , zK)′ ∈ R
K \ {0} . (34)

By considering (2), we obtain that the remaining sum-
power constraint in (32) is linear and thus also jointly convex
with respect to (Xk)k∈FK . Hence, we are able to define a
modified convex minimization problem by the unconstrained
Lagrangian

L̃2(Xk;ϕk, τ) :=−
K∑

k=1

α2
kXk

Xk + β2
k

−
K∑

k=1

Xkϕk

+

(
−Ptot +

K∑
k=1

Xk

)
τ ,

(35)

where ϕk and τ are Lagrange multipliers. Note that the
Lagrange multiplier η1 is positive because of (16), and the
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equality sin(ϑ�
k + φk) = 0 holds due to (17). Hence, both

constraints (8) and (9) are discarded in (35). Furthermore,
the sum-power constraint can be considered as an equality
constraint instead of an inequality constraint due to mono-
tonicity of the objective, see also complementary slackness
theorem [17].

In order to solve the new convex optimization problem
in (35), we apply the Karush-Kuhn-Tucker (KKT) condi-
tions which are sufficient for optimality in convex problems,
see [17]. These conditions are as follows for any optimal point
(X�

k , ϕ
�
k, τ

�):

X�
l ≥ 0 , l ∈ FK , (36a)

ϕ�
l ≥ 0 , l ∈ FK , (36b)

X�
l ϕ

�
l = 0 , l ∈ FK , (36c)

K∑
k=1

X�
k = Ptot , (36d)

and

∂L̃2

∂Xl
= − α2

l β
2
l

(X�
l + β2

l )
2
− ϕ�

l + τ� = 0 , l ∈ FK . (36e)

If X�
l = 0 for some l ∈ FK , then from (36b) and (36e)

the inequality 1√
τ�
≤ βl

αl
follows. If X�

l > 0, then from (36c)

and (36e) both the equality X�
l = αlβl

(
1√
τ� − βl

αl

)
and the

inequality 1√
τ�

> βl

αl
follow. In summary, we may write

X�
k = max

{
0, αkβk

(
χ� − βk

αk

)}
, k ∈ FK , (37)

where χ is a replacement for 1√
τ

and is called water-level.
The water-level is implicitly determined by equation (36d)
and gives the subset K of active SNs. By considering (37),
we achieve the necessary and sufficient condition to select the
right subset K of SNs for which the inequality X�

k > 0 with
k ∈ K holds. Hence, all SNs for which the inequality χ� > βk

αk

holds are active. In order to determine their corresponding
number K̃ as well as the water-level, we re-index all SNs
such that the inequality chain

βk

αk
=

√
Nk(R|gk|2 +Mk)

|gkhk|2 ≤ βk+1

αk+1
, k ∈ FK−1 , (38)

holds. Then, we can assume that the first K̃ SNs are members
of K = FK̃ ⊆ FK . By inserting (37) into (36d), we obtain

χ� =

Ptot +
K̃∑

k=1

β2
k

K̃∑
k=1

αkβk

. (39)

Due to the increasing order of the sequence βk

αk
for all k ∈ FK ,

the inequality βK̃

αK̃
< χ� must hold for the last active SN. Thus,

the number K̃ of active SNs is the largest integer number for
which the inequality

Ptot >

K̃∑
k=1

αkβk

(βK̃

αK̃

− βk

αk

)
(40)

holds.

After incorporating X�
k and χ� into (2), (24) and (20), we

obtain

u�
k =

√√√√ 1

Mk|hk|2
(
χ�

√
|gkhk|2Nk

R|gk|2 +Mk
−Nk

)
, k ∈ K ,

(41)

V � =

(
K̃∑

k=1

α2
k −

1

χ�

K̃∑
k=1

αkβk

)−1

, (42)

|v�k| =
V �u�

k|gkhk|
Mk(u�

k)
2|hk|2 +Nk

, k ∈ K , (43)

and

u�
k = v�k = 0 , k ∈ FK \K . (44)

Note that by using the above results, the corresponding
fusion rule is simplified by discarding the influence of inactive
SNs from the fusion rule. The fusion rule (6) becomes

r̃ =
K̃∑

k=1

yk . (45)

The equations (17), (37) and (41)–(44) together with (38)–
(40) describe the optimal solution of the power allocation
problem only subject to the sum-power constraint and hence
are the main contribution of the present subsection.

As mentioned in Subsection III-B, the global optimality of
the obtained results is also trivially reasoned, first because of
the optimization of the relaxed Lagrange function (32) with
extended range of all variables, and second since the global
optimum point of the relaxed problem coincides with the real
range of all variables.

E. Comparison of the solutions

In contrast to the case, where each SN has its individual
output power-range limitation, only some of the SNs are
active. In this case, the amount of the available sum-power
is inadequate to supply all SNs at their output power-range
limitation. Hence, the available sum-power can only be al-
located to those SNs, which are members of the subset K,
while all other SNs remain inactive, since their information
reliability is too poor to be considered for data fusion. The
best SNs are those which have the smallest ratio of βk

αk
that

can be interpreted as interference power. This means that for
the identification of the most reliable SNs in a certain network,
that can be modeled as depicted in Fig. 2, only the ratios βk

αk

are important. As one can see from (38), the best SNs have the
largest absolute values of channel coefficients as well as the
smallest noise powers. Consequently, SNs which are placed
on the straight line between the target source and the fusion
center are more reliable than SNs which are not placed on
that line and are far from the target source as well as from
the fusion center.

Note that the obtained results are quite similar but not
identical to the well-known water-filling solution, see [18].
The distinction arises from our definition of the water-level χ
which differs from the general description.
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F. Optimization subject to all constraints

In the current subsection, we consider the optimization
problem from Subsection III-A subject to all constraints, i.e.,
sum-power constraint as well as output power-range limitation
per SN. Two of three different cases can be singled out and
reduced to preceding instances.

First, if
∑

k∈FK
Pk ≤ Ptot, then the sum-power constraint

is irrelevant, because the feasible set is only limited by the
individual output power-range constraints. Hence, the power
allocation problem reduces to the one described in Subsec-
tion III-B with results given in (17) and (27)–(30). The only
difference is that possibly a part of the available sum-power
remains unallocated and cannot be used.

Secondly, if Ptot ≤ min
k∈FK

{Pk}, then the individual output

power-range constraints are irrelevant, because the feasible
set is only limited by the sum-power constraint. Hence, the
power allocation problem is equal to the one described in
Subsection III-D with results given in (17), (37) and (41)–
(44) with (38)–(40).

The case of min
k∈FK

{Pk} < Ptot <
∑

k∈FK
Pk is the most

challenging one. The amount of available sum-power is on the
one hand inadequate to supply all SNs at their output power-
range limitation. Hence, the available sum-power can only be
allocated to some of the SNs while all others remain inactive,
as we will see later. On the other hand, some of the SNs can
attain the limit of their individual output power-range and are
thus saturated. Therefore, we have to separate all active SNs
into two groups. The first group contains all active SNs, which
are saturated, and is denoted by the subset Ksat. The second
group contains all other active SNs, which operate within their
output power-range, and is denoted by the subset Klin. Note
that both subsets are disjoint and their union is the subset of
all active SNs, i.e., K = Ksat ∪Klin and Ksat ∩Klin = ∅ with
K ⊆ FK .

Since the optimization problem under investigation is the
same as in Subsection III-D with additional constraints,
Xk ≤ Pk for all k ∈ K, the first few problem-solving steps
are equal to those described in Subsection III-D. Thus, we can
start to formulate an extended convex minimization problem
by the unconstrained Lagrangian

L̃3(Xk;ϕk, λk, τ) := −
∑
k∈FK

α2
kXk

Xk + β2
k

−
∑
k∈FK

Xkϕk

+
∑
k∈FK

(−Pk +Xk)λk +

(
−Ptot +

∑
k∈FK

Xk

)
τ . (46)

In order to solve the problem in (46), we again apply the
KKT conditions which are as follows, for any optimal point
(X�

k , ϕ
�
k, λ

�
k, τ

�):

X�
l ≥ 0 , l ∈ FK , (47a)

X�
l ≤ Pl , l ∈ FK , (47b)

ϕ�
l ≥ 0 , l ∈ FK , (47c)

λ�
l ≥ 0 , l ∈ FK , (47d)

X�
l ϕ

�
l = 0 , l ∈ FK , (47e)

(X�
l − Pl)λ

�
l = 0 , l ∈ FK , (47f)

Algorithm 1 Separation of active sensor nodes

Ksat ← ∅
Premain ← Ptot

repeat
Klin ← FK \Ksat

repeat

χK ← Premain+
∑

k∈Klin
β2
k∑

k∈Klin
αkβk

� see (49)

Xk ← αkβk

(
χK − βk

αk

)
, k ∈ Klin � see (48)

K− ← {k ∈ Klin | Xk ≤ 0}
Klin ← Klin \K−

until K− = ∅ or Klin = ∅
K+ ← {k ∈ Klin | Xk ≥ Pk}
Ksat ← Ksat ∪K+

Premain ← Premain −
∑

k∈K+
Pk

until K+ = ∅ or Ksat = FK

Klin ← Klin \K+

return (Klin,Ksat)

∑
k∈FK

X�
k = Ptot , (47g)

and

∂L̃3

∂Xl
= − α2

l β
2
l

(X�
l + β2

l )
2
− ϕ�

l + λ�
l + τ� = 0 , l ∈ FK . (47h)

If X�
l = 0 for some l ∈ FK , then from (47c), (47f)

and (47h) the inequality 1√
τ�
≤ βl

αl
follows. If X�

l = Pl for
some l ∈ FK , then from (47d), (47e) and (47h) the inequality
1√
τ�
≥ Pl+β2

l

αlβl
follows. If 0 < X�

l < Pl, then from (47e), (47f)

and (47h) both the equality X�
l = αlβl

(
1√
τ� − βl

αl

)
and the

inequality 1√
τ�

> βl

αl
follow. In summary, we may write

X�
k = max

{
0,min

{
Pk, αkβk

(
χ�
K
− βk

αk

)}}
, k ∈ FK , (48)

where χK is again a replacement for 1√
τ

. The water-level χK

depends on the subset K of active SNs and can iteratively
be determined by equation (47g), as we will show later on.
By considering (48), we achieve the necessary and sufficient
condition to select the right subset K of SNs for which the
inequality X�

k > 0 with k ∈ K holds. Hence, all SNs for which
the inequality χ�

K
> βk

αk
holds are active. In order to determine

the corresponding water-level, we insert (48) into (47g) and
infer

χ�
K
=

Ptot −
∑

k∈Ksat

Pk +
∑

k∈Klin

β2
k∑

k∈Klin

αkβk
. (49)

As one can see, for calculation of the water-level both subsets
Ksat and Klin are needed, and vice versa, we need the water-
level to determine the subset of all active SNs. Thus, if we
are able to determine which SNs are active, and in turn,
which of them are saturated, then we can continue solving the
optimization problem in (46). It is possible to sort the SNs
by βk

αk
in ascending order again and extend the approach from

Subsection III-D by particular consideration on saturated SNs,
as in (48). However, we want to present an efficient algorithm
which avoids the sorting of SNs. Note that the proposed
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algorithm can be implemented more efficiently, but for sake
of comprehensibility, we have chosen the given representation.
In the following, we will describe and show that Algorithm 1
optimally determines both subsets Ksat and Klin of active SNs.

First, the results from Subsection III-D are applied in the
inner loop to achieve an optimal solution neglecting the indi-
vidual output power-range constraints. In the first repetition,
this is performed on all SNs and in each further repetition on
all SNs included in the subset Klin in order to determine all
active SNs of the current repetition. At the end of the inner
loop, K+ contains all SNs which operate at their individual
output power-range limitation. They are added to the subset
of all saturated SNs Ksat. At last, the power used by those
SNs is subtracted from the available sum-power which gives
the remaining sum-power Premain. With these updated settings,
the procedure is repeated until, for a new set of active SNs,
the subset K+ of saturated SNs is empty. Note that Ksat might
be empty. We will show later on, that the water-level, and
thereby, the power for each non-saturated SN is increasing
in each repetition of the outer loop. Thus, it is possible that
SNs may become active, and hence, all non-saturated SNs
are potential active candidates. Finally, we get the (optimal)
subsets of active SNs to continue solving the optimization
problem in (46).

After determination of Ksat and Klin, we use (49) to calcu-
late χ�

K
, and subsequently, by inserting χ�

K
into (48) we obtain

X�
k . In turn, from (2), (24) and (20), we infer

u�
k =

√
Pk

R|gk|2 +Mk
, k ∈ Ksat , (50)

u�
k =

√√√√ 1

Mk|hk|2
(
χ�
K

√
|gkhk|2Nk

R|gk|2 +Mk
−Nk

)
, k ∈ Klin ,

(51)

V � =

( ∑
k∈Ksat

α2
kPk

Pk + β2
k

+
∑
k∈Klin

α2
k −

1

χ�
K

∑
k∈Klin

αkβk

)−1

, (52)

|v�k| =
V �u�

k|gkhk|
Mk(u�

k)
2|hk|2 +Nk

, k ∈ K , (53)

and
u�
k = v�k = 0 , k ∈ FK \K . (54)

The equations (17), (48) and (50)–(54) together with (49)
and Algorithm 1 describe the optimal solution of the power
allocation problem and hence are the main contribution of the
present subsection. Note that the obtained results are obviously
mixtures of both solutions from Subsection III-B and III-D.

An example for the described power allocation is depicted in
Fig. 3. Obviously, Algorithm 1 terminates and gives a feasible
solution. Moreover, the final water-level is as in (49) if Ksat

is optimally determined. However, Ksat is easily given for all
SNs, because the condition χ�

K
≥ Pl+β2

l

αlβl
is satisfied for all

saturated SNs if the water-level is increasing in each step
of the outer loop. Hence, for optimality of Algorithm 1, it
only remains to show that in each repetition the water-level is
increasing in the outer loop. Note that in contrast the water-
level is decreasing in the inner loop in each repetition. These
statements are discussed in the following.

Fig. 3. An example of the power allocation for K = 7 sensor nodes is
shown. The dotted dark area is the allocated power. The sensor nodes are
ascendingly ordered with respect to interference powers βk/αk. The striped
area is the interference power. The bright shaded area is the remaining part
of the available output power-range for each sensor node. The water-level χ�

K

is indicated by the dashed line, where the number of active sensor nodes is
equal to K̃ = 5. Sensor 2 and 4 are saturated, while 6 and 7 are inactive.

Whenever Xl ≥ Pl holds for a specific l ∈ Klin, it follows
from (48) the inequality

Xl = αlβl

(
χK− βl

αl

)
≥ Pl ⇒ −Pl−β2

l ≥ −αlβlχK . (55)

By using K̃ := K̃lin ∪ K̃sat with K̃lin := Klin \ {l} and
K̃sat := Ksat ∪ {l}, the definition (49), and the inequality (55),
it easily leads to

χ
K̃
=

Ptot −
∑

k∈K̃sat

Pk +
∑

k∈K̃lin

β2
k∑

k∈K̃lin

αkβk

=

−Pl − β2
l + Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

−αlβl +
∑

k∈Klin

αkβk

≥
Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k∑

k∈Klin

αkβk
= χK . (56)

This means that omitting the power exceeding SN l and
recalculating the water-level leads to an increased water-level
and in turn to more transmission power for all remaining SNs.
It might even turn out that new SNs may be included in the
subset Klin of active candidates. However, this will just slow
down, but not stop the increase of the water-level. In summary,
the individual transmission power of each SN, which is a
member of Klin, will be higher than in the previous loop. The
same argumentation can now be used to show that omitting
the SN l with non-positive allocated power and recalculating
the water-level leads to a decreased water-level.

Whenever Xl ≤ 0 holds for a specific l ∈ Klin, it follows
from (48) the inequality

Xl = αlβl

(
χK − βl

αl

)
≤ 0 ⇒ −β2

l ≤ −αlβlχK . (57)
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By using the above set definitions, the definition (49), and the
inequality (57), it easily leads to

χK\{l} =

Ptot −
∑

k∈Ksat

Pk +
∑

k∈K̃lin

β2
k∑

k∈K̃lin

αkβk

=

−β2
l + Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

−αlβl +
∑

k∈Klin

αkβk

≤
Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k∑

k∈Klin

αkβk
= χK . (58)

Note that increasing the power of inactive SNs cannot lead to
an improvement of our solution, because this would contradict
the results from Subsection III-D.

G. Discussion of the solutions

The main difficulty and difference between both solutions
from Subsection III-D and III-F arises from the individual
output power-range limitation per SN. In both cases, the
operating mode of each SN mainly depends on its correspond-
ing interference-level βk

αk
which is easily visible from (37)

and (48). In Subsection III-F, we have given an efficient algo-
rithm which avoids the sorting of SNs by their interference-
level. Moreover, the same algorithm might be applied to the
problem in Subsection III-D, as well. In practice, it is hence
more complicated to calculate the optimal solution of the
power allocation problem from Subsection III-F than that
from Subsection III-D. Eventually, the complexity of obtained
results is not surprising, because all discussed optimization
problems are signomial programs, as mentioned in Subsec-
tion III-A. Nevertheless, they lead to convex optimization
problems which are analytically solvable in closed-form.

IV. CONCLUSION

The main contribution of the present work is an optimal so-
lution to the power allocation problem for increasing the sys-
tem performance of distributed passive multiple-radar systems
while the power consumption of the whole sensor network is
kept constant. We have introduced a system model, a linear
fusion rule and a simple objective function, which enable
us to solve the power allocation problem analytically. Three
different cases of power constraints have been investigated.
For a limitation of transmission power per sensor node as well
as for a sum-power limitation, we have analytically obtained
optimal solutions in closed-form. We have seen that the power
allocation problem is harder to solve if both constraints shall
simultaneously be satisfied. Hence, we have developed an

efficient algorithm to solve the last problem optimally. The
proposed results enable us to calculate the optimal power
allocation fast and accurately which is essential for distributed
passive multiple-radar systems with a large number of sensor
nodes.
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