
Capacity-Achieving Probabilistic Shaping
for Noisy and Noiseless Channels

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von
Dipl. El.-Ing. ETH Georg Böcherer

aus Freiburg im Breisgau

Berichter: Prof. Dr. rer. nat. Rudolf Mathar
Prof. Dr. sc. techn. Gerhard Kramer

Tag der mündlichen Prüfung
13.02.2012

Diese Dissertation ist auf den Internetseiten
der Hochschulbibliothek online verfügbar.

Acknowledgments

I want to thank Prof. Rudolf Mathar for the freedom to pursue my ideas during my
time at his institute. The TI group was my second home for four years and a half, thank
you all. Thanks to Daniel and Gernot, Chunhui and Milan, Fabian and Steven, Andreas
and Martijn for collaboration, trips around the world, coffee, and friendship. Special
thanks to Prof. Valdemar Cardoso da Rocha Junior and Prof. Cecilio Pimentel for
the continuous support. I am grateful to my father Prof. Siegfried Böcherer for all the
telephone calls that helped me to get the math at least partially right. Prof. Gerhard
Kramer read my dissertation cover to cover, which is the best reward I can think of.
Finally, I thank my wife Noêmia and our children Izabel and Rafael for reminding me
on a daily basis that work is not the only thing that matters.

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Contributions . 8

2 Preliminaries 10
2.1 Convex optimization . 10

2.1.1 Basic definitions . 10
2.1.2 Duality . 11
2.1.3 Objective functions on Rn

≥0 . 13
2.1.4 Convex problem with affine constraints 17

2.2 Information theory . 18
2.3 References . 23

3 Matching channels 24
3.1 Prefix-free matchers and dyadic pmfs . 24
3.2 Geometric Huffman coding . 26

3.2.1 Example . 27
3.2.2 ghc assigns probability zero to values of zero 30
3.2.3 Optimality of Ghc . 30
3.2.4 Optimal pmf . 33
3.2.5 Using a ‘wrong’ pmf . 34
3.2.6 Asymptotic achievability . 35

3.3 Noiseless channel . 38
3.3.1 Matching . 39
3.3.2 Optimal pmf . 39
3.3.3 Using a ‘wrong’ pmf . 39
3.3.4 Asymptotic Achievability . 40

3.4 Discrete memoryless channel . 40
3.4.1 Capacity . 41
3.4.2 Using a ‘wrong’ pmf . 42
3.4.3 Matching . 44
3.4.4 Asymptotic achievability . 45

3.5 References . 45

4 Matching channels with unequal symbol durations 47
4.1 Normalized geometric Huffman coding . 47

4.1.1 Optimality of normalized geometric Huffman coding 48

3

4.1.2 Optimal pmf . 49
4.1.3 Asymptotic achievability . 51

4.2 Noiseless channel . 52
4.2.1 Matching . 53
4.2.2 Optimal pmf . 53
4.2.3 Using a ‘wrong’ pmf . 53
4.2.4 Asymptotic achievability . 54

4.3 Discrete memoryless channels . 54
4.3.1 Capacity . 55
4.3.2 Capacity-achieving pmf . 57
4.3.3 Using a ‘wrong’ pmf . 58
4.3.4 Matching . 59
4.3.5 Asymptotic achievability . 59

4.4 References . 60

5 Matching channels with cost constraints 61
5.1 Cost constrained geometric Huffman coding 61

5.1.1 Optimal pmf . 62
5.1.2 Strict convexity of distance-cost function 64
5.1.3 Using a ‘wrong’ pmf . 65
5.1.4 Asymptotic Achievability . 67

5.2 Noiseless channel . 70
5.2.1 Matching . 71
5.2.2 Optimal pmf . 71
5.2.3 Strict concavity of entropy-cost function 71
5.2.4 Using a ‘wrong’ pmf . 72
5.2.5 Asymptotic achievability . 72

5.3 ccGhc is not necessarily optimal: an example 72
5.4 Discrete memoryless channel . 74

5.4.1 Capacity-achieving pmf . 75
5.4.2 Using a ‘wrong’ pmf . 77
5.4.3 Strictly concave lower bound on capacity-cost function 78
5.4.4 Matching . 79
5.4.5 Asymptotic achievability . 79

5.5 References . 79

6 Noiseless channels with memory 81
6.1 Preliminaries . 81
6.2 General noiseless channels . 83

6.2.1 Combinatorial capacity . 83
6.2.2 Maximum entropy rate . 84

6.3 Finite state channels . 90
6.3.1 Combinatorial capacity . 90
6.3.2 Maximum entropy rate . 95

4

6.3.3 Coding . 96
6.4 Applications . 97

6.4.1 Capacity of asynchronous channel 97
6.4.2 Coding for (2, 7) constraint . 99
6.4.3 Coding for (0, 1) constraint . 100
6.4.4 Huffman source coding is not optimal 100

6.5 References . 101

7 Matching for systematic block codes 102
7.1 Matching and error-correction . 103

7.1.1 Reverse concatenation . 103
7.1.2 Systematic linear block codes . 104
7.1.3 Shaping gain, coding gain, and capacity 105

7.2 Uniform transmission . 108
7.2.1 Uniform capacity . 108
7.2.2 Uniform gains . 109

7.3 Sparse-dense transmission . 109
7.3.1 Sparse-dense capacity . 110
7.3.2 Calculating sparse-dense capacity 111
7.3.3 Capacity-achieving pmf . 114
7.3.4 Using a ‘wrong’ pmf . 115
7.3.5 Matching . 116
7.3.6 Sparse-dense gains . 118

7.4 Matched transmission . 119
7.4.1 Bootstrapping the check symbols 119
7.4.2 Matched capacity . 121
7.4.3 Matching . 123
7.4.4 Matched gains . 123

7.5 References . 124

8 Case study: error-correction for a bsc with unequal symbol durations 126
8.1 Setup . 126

8.1.1 Systematic block codes . 126
8.1.2 Prefix-free matcher . 127
8.1.3 Effective transmission rate . 127

8.2 Transmission schemes . 128
8.2.1 Uniform transmission . 128
8.2.2 Sparse-dense transmission . 129
8.2.3 Matched Transmission . 130

8.3 Discussion . 131

9 Conclusions 135

Bibliography 137

5

Index 143

6

1 Introduction

1.1 Motivation

In Shannon theory, the key step in calculating capacity of a communication channel is
to determine the capacity-achieving input probability mass function (pmf). Unequal
transition probabilities between input and output symbols, input power constraints,
or input symbols of unequal durations can lead to non-uniform capacity-achieving input
pmfs. A key result in information theory was an efficient algorithm to calculate capacity-
achieving pmfs, published independently in 1972 by Blahut [6] and Arimoto [5].

In digital communication systems, there is a binary interface that separates the system
into a source-related part and a channel-related part. A natural question is how the bit
stream at the binary interface can be mapped to channel input symbols in such a way
that the resulting pmf is close to capacity-achieving. The topic of this thesis is to answer
this question.

In literature, for noisy channels, the generation of channel input pmfs is referred to
as signal shaping . There is a vast amount of literature on this topic, see Fischer [33,
Chapter 4] and references therein.

In this thesis, we consider signal shaping where the channel input pmf is generated
by parsing the bit stream at the binary interface by a prefix-free code. We call this
approach prefix-free matching and a device that implements this procedure a prefix-
free matcher . This idea is old and occurred both in the context of noisy and noiseless
channels. To use prefix-free matchers for noisy channels was first proposed by Forney et
al [35, Section IV.A]. Kschischang and Pasupathy proposed in [52] to use the Huffman
source code of the pmf that maximizes entropy at the channel input as a prefix-free
matcher. In [73], Ungerböck called this approach Huffman shaping and pointed out how
it can be incorporated into a digital communication system. For some specific noiseless
channels, prefix-free matchers were proposed in the literature, for example by Franaszek
[36]. Kerpez suggested in [48] to use the Huffman source code of the capacity-achieving
pmf as prefix-free matcher for runlength constrained noiseless channels. Although the
prefix-free matchers proposed in literature perform well in the considered examples, no
information theoretic justifications are given. A remarkable exception is the work of
Lempel et al [53], which derives an efficient algorithm that finds the optimal prefix-free
matcher for noiseless channels with unequal symbol durations. Furthermore, Lempel
et al provide an example that shows that Huffman shaping is in general sub-optimal.
However, no achievability results are given in [53], i.e., it remains an open question if
capacity can be achieved by prefix-free matchers when the channel symbols are generated
blockwise and the blocklength goes to infinity. Kerpez claims in [48] that Huffman
shaping is asymptotically capacity-achieving for runlength constraints, however, while I

7

believe that this is in fact true, the given proof is rough and I did not succeed to fill in
the intermediate steps.

In summary, the two simple questions “how can optimal prefix-free matchers be con-
structed?” and “are prefix-free matchers asymptotically capacity-achieving?” have only
been addressed for specific cases in the literature. This is surprising, since the corre-
sponding prefix-free source coding results have been known for a long time: asymptotic
achievability has been shown by Shannon in his 1948 paper [69, Section 1.9] and Huffman
showed in 1952 [45] how optimal prefix-free source codes can be constructed. The main
theme of this thesis is to answer these two questions for prefix-free matching.

1.2 Contributions

We introduce some basic concepts in Chapter 2. Our contributions can then be divided
into three parts.

Memoryless channels (Chapter 3, 4, 5). We consider the three information theoretic
functionals entropy H, relative entropy (often referred to as Kullback-Leibler distance)
D as a function of the first argument, and mutual information as a function of the input
pmf. We show the following:

• Discrete input channels: we propose the algorithm geometric Huffman coding(Ghc).
Ghc finds the optimal prefix-free matcher for D and H and is asymptotically
capacity-achieving for D, H, and I. In particular, Ghc minimizes D(d‖x) over all
dyadic pmfs d. This is in contrast to the pmf induced by Huffman coding, which
minimizes D(x‖d) over all dyadic pmfs d. Our proof of the optimality of Ghc
solves a question raised in [3].

• Discrete input channels with unequal symbol durations: we propose the algorithm
normalized geometric Huffman coding (nGhc). This algorithm finds the optimal
prefix-free matcher for D and H, and asymptotically achieves capacity for D, H,
and I.

• Discrete input channels subject to a constraint on the average symbol cost: we
propose the algorithm cost constrained geometric Huffman coding (ccGhc). We
show that ccGhc is asymptotically capacity-achieving for D, H, and I.

Noiseless channels with memory (Chapter 6). We extend our results from the first
part to general noiseless channels, which are specified by an infinite set of strings of
positive length. We show the following.

• General noiseless channels: to assess the fundamental relation between the com-
binatorial and the probabilistic notion of capacity, we use the concept of general
sources as defined by Han [42, Remark 1.3.2]. We prove that the maximum en-
tropy rate of general sources is exactly equal to the combinatorial capacity. With

8

the help of this result, we show that the maximum entropy rate of a conventional
source is upper-bounded by the combinatorial capacity.

• Channels generated by finite state graphs: we show that any finite state channel
has a memoryless representation, i.e., that it can be generated by a graph with
only one state. The maximum entropy rate of a finite state channel is equal to
the combinatorial capacity. This extends the results of Shannon [69, Theorem 8]
and Khandekar et al [49, Theorem 5.1] to finite state channels with periodic adja-
cency matrices. Our proof uses memoryless representations to construct capacity-
achieving sources and is not based on Perron-Frobenius theory .

• Based on nGhc we define variable length memoryless (vlm) codes. vlm codes
are capacity-achieving for finite state channels. In the literature, the state of
the art for noiseless coding is the State Splitting Algorithm, which allows to con-
struct capacity-achieving codes for finite state noiseless channels with integer val-
ued symbol lengths, see Marcus et al [59, Chapter 4 & 5] and Lind and Marcus [54,
Chapter 5]. vlm codes work for any positive symbol lengths. Furthermore, the
construction of vlm codes is simple while the State Splitting Algorithm is involved.

Prefix-free matchers and systematic block codes (Chapter 7, 8). In the third part,
we show how prefix-free matchers can be combined with systematic block codes.

• For the general class of not necessarily binary systematic block codes, the concepts
of shaping gain and coding gain are developed. The shaping gain determines the
performance loss that results from using a pmf different from the capacity-achieving
one, and the coding gain quantifies the loss due to sub-optimal codes.

• Sparse-dense transmission as introduced by Ratzer [65, Chapter 5] is considered.
Here, only the data symbols are matched to the channel and check symbols are
not. We derive an algorithm to calculate sparse-dense capacity and prove that
prefix-free matchers asymptotically achieve sparse-dense capacity. Formulas for
shaping and coding gain of sparse-dense transmission are provided.

• We propose matched transmission, a scheme that allows to operate a systematic
block code in such a way that all symbols are matched to the channel. We derive
analytical formulas for shaping and coding gain. Capacity of matched transmission
is equal to channel capacity and we show for matched transmission that prefix-free
matchers are asymptotically capacity-achieving.

• The results are evaluated for a binary symmetric channel where the input symbols
zero and one are of unequal duration. The numerical results reveal that prefix-free
matchers in practice allow to operate systematic low-density parity-check codes
with a shaping gain that does not degrade capacity, i.e., the gap between achieved
transmission rate and capacity is only due to the applied error-correcting code.

9

2 Preliminaries

2.1 Convex optimization

2.1.1 Basic definitions

Sets The following table summarizes the notation for some common sets.

R set of real numbers
R≥0 set of non-negative real numbers
R>0 set of positive real numbers
N set of natural numbers {1, 2, 3, . . . }
N0 set of natural numbers including zero {0, 1, 2, . . . }
Z set of integers
C set of complex numbers

In general, we use calligraphic letters for sets. Denote by S some set. Then Sn denotes
the Cartesian product of n copies of S.

Convex set A set S is convex if the line between any two points in S lies in S, i.e., if
for any x1,x2 ∈ S and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ S. (2.1)

Convex functions A function f : Rn → R is convex if its domain dom f is a convex
set and if for all x1,x2 ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f [θx1 + (1− θ)x2] ≤ θf(x1) + (1− θ)f(x2). (2.2)

If for all x1,x2 ∈ dom f , x1 6= x2 equality only holds for θ = 0 and θ = 1, then f is
strictly convex .

Concave functions A function f is concave if its negative is convex and strictly concave
if its negative is strictly convex.

Convex optimization problem A convex optimization problem is of the form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

(2.3)

10

with variable x ∈ Rn. The objective f0 is a convex function, the inequality constraints fi
are convex functions, and the equality constraints hi are affine functions. In the context
of duality, (2.3) is referred to as the primal problem.

Domain The domain D of Problem (2.3) is defined as

D := dom f0 ∩
p⋂
i=1

dom fi ∩
q⋂
i=1

domhi. (2.4)

Feasible The set of feasible points is

F := {x ∈ D|fi(x) ≤ 0, i = 1, . . . , p and hi(x) = 0, i = 1, . . . , q}. (2.5)

Note that the domain D is not the same as the feasible set, i.e., some points in D may
be infeasible. A problem is feasible if there is at least one feasible point. Otherwise the
problem is called infeasible.

Optimality If x∗ minimizes f0(x) among all feasible points x, then x∗ is called an
optimal point and f0(x∗) is called the optimal value.

Affine hull The affine hull of a set S is defined as the set of all affine combinations of
points in S, i.e.,

aff S := {θ1x1 + · · ·+ θkxk|x1, . . . ,xk ∈ S, θ1 + · · ·+ θk = 1, k ∈ N}. (2.6)

Relative interior The relative interior of a set S is defined as

relintS := {x ∈ S|B(x, r) ∩ aff S ⊆ S for some r > 0} (2.7)

where B(x, r) is a ball in Rn around x with radius r.

2.1.2 Duality

Lagrangian The Lagrangian is defined as

L : Rn ×Rp ×Rq → R, L(x,λ,ν) := f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x). (2.8)

The domain of L is domL = D ×Rp ×Rq.

Dual function The dual function is defined as

g(λ,ν) := inf
x∈D

L(x,λ,ν). (2.9)

11

Dual problem The dual problem is

maximize
λ,ν

g(λ,ν)

subject to λi ≥ 0, i = 1, . . . , p.
(2.10)

The feasible points of the dual problem are called dual feasible and the optimal points
(λ∗,ν∗) are called dual optimal .

Strong duality For any primal feasible point x and dual feasible point (λ,ν), the dual
function lower-bounds the objective function, i.e., f0(x) ≥ g(λ,ν), see [19, Section 5.1.3].
If the optimal primal value is equal to the optimal dual value, we say that strong du-
ality holds. If f0(x) = g(λ,ν), then x minimizes f0 and is primal optimal and (λ,ν)
maximizes g and is dual optimal.

Karush-Kuhn-Tucker conditions The following proposition states the Karush-Kuhn-
Tucker (KKT) conditions for optimality.

Proposition 2.1. Denote by f0 a function that is convex on its domain dom f0 ⊆ Rn.
Assume further that strong duality holds. Then the following conditions are necessary
and sufficient for a feasible point x and the point (λ,ν) to be primal and dual optimal.

λi ≥ 0, i = 1, . . . , p (2.11)

λifi(x) = 0, i = 1, . . . , p (2.12)

x minimizes L(x,λ,ν) over dom f0. (2.13)

Proof. Necessity. Let x∗ be primal optimal and let (λ∗,ν∗) be dual optimal. This
directly implies that λ∗ is feasible and that condition (2.11) must hold. To see the
necessity of conditions (2.12) and (2.13), consider the following chain of inequalities.

f0(x∗) = g(λ∗,ν∗) (2.14)

= inf
x∈dom f0

(
f0(x) +

p∑
i=1

λ∗i fi(x) +

q∑
i=1

ν∗i hi(x)

)
(2.15)

≤ f0(x∗) +

p∑
i=1

λ∗i fi(x
∗) +

q∑
i=1

ν∗i hi(x
∗) (2.16)

≤ f0(x∗). (2.17)

The equality in the first line follows from strong duality, the second line follows from the
definition of the dual function, the third line follows since the infimum of the Lagrangian
over x is less than or equal to its value at x = x∗. The last line follows since by primal
and dual feasibility, λi ≥ 0 and fi(x

∗) ≤ 0, i = 1, . . . , p and hi(x) = 0, i = 1, . . . , q.
Thus, we have equality in all lines. Condition (2.12) now follows from equality in the
last line and condition (2.13) follows from equality in the third line.

12

Sufficiency. Assume conditions (2.11)–(2.13) hold for x and (λ,ν) and assume further
that x is feasible. Then

g(λ,ν) = L(x,λ,ν) (2.18)

= f0(x) +

p∑
i=1

λifi(x) +

q∑
i=1

νihi(x) (2.19)

= f0(x). (2.20)

The first line follows from condition (2.13) and the last line follows from condition (2.12)
and feasibility of x. Condition (2.11) implies that (λ,ν) is dual feasible. In summary, x
and (λ,ν) are primal and dual feasible and f0(x) = g(λ,ν). Therefore, they are primal
and dual optimal. This concludes the proof.

2.1.3 Objective functions on Rn
≥0

Continuity Let a function f : Rn → R be defined on a set S ⊆ Rn. The function f is
continuous in x ∈ S if for each ε > 0, there is a δ > 0 such that the following implication
holds for all y ∈ S:

|x− y| < δ ⇒ |f(x)− f(y)| < ε. (2.21)

The function f is continuous on S if it is continuous in each point x ∈ S.

Partial derivative Denote by f a function that is defined on Rn
≥0. Let ei denote a

vector with a one in the ith position and zeros elsewhere. The partial derivatives are
defined as

∂f(x)

∂xi
:=

lim
ε→0

f(x+εei)−f(x)
ε , if xi > 0

lim
ε↓0

f(x+εei)−f(x)
ε , if xi = 0

(2.22)

provided that the limit exists. The notation ε ↓ 0 means limit from above, i.e., “ε > 0
and ε→ 0”.

Proposition 2.2. Consider a function f that is defined on Rn
≥0. Assume the partial

derivatives of f are defined and continuous in x. Let ε > 0 and v ∈ Rn \ 0 be such that
x+ εv ∈ R≥0. Then the directional derivative of f in x along v is given by

lim
ε↓0

f(x+ εv)− f(x)

ε
=

n∑
k=1

∂f(x)

∂xk
vk. (2.23)

13

Proof. For ε > 0, we have

f(x+ εv)− f(x)

ε
=

∑n
k=1[f(x+ ε

∑n
i=k viei)− f(x+ ε

∑n
i=k+1 viei)]

ε
(2.24)

=

∑n
k=1[f(x+ εvkek + ε

∑n
i=k+1 viei)− f(x+ ε

∑n
i=k+1 viei)]

ε
(2.25)

=
n∑
k=1

f(x+ εvkek + ε
∑n

i=k+1 viei)− f(x+ ε
∑n

i=k+1 viei)

εvk
vk. (2.26)

Consider now the kth summand. By the mean value theorem for functions of one vari-
able, there exists for each ε > 0 an εk, 0 < εk < εvk, such that

f(x+ εvkek + ε
∑n

i=k+1 viei)− f(x+ ε
∑n

i=k+1 viei)

εvk
vk

=
∂f(x+ εkek + ε

∑n
i=k+1 viei)

∂xk
vk. (2.27)

This holds for any ε > 0. Thus, we have in the limit for the argument

lim
ε↓0

∣∣∣∣∣εkek + ε

n∑
i=k+1

viei

∣∣∣∣∣ ≤ lim
ε↓0

∣∣∣∣∣εvkek + ε

n∑
i=k+1

viei

∣∣∣∣∣ (2.28)

= 0. (2.29)

Thus, by the continuity of the partial derivatives,

lim
ε↓0

f(x+ εvkek + ε
∑n

i=k+1 viei)− f(x+ ε
∑n

i=k+1 viei)

εvk
vk (2.30)

= lim
ε↓0

∂f(x+ εkek + ε
∑n

i=k+1 viei)

∂xk
vk (2.31)

=
∂f(x)

∂xk
vk. (2.32)

Summing over k finally yields the statement of the proposition.

Proposition 2.3. Denote by f a convex function that is defined on Rn
≥0. Assume the

partial derivatives of f are defined and continuous on Rn
≥0 with the possible exception

that if xi = 0,

f(x+ εei)− f(x)

ε

ε↓0−→ −∞. (2.33)

Then

∂f(x)

∂xi
= 0, ∀i : xi > 0 (2.34)

∂f(x)

∂xi
≥ 0, ∀i : xi = 0 (2.35)

are necessary and sufficient conditions for x to minimize f over Rn
≥0.

14

Proof. Sufficiency. Assume x ∈ Rn
≥0 fulfills the conditions (2.34) and (2.35). This

implies by assumption that the partial derivatives of f are defined and continuous in x.
Denote by y ∈ R≥0 an arbitrary point. By convexity of f ,

θf(y) + (1− θ)f(x) ≥ f [θy + (1− θ)x], 0 < θ < 1. (2.36)

By rearranging the terms we get

f(y)− f(x) ≥ f [θy + (1− θ)x]− f(x)

θ
. (2.37)

This inequality holds for any 0 < θ < 0 and in particular when θ approaches zero.
Passing to the limit gives

lim
θ↓0

f [θy + (1− θ)x]− f(x)

θ
= lim

θ↓0

f [x+ θ(y − x)]− f(x)

θ
(2.38)

=
∑
i

∂f(x)

∂xi
(yi − xi) (2.39)

where the last line follows since all partial derivatives of f are by assumption defined and
continuous in x and consequently, Proposition 2.2 applies. Substituting the right-hand
side of (2.37) by (2.39) yields

f(y)− f(x) ≥
∑
i

∂f(x)

∂xi
(yi − xi). (2.40)

Consider now the summands on the right-hand side. For xi > 0, ∂f(x)
∂xi

= 0 by condition

(2.34). For xi = 0, since y ∈ R≥0, yi − xi = yi > 0 and by condition (2.35), ∂f(x)
∂xi

≥ 0.
Thus, each summand and thereby the sum is greater or equal to zero and consequently

f(y)− f(x) ≥ 0. (2.41)

Since this holds for any y ∈ R≥0, x minimizes f .
Necessity. Denote by y ∈ R≥0 an arbitrary point. Assume that x minimizes f and

assume for now that the partial derivatives of f are defined in x. This implies

0 ≤ f [θy + (1− θ)x]− f(x) (2.42)

= f [x+ θ(y − x)]− f(x), 0 < θ < 1 (2.43)

Dividing by θ and passing to the limit, we get

0 ≤
∑
i

∂f(x)

∂xi
(yi − xi). (2.44)

This holds for any y ∈ Rn
≥0, in particular for y = x+ εei, ε > 0. With y so defined, the

last inequality becomes

0 ≤ ε∂f(x)

∂xi
(2.45)

15

which implies since ε > 0

0 ≤ ∂f(x)

∂xi
. (2.46)

Thus for all i, the partial derivative of f in x has to be greater or equal to zero, which
shows the necessity of condition (2.35). If xi > 0, for a small enough positive ε, y =
x− εei is in Rn

≥0. For y so defined, (2.44) becomes

0 ≤ −ε∂f(x)

∂xi
. (2.47)

Since ε is positive, this implies

0 ≥ ∂f(x)

∂xi
. (2.48)

Thus, for xi > 0, (2.46) and (2.48) hold simultaneously, which is only possible if
∂f(x)
∂xi

= 0. This shows the necessity of condition (2.34).
It remains to show that if x minimizes f , then the partial derivative of f is indeed

defined in x. To this end, assume the contrary, i.e., for some i, xi = 0 and

f(x+ εei)− f(x)

ε

ε↓0−→ −∞. (2.49)

For small enough positive ε, this implies

f(x+ εei)− f(x)

ε
< 0 (2.50)

thus f(x+ εei) < f(x), and x cannot minimize f . This concludes the proof.

Proposition 2.4. Consider a convex optimization problem with the objective function
f0 being defined on Rn

≥0. Assume ∂f0(x)
∂xi

is defined and continuous on Rn
≥0 with the

possible exception that for xi = 0,

f0(x+ εei)− f0(x)

ε

ε↓0−→ −∞. (2.51)

Assume further that strong duality holds. Then the following conditions are necessary
and sufficient for a feasible point x to be optimal. There exist λ,ν such that

λi ≥ 0, i = 1, . . . , p (2.52)

λifi(x) = 0, i = 1, . . . , p (2.53)

∂L(x,λ,ν)

∂xi
= 0, ∀i : xi > 0 (2.54)

∂L(x,λ,ν)

∂xi
≥ 0, ∀i : xi = 0. (2.55)

In particular, if x is optimal, then all partial derivations of f0 are defined and continuous
in x.

Proof. Conditions (2.54) and (2.55) guarantee by Proposition 2.3 that x minimizes the
Lagrangian L(x,λ,ν). The statement of the proposition now follows from Proposi-
tion 2.1.

16

2.1.4 Convex problem with affine constraints

The optimization problems that we consider in this work are of the form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

(2.56)

where the objective function f0 is a convex function and where both the functions fi
in the inequality constraints and the functions hi in the equality constraints are affine
functions.

Slater’s condition [19, Section 5.2.3]. Slater’s condition for convex optimization prob-
lems with affine constraints is as follows:

There exists a feasible point x in relintD = relint dom f0.

If Slater’s condition is fulfilled, strong duality hold. The equality in the condition holds
since the constraints are affine and have therefore the whole Rn as domain. Thus

D = dom f0 ∩
p⋂
i=1

dom fi ∩
q⋂
i=1

domhi (2.57)

= dom f0. (2.58)

Proposition 2.5. Denote by f0 a convex function that is defined on Rn
≥0. Consider the

optimization problem

minimize
x

f0(x)

subject to wTx− E ≤ 0

1Tx− 1 = 0

(2.59)

where w is a vector with positive entries and where (·)T denotes transposition. E is a
positive real number. Denote by wmin the smallest entry of w. Assume E > wmin. Then
strong duality holds.

Proof. Strong duality holds if Slater’s condition is fulfilled. Since the constraints are
affine, Slater’s condition is fulfilled if there is a feasible point in the relative interior of
the domain of the problem. It is given by

relintD = relint dom f0 (2.60)

= relint Rn
≥0 (2.61)

= Rn
>0. (2.62)

Denote by m the index of wmin, i.e., wm = wmin and denote by wmax the greatest entry
of w. For some θ > 0 define

x := (1− θ)em + θ
1

n
1. (2.63)

17

Clearly, for any 0 < θ < 1, x ∈ Rn
>0 = relintD, furthermore,∑

i

xi = (1− θ) · 1 + θn
1

n
= 1, (2.64)

i.e., the equality constraint is fulfilled. Define ε = E − wmin. By assumption, ε > 0.
Assign θ = ε

wmax
. Note that θ > 0. Now,

wTx− E = (1− θ)wmin + θ
wT1

n
− E (2.65)

≤ wmin + θwmax − E (2.66)

= wmin + ε− E (2.67)

= wmin + E − wmin − E (2.68)

= 0. (2.69)

Thus, the inequality constraint is fulfilled. Altogether, x is feasible and lies in the
relative interior of the domain of the problem. Since the constraints are affine, Slater’s
condition is therefore fulfilled and since the problem is convex, this shows that strong
duality holds. This concludes the proof.

2.2 Information theory

Probability mass function A vector p ∈ Rn is a probability mass function (pmf), if

pi ≥ 0, i = 1, . . . , n and
∑
i

pi = 1. (2.70)

Shorthand, we write for the first condition p ≥ 0 and for the second condition 1Tp = 1.

Logarithm The logarithm of a non-negative real number x to the base e is called the
natural logarithm and we denote it by log x. The logarithm of x to the base 2 is called
the binary logarithm and we denote it by log2 x.

Relative entropy Denote by x and y two non-negative vectors with n entries, i.e.,
x,y ∈ Rn

≥0. We define the relative entropy of x and y as

D(x‖y) :=
∑
i

xi log
xi
yi

(2.71)

where for any non-negative real number a,

0 log
0

a
:= 0 (2.72)

18

and for any positive real number a,

a log
a

0
:=∞. (2.73)

With this definition, the domain of D is Rn×Rn. Relative entropy D(x‖y) is convex in
x and convex in y. This can be shown along the lines of the proof of [24, Theorem 2.7.2].

Proposition 2.6. Assume all entries of y are positive. Then the partial derivative of
D(x‖y) is for xi > 0 given by

∂ D(x‖y)

∂xi
= log

xi
yi

+ 1 (2.74)

and for xi = 0, we have

D(x+ εek‖y)− D(x‖y)

ε

ε↓0−→ −∞. (2.75)

In particular, D(x‖y) fulfills as a function of x the conditions on the objective function
f in Proposition 2.3 and the conditions on the objective function f0 in Proposition 2.4.

Proof. By applying basic differentiation rules, we get for xi > 0

∂ D(x‖y)

∂xi
= log

xi
yi

+ 1. (2.76)

Since by assumption yi > 0, the right-hand side is well-defined.
For xi = 0, we have

(0 + ε) log 0+ε
yi
− 0 log 0

yi

ε
=
ε log ε

yi

ε
(2.77)

= log
ε

yi
(2.78)

ε↓0−→ −∞. (2.79)

Information inequality Denote by p and q two pmfs. Then

D(p‖q) ≥ 0, with equality if and only if p = q. (2.80)

This property of relative entropy is called the information inequality , see [24, Theo-
rem 2.6.3].

Log sum inequality Denote by x and y two non-negative vectors. Then∑
i

xi log
xi
yi
≥
(∑

i

xi

)
log

∑
i xi∑
i yi

,

with equality if and only if
xi
yi

= K, i = 1, . . . , n (2.81)

where K is some constant. This property is called the log sum inequality . See [24,
Theorem 2.7.1].

19

Entropy Denote by p a pmf. Entropy is defined as

H(p) := −
∑
i

pi log pi (2.82)

where

0 log 0 := 0. (2.83)

Entropy H(p) is concave in p [24, Theorem 2.7.3]. Note that, since

H(p) = −D(p‖1) (2.84)

Proposition 2.6 also applies to the negative of the entropy function.

Mutual information A discrete memoryless channel (dmc) is described by a transition
matrix H

H =

 h11 · · · h1n
...

. . .
...

hm1 · · · hmn

 = (h1, . . . ,hn). (2.85)

Each column vector hi is a pmf. The input pmf p and the output pmf r of the dmc
relate as

r = Hp. (2.86)

The mutual information between input and output of the channel is given by

IH(p) = H(r)−
∑
i

piH(hi) (2.87)

If the transition matrix H is clear from the context, we will simply write I(p). In
the form of (2.87), mutual information is well-defined for any input pmf p. Using the
definition of entropy, mutual information can be rewritten as follows.

I(p) = H(r)−
∑
i

piH(hi) (2.88)

= −
∑
j

rj log rj +
∑
i

pi
∑
j

hji log hji (2.89)

= −
∑
i

pi
∑
j

hji log rj +
∑
i

pi
∑
j

hji log hji (2.90)

=
∑
i

pi
∑
j

hji log
hji
rj
. (2.91)

20

Since

rj =
n∑
i=1

pihji (2.92)

we conclude that if rj = 0 then pihji = 0. Thus, (2.91) is well-defined for any transition
matrix H and any input pmf p ∈ Rn

≥0. Mutual information I(p) is concave in p [24,
Theorem 2.7.4].

Proposition 2.7. The partial derivatives of I(p) on Rn
≥0 are defined and given by

∂ I(p)

∂pk
=
∑
j

hjk log
hjk
rj
− 1 (2.93)

with the possible exception that for pk = 0,

I(p+ εek)− I(p)

ε

ε↓0−→∞ (2.94)

In particular, the negative mutual information fulfills the conditions on the objective
function f in Proposition 2.3 and the conditions on the objective function f0 in Propo-
sition 2.4.

Proof.
Case 1: pk > 0. For pk > 0, we get by applying basic differentiation rules to I(p)

∂ I(p)

∂pk
=
∑
j

hjk log
hjk
rj
− 1. (2.95)

Since rj = 0 implies pkhjk = 0, and since pk > 0, rj = 0 implies hjk = 0. Thus, for
pk > 0, the partial derivatives are well-defined and given by (2.95) for any dmc.

Case 2: pk = 0. First, we note that

rj =
∑
i

hjipi =
∑
i 6=k

hjipi. (2.96)

We now have

I(p+ εek)− I(p)

ε

=
1

ε

∑
i 6=k

pi
∑
j

hji log
hji

rj + εhjk
+ ε
∑
j

hjk log
hjk

rj + εhjk
−
∑
i

pi
∑
j

hji log
hji
rj

(2.97)

=
∑
j

hjk log
hjk

rj + εhjk
− 1

ε

∑
i

pi
∑
j

hji log
rj + εhjk

rj
. (2.98)

21

We have for the second term

1

ε

∑
i

pi
∑
j

hji log
rj + εhjk

rj
=

1

ε

∑
i

pi
∑
j:rj>0

hji log
rj + εhjk

rj
(2.99)

=
1

ε

∑
i

pi
∑
j:rj>0

hji log
(

1 +
εhjk
rj

)
(2.100)

=
1

ε

∑
i

pi
∑
j:rj>0

hji

(εhjk
rj
− 1

2

(εhjk
rj

)2
+ · · ·

)
(2.101)

=
∑
i

pi
∑
j:rj>0

hji
hjk
rj

+O(1) (2.102)

=
∑
j:rj>0

hjk

∑
i pihji
rj

+O(1) (2.103)

=
∑
j:rj>0

hjk +O(1) (2.104)

where we used in (2.101) the Taylor expansion of log(1 + x) in x = 0. We now have to
distinguish between two subcases.

Case 2.1: rj = 0⇒ hjk = 0. If for each j with rj = 0 we also have hjk = 0, we have

I(p+ εek)− I(p)

ε
=
∑
j

hjk log
hjk

rj + εhjk
−
∑
j:rj>0

hjk +O(1) (2.105)

=
∑
j

hjk log
hjk

rj + εhjk
−
∑
j

hjk +O(1) (2.106)

=
∑
j

hjk log
hjk

rj + εhjk
− 1 +O(1) (2.107)

ε↓0−→
∑
j

hjk log
hjk
rj
− 1 (2.108)

i.e., in this case, the partial derivative is well-defined and given by (2.95).
Case 2.2: ∃j : rj = 0, hjk 6= 0. Assume there is a j with rj = 0 and hjk > 0. In this

case, we have

I(p+ εek)− I(p)

ε
=
∑
j

hjk log
hjk

rj + εhjk
−
∑
j:rj>0

hjk +O(1) (2.109)

ε↓0−→∞. (2.110)

This concludes the proof.

22

2.3 References

Definitions and notation in Section 2.1 are taken from Boyd and Vandenberghe [19].
Proposition 2.1 is stated in El Gamal and Kim [31, Appendix E]. A version of Propo-
sition 2.1 for differentiable objective functions with open domain is stated in [19, Sec-
tion 5.5.3]. Proposition 2.2 is stated for differentiable functions with open domain in
any standard textbook on advanced analysis, see for example Edwards [30, Theorem 2.1]
or Munkres [63, Theorem 5.1]. In [39, Theorem 4.4.1], Gallager states Proposition 2.3
for functions with the probability simplex as domain. The definitions in Section 2.2 are
from Cover and Thomas [24]. Gallager uses mutual information in the form of (2.91) in
[40, Equation (8.73)]. The properties of mutual information as stated in Proposition 2.7
are claimed without proof by Gallager in [39, Page 92].

23

3 Matching channels

In Shannon theory, a common task is to maximize or minimize functionals of pmfs.
For example, to calculate the capacity C of a dmc, we have to maximize the mutual
information I(p) between input and output of the channel over all input pmfs p, i.e.,

C = max
pmf p

I(p). (3.1)

The pmf that maximizes the mutual information is called the capacity-achieving pmf
and we denote it by p∗. To be able to communicate at maximum rate over the channel,
the sequence of channel input symbols has to resemble a sequence of symbols that are
independent and identically distributed (iid) according to the capacity achieving pmf p∗.
Thus, in a digital communication system, such a sequence has to be generated somehow.
How this can optimally be done is the topic of this thesis. In this chapter, we first show
how the class of dyadic pmfs can be generated by prefix-free codes. We then solve the
problem of minimizing the relative entropy D(d‖x) for a given target vector x over all
dyadic pmfs d. After that, we show how this result can be used to maximize over all
dyadic pmfs the entropy rate of a noiseless channel and the mutual information of a dmc.

3.1 Prefix-free matchers and dyadic pmfs

In a digital communication system, the interface between source and channel coding is
a stream of iid bits. The bits are equiprobable, i.e., both the probability that a certain
bit takes the value zero and the probability that it takes the value one is one half. We
call such a sequence of bits a fair bit stream. We will now introduce a technique that
allows us to reversibly transform a fair bit stream into a sequence of symbols that are
iid according to a non-uniform pmf. To this end, we use the concept of prefix-free codes.

Full prefix-free codes

Prefix-free codes are a well-studied subject, we will only give a very short introduction.
Details can be found for example in Cover and Thomas [24, Chapter 5] or Gallager [40,
Section 2.3]. A prefix-free code is a set of codewords over a finite alphabet where no
codeword is a prefix of another codeword. In this work, we exclusively consider binary
prefix-free codes. A full prefix-free code is a prefix-free code where no codeword can be
added to the set without destroying the prefix-free property. Equivalently, a prefix-free
code is full if no codeword in the set can be shortened without destroying the prefix-
free property. We denote by `i the length (the number of bits) of the ith codeword
in a prefix-free code. The following proposition characterizes prefix-free codes by their
codeword lengths. It is called the Kraft inequality after Kraft [50].

24

Proposition 3.1. Every prefix-free code satisfies the following inequality:∑
i

2−`i ≤ 1 (3.2)

with equality if and only if the code is full. Conversely, if a set of lengths {`i}ni=1 fulfills
the inequality, then there exists a prefix-free code with lengths `i and if it fulfills the
inequality with equality, then there exists a full prefix-free code with lengths `i.

Prefix-free matchers

According to the Kraft inequality, for a full prefix-free code, the vector

d = (2−`1 , . . . , 2−`n)T (3.3)

is a pmf. We call it the induced pmf of the code. By parsing the stream by a full
prefix-free code, a non-uniform pmf can be generated. For example, consider the set of
symbols {0, 1, 2, 3}. Then the mapping

1 7→ 0

01 7→ 1

001 7→ 2

000 7→ 3

(3.4)

generates the pmf (2−1, 2−2, 2−3, 2−3)T over the set {0, 1, 2, 3} when a fair bit stream is
parsed by the full prefix-free code {1, 01, 001, 000}. We call a device that implements
this procedure a prefix-free matcher . The pmf generated by a full prefix-free code is
exactly the corresponding induced pmf.

Dyadic pmfs

Different full prefix-free codes can induce the same pmf, e.g., by swapping 0 and 1 in
the binary codewords of the example above, we get a different full prefix-free code, but
the induced pmf remains the same. Furthermore, by adding virtual codewords of length
infinity to a full prefix-free code, we can add entries with value zero to the induced pmf.
The full prefix-free code from our example can also be used to generate the pmf

(2−1, 2−2, 2−3, 2−3, 2−∞)T . (3.5)

Since 2−∞ = 0, the Kraft inequality continues to hold with equality. In addition, we
also allow trivial pmfs where one symbol is generated with probability one and all other
symbols with probability zero. The corresponding codeword lengths are zero and infinity,
respectively. Note that the Kraft inequality is also fulfilled with equality for trivial pmfs.
We are mainly interested in the pmfs that can be generated by full prefix-free codes. By
the Kraft inequality, the set of such pmfs is given by{

d
∣∣∣ ∑

i

di = 1 and di = 2−`i , `i ∈ N0, i = 1, . . . , n
}
. (3.6)

25

We call it the set of dyadic pmfs. Most of the time, we will not specify a full prefix-free
code that generates a particular dyadic pmf, however, we should keep in mind that such
a full prefix-free code can easily be constructed.

3.2 Geometric Huffman coding

We define a non-negative vector as a vector with non-negative real entries and at least one
positive entry. Consider now a non-negative vector x. The objective is to approximate
x by a dyadic pmf by solving the matching problem

minimize
dyadic d

D(d‖x). (3.7)

We now propose an algorithm that constructs a dyadic pmf based on the non-negative
vector x. The reader should be familiar with Huffman coding [45], see for example
[40, Section 2.5.3] for a detailed explanation. Our algorithm consists in constructing a
prefix-free tree similar to the Huffman procedure, but with different updating rules. The
solution of Problem (3.7) is then the dyadic pmf induced by the constructed tree. The
updating rules are as follows. Suppose in some step in the algorithm, x has n entries
and is sorted, i.e., x1 ≥ x2 ≥ · · · ≥ xn. The first rule states how this target vector with
n entries can be turned into a target vector with n− 1 entries.

Rule 1: Updating x

The two smallest entries xn and xn−1 are replaced by x′ with the following rule.

x′ =

{
xn−1, if xn−1 ≥ 4xn

2
√
xn−1xn, if xn−1 < 4xn.

(3.8)

The second rule states how the prefix-free tree is constructed.

Rule 2: Updating the binary tree

The entries 1 to n correspond to n root nodes of n trees.

if xn−1 ≥ 4xn: remove the whole tree that ends at node n and associate probability
zero with the leafs.

if xn−1 < 4xn: join node n and node n− 1 in a parent node.

Since it involves a geometric mean, we call this method geometric Huffman coding
(Ghc) and write d = Ghc(x), where d is the dyadic pmf that is induced by the prefix-
free tree constructed by Ghc. In Subsection 3.2.3, we will show that Ghc actually finds
the optimal dyadic pmf of Problem (3.7). Ghc has the same complexity as Huffman
coding, which is O(n log n) [23, Chapter 16.3]. An implementation of Ghc in MATLAB
is displayed in Algorithm 1 and can be downloaded at our website [8].

26

Algorithm 1.(Ghc)

function d = ghc(x)

n = length(x);

indices = zeros(n-1,2);

cut_tree = false(n-1,1);

for k=1:n-1

[~,index] = sort(x,’descend’);

m = index(end-1:end);

if(4*(x(m(2)))<=x(m(1)))

x = [x(1:m(2)-1);x(m(2)+1:end)];

cut_tree(k)=true;

else

m = sort(m,’ascend’);

x = [x(1:m(1)-1);x(m(1)+1:m(2)-1);x(m(2)+1:end);2*sqrt(x(m(1))*x(m(2)))];

end

indices(k,:)=m;

end

L = zeros(n,1);

for k=1:n-1

m = indices(n-k,:);

if(cut_tree(n-k))

L = [L(1:m(2)-1);Inf;L(m(2):k);L(k+2:end)];

else

L = [L(1:m(1)-1);L(k)+1;L(m(1):m(2)-2);L(k)+1;L(m(2)-1:k-1);L(k+2:end)];

end

end

d = 2.^(-L);

3.2.1 Example

We now illustrate how Ghc works by an example. Consider 5 symbols with the target
pmf

t = (0.328, 0.32, 0.22, 0.11, 0.022)T . (3.9)

Throughout this chapter, we will denote non-negative target vectors by x and target
pmfs by t. Our aim is now to use Ghc to construct a dyadic approximation of the pmf
t. See Figure 3.1 for an illustration.

27

Step 1 First, we compare the two smallest entries of t. We have

t4
t5

= 5 (3.10)

i.e., t4 > 4t5. Thus, according to Rule 1, we remove t5 from t to continue with

t′ = (0.328, 0.32, 0.22, 0.11)T . (3.11)

According to Rule 2, we remove the tree ending at t5 and associate probability zero, or
equivalently, codeword length infinity with its leafs. There is only one leaf, namely t5
itself.

Step 2 Now, the two smallest entries of t′ relate as

t′3
t′4

= 2 (3.12)

i.e, t′3 < 4t′4. Thus, according to Rule 1, we replace them by twice their geometric mean,
i.e.,

t′′ = 2
√
t′3t
′
4 = 0.311. (3.13)

We continue with

t′′ = (0.328, 0.32, 0.311). (3.14)

In the tree, following Rule 2, we join node t′3 and node t′4 in the parent node t′′3.

Step 3 & 4 Steps 3 & 4 work exactly as Step 2. The resulting prefix-free tree is
displayed in Figure 3.1.

Comparison to Huffman coding

Huffman coding uses the updating rule x′ = xn+xn−1. For comparison, Huffman coding
is applied to t. The steps are illustrated in the right column of Figure 3.1. We write
d = Hc(t) for the dyadic pmf induced by the Huffman code of t. By reading off the
codeword lengths, the induced dyadic pmfs are

dGhc = (2−1, 2−2, 2−3, 2−3, 2−∞)T and dHc = (2−2, 2−2, 2−2, 2−3, 2−3)T . (3.15)

The relative entropies are

D(dGhc‖t) ≈ 0.0944 and D(dHc‖t) ≈ 0.1355. (3.16)

The relative entropy resulting from Ghc is smaller than the one that results from Huff-
man coding. Since Ghc assigns zero to t5, one may want to manually assign probability

28

0.328

0.32

0.22

0.11

0.022

0.328

0.32

0.22

0.11

0.022
0.132

0.328

0.32

0.22

0.11

0.022

0.311

0.328

0.32

0.22

0.11

0.022

1

2

3

30.311

0.631

0.9

∞

∞

∞

0.328

0.32

0.22

0.11

0.022
0.132

0.352

0.328

0.32

0.22

0.11

0.022

2

2

2

3

3
0.132

0.352

1.0

0.648

Step 1

Step 2

Step 3 & 4

geometric Huffman coding Huffman coding

Figure 3.1: For t = (0.328, 0.32, 0.22, 0.11, 0.022)T , the left column displays Ghc. The
right column illustrates Huffman coding.

29

zero to t5 and then apply Huffman coding to (t1, . . . , t4)T . The resulting pmf and the
resulting relative entropy are respectively given by

dHc′ = (2−2, 2−2, 2−2, 2−2, 2−∞)T , D(dHc′‖t) ≈ 0.1076. (3.17)

While dHc′ slightly improves upon dHc, the relative entropy is still larger than the one
resulting from Ghc. It can be shown that Huffman coding minimizes the relative entropy
D(x‖d) over all dyadic pmfs d. Note that this is not equivalent to minimizing D(d‖x)
because the relative entropy is not symmetric in its arguments [24, Section 2.3]. The
corresponding relative entropies of Ghc and Huffman coding are

D(t‖dGhc) =∞ and D(t‖dHc) = 0.087660 (3.18)

where in the case of Ghc, the value infinity is a consequence of the probability zero
assigned to entry 5. Huffman coding achieves a finite value close to zero, which illustrates
that for D(t‖d), Huffman coding outperforms Ghc.

3.2.2 ghc assigns probability zero to values of zero

The algorithm Ghc has the following property, which will be of great importance in the
rest of this work.

Proposition 3.2. Denote by x a non-negative target vector and define the dyadic pmf
d = Ghc(x). Then

di = 0, whenever xi = 0. (3.19)

Proof. Assume x is ordered, i.e., x1 ≥ x2 ≥ · · · ≥ xn. Then, Ghc assigns dn = 0 if
xn−1 ≥ 4xn. Since x is by assumption non-negative, for xn = 0, this condition is fulfilled
for any value of xn−1 and the statement of the proposition follows.

3.2.3 Optimality of Ghc

Proposition 3.3. Denote by x a non-negative vector. The dyadic pmf d = Ghc(x) is
the optimal dyadic pmf of Problem (3.7), i.e., it minimizes D(d‖x) over all dyadic pmfs
d.

Proof. Denote by x some non-negative vector with n entries. The pmf d is dyadic if and
only if there exist numbers `i ∈ N0, such that di = 2−`i , i = 1, . . . , n, and

∑
i 2−`i = 1.

Using this, we can write

D(d‖x) =
∑
i

di log
di
xi

(3.20)

= log(2)
∑
i

di log2

di
xi

(3.21)

= log(2)
∑
i

2−`i(− log2 xi − `i). (3.22)

30

We define u by ui = − log2 xi, i = 1, . . . , n. Omitting the constant factor log 2, our aim
is thus to minimize ∑

i

2−`i(ui − `i) (3.23)

subject to `1, . . . , `n being the codeword lengths of a full prefix-free code. Based on
(3.23), we now prove the optimality of Ghc in a way similar to the proof given in [40,
Sec. 2.5.3] for the optimality of Huffman coding.

Lemma 1. For an optimal algorithm, ui > uj implies `i ≥ `j.

Proof. Assume the contrary, i.e., ui > uj and `i < `j . Consider the ith and jth terms
in (3.23), i.e.,

2−`i(ui − `i) + 2−`j (uj − `j). (3.24)

By interchanging `i and `j , the term decreases:

[2−`j (ui − `j) + 2−`i(uj − `i)]− [2−`i(ui − `i) + 2−`j (uj − `j)] (3.25)

= 2−`j (ui − uj) + 2−`i(uj − ui) (3.26)

= (2−`i − 2−`j︸ ︷︷ ︸
>0

)(uj − ui︸ ︷︷ ︸
<0

) < 0 (3.27)

so any code with ui > uj and `i < `j is not optimal.

We now assume that the entries of x are in descending order, i.e., x1 ≥ x2 ≥ · · · ≥ xn.
Correspondingly, the entries of u are in ascending order, i.e., u1 ≤ u2 ≤ · · · ≤ un.

Case 1: `n−1, `n < ∞. We first consider the case when an optimal algorithm assigns
finite values to the codeword lengths `n and `n−1 of the two smallest entries xn−1 and
xn, which correspond to the greatest entries un−1 and un of u. We show that in this
case, there is an optimal algorithm for which `n = `n−1.

Lemma 2. If an optimal algorithm assigns finite values to the codeword lengths `n and
`n−1 of the two greatest entries un−1 and un, then there is an optimal algorithm for
which `n and `n−1 are siblings, i.e., `n = `n−1, and in addition, no other codeword is
longer than `n and `n−1.

Proof. In a full prefix-free code, the sibling of the longest finite codeword is also a longest
codeword. According to Lemma 1, if un > un−1 > un−2 ≥ · · · , an optimal algorithm
assigns the two longest codewords to un and un−1. If only un ≥ un−1 ≥ un−2 ≥ · · · ,
assigning the two longest codewords to un and un−1 does not change optimality.

31

We can now use `n = `n−1 to rewrite (3.23):

n∑
i=1

2−`i(ui − `i) =
n−2∑
i=1

2−`i(ui − `i) + 2−`n−1(un−1 − `n−1) + 2−`n(un − `n) (3.28)

=

n−2∑
i=1

2−`i(ui − `i) + 2−`n(un−1 + un − 2`n) (3.29)

=

n−2∑
i=1

2−`i(ui − `i) + 2−(`n−1)
[(un−1 + un

2
− 1︸ ︷︷ ︸

=:u′

)
− (`n − 1︸ ︷︷ ︸

=:`′

)
]

(3.30)

=
n−2∑
i=1

2−`i(ui − `i) + 2−`
′
(u′ − `′). (3.31)

Thus, by combining un and un−1 through

u′ =
un−1 + un

2
− 1 (3.32)

the size n problem is reduced to a size n−1 problem. The updating rule for the codeword
lengths `′ = `n − 1 corresponds to joining the nodes of un−1 and un in a parent node.

Case 2: `n = ∞. The optimal algorithm may assign probability zero to the greatest
entry un, which corresponds to `n =∞. We thus have

n∑
i=1

2−`i(ui − `i) =
n−1∑
i=1

2−`i(ui − `i) + 2−∞(un −∞) (3.33)

=
n−1∑
i=1

2−`i(ui − `i) (3.34)

where we used the convention −0 log 0 = 0 and equivalently 2−∞∞ = 0. Thus, if we
assign `n =∞, the size n problem is reduced to a size n−1 problem. The corresponding
updating rule for the prefix-free tree is to remove the node of un from the tree.

Choosing between the cases. It remains to check if it is better to assign probability
zero to un or to combine un and un−1. First, assume the algorithm combines un and
un−1. Then the contribution to the sum (3.23) is 2−`

′
(u′ − `′). We can now assign

probability zero to un and use the codeword of u′ for un−1. The contribution of un to
(3.23) is then zero and the contribution of un−1 is 2−`

′
(un−1 − `′). Thus, since our aim

32

is to minimize (3.23), doing the former is better if and only if

2−`
′
(un−1 − `′) > 2−`

′
(u′ − `′) (3.35)

⇔ (un−1 − `′) >
(un−1 + un

2
− 1
)
− `′ (3.36)

⇔ un−1 >
un−1 + un

2
− 1 (3.37)

⇔ un−1 > un − 2. (3.38)

We now express this condition in terms of x. Recalling that ui = − log2 xi, the condition
(3.38) becomes

un−1 > un − 2 (3.39)

⇔ − log2 xn−1 > − log2 xn − 2 (3.40)

⇔ log2 xn−1 < log2 xn + 2 (3.41)

⇔ xn−1 < 4xn. (3.42)

The updating rule (3.32) becomes

u′ =
un−1 + un

2
− 1 (3.43)

⇔ − log2 x
′ =
− log2 xn−1 − log2 xn

2
− 1 (3.44)

⇔ log2 x
′ =

log2 xn−1 + log2 xn
2

+ 1 (3.45)

⇔ x′ = 2
√
xn−1xn. (3.46)

Altogether, the optimal algorithm updates as follows.

x′ =

{
xn−1, if xn−1 ≥ 4xn

2
√
xn−1xn, if xn−1 < 4xn.

(3.47)

This is exactly the updating rule of Ghc.

3.2.4 Optimal pmf

The set of dyadic pmfs with n entries is only a finite subset of the infinite set of pmfs with
n entries. Thus, by restricting ourselves to dyadic pmfs, we get in general worse results
than we would obtain when we could use any pmf. For clarity, we denote dyadic pmfs
by d and arbitrary (possibly non-dyadic) pmfs by p. The objective is now to quantify
the penalty that results from the restriction to dyadic pmfs. To this end, we start by
calculating the optimal, possibly non-dyadic pmf. Denote again by x a non-negative
vector and consider the optimization problem

minimize
p

D(p‖x)

subject to p is a pmf.
(3.48)

33

Denote by p∗ an optimal pmf of (3.48) and denote by D the optimal value. The topic
of this subsection is to characterize p∗ and D.

Proposition 3.4. Denote by x a non-negative vector. For the optimization problem
(3.48), the optimal value D and the optimal pmf p∗ are given by

D = − log
∑
i

xi (3.49)

p∗ =
1∑
xi
x = eDx. (3.50)

Proof. We prove the statement by using the information inequality. We write D(p‖x)
as

D(p‖x) =
∑
i

pi log
pi
xi

(3.51)

=
∑
i

pi log
pi

xi∑
j xj

∑
j xj

(3.52)

=
∑
i

pi log
pi
xi∑
j xj

− log
∑
j

xj . (3.53)

The vector x/
∑

j xj is a pmf, thus, by the information inequality,∑
i

pi log
pi
xi∑
j xj

= D(p‖ x∑
j xj

) (3.54)

≥ 0 (3.55)

⇒
∑
i

pi log
pi
xi∑
j xj

− log
∑
j

xj ≥ − log
∑
j

xj (3.56)

with equality if and only if p = x/
∑

j xj . Thus, the optimal value is the right-hand side
of the last inequality and given by D = − log

∑
j xj . This optimal value is achieved by

p∗ = x/
∑

j xj . This concludes the proof.

Note that Proposition 3.4 is a generalization of the information inequality: if x is itself
a pmf, then according to Proposition 3.4, D = 0 and p∗ = x, and this is exactly what
the information inequality states.

3.2.5 Using a ‘wrong’ pmf

We are now in the position to express the relative entropy achieved by some pmf p in
terms of the optimal value D and the optimal pmf p∗.

Proposition 3.5. Denote by x a non-negative vector and by D and p∗ the optimal value
and optimal pmf of Problem (3.48), respectively. Denote by p some pmf. Then

D(p‖x) = D + D(p‖p∗). (3.57)

34

Proof. We have

D(p‖x)− D = D(p‖x) + log
∑
j

xj (3.58)

=
∑
i

pi log
pi
xi

+ log
∑
j

xj (3.59)

=
∑
i

pi log
pi
∑

j xj

xi
(3.60)

=
∑
i

pi log
pi
xi∑
j xj

(3.61)

=
∑
i

pi log
pi
p∗i

(3.62)

= D(p‖p∗) (3.63)

where we used Proposition 3.4 in the first and the last line.

3.2.6 Asymptotic achievability

We will now show that the optimal value D can be achieved by dyadic pmfs if we jointly
consider consecutive symbols. Denote by x a non-negative vector with n entries and
define

xk := x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

(3.64)

where ⊗ denotes the Kronecker product , i.e.,

x⊗ x = (x1x1, . . . , x1xn, x2x1, . . . , x2xn, . . . , xnx1, . . . , xnxn)T . (3.65)

For instance, if x is a pmf, then xk is the joint pmf of k symbols that are iid according
to x. The topic of this subsection is to show that for the dyadic pmf dk = Ghc(xk), the
per symbol relative entropy

D(dk‖xk)
k

(3.66)

converges to the optimal value D = D(p∗‖x) for k to infinity. We call this property
asymptotic achievability . To show asymptotic achievability of Ghc, we need an auxiliary
result that we will detail next.

Greedy channel matching

Denote by t a target pmf. By Proposition 3.4, the optimal value of D(p‖t) is D = 0.
We will show that D = 0 is asymptotically achieved by a simple sub-optimal algorithm.
Asymptotic achievability of Ghc then follows by optimality. Consider the following
algorithm.

35

Algorithm 2.

t1 ≥ t2 ≥ · · · ≥ tn
d = 0, i = 1
repeat
di = 2−b− log2 tic

i← i+ 1
until

∑
i di = 1

In the algorithm, b·c denotes the floor function, which is defined as

bxc := max{z ∈ Z | z ≤ x}. (3.67)

We call this algorithm greedy channel matching (Gcm) and write d = Gcm(t). What
the algorithm basically does is to assign for some m ≤ n the values di = 2−b− log2 tic to
the first m entries of d and the value 0 to the remaining n−m entries of d. Note that
since b− log2 tic ∈ N and since the terminating condition of the algorithm is

∑
i di = 1,

the vector d constructed in this way is a dyadic pmf.
First, we show that Algorithm 2 is well-defined, i.e., that the terminating condition is

actually fulfilled for some m ≤ n.

Proposition 3.6. Assume t1 ≥ t2 ≥ · · · ≥ tn. Define di = 2−b− log2 tic for i = 1, . . . , n.
Then there is an m′ ≤ n such that

∑m′

i=1 di = 1. With other words, Algorithm 2 is
well-defined.

Proof. Define `i = b− log2 tic and Lm =
∑m

i=1 2−`i . We have to show that Lm = 1 for
some m ≤ n. First, it holds that

n∑
i=1

2−`i ≥
n∑
i=1

2− log2 ti (3.68)

=

n∑
i=1

ti = 1 (3.69)

and therefore,

∃m ≤ n : Lm ≥ 1. (3.70)

Next, we show that Lm is a multiple of 2−`m+1 . Since `m+1 ≥ `m and since both `m+1 and
`m are integers, we have `m+1 = `m + u for some integer u ≥ 0. Thus, Lm is a multiple
of 2−`m+1 if it is a multiple of 2−`m = 2−`m+12u. We show the latter by induction in m.
Induction basis: For m = 1, L1 = 2−`1 .
Induction step: Assume Lm = s · 2−`m for some positive integer s. For some integer
u ≥ 0, it holds that `m+1 = `m + u. Now

Lm+1 = Lm + 2−`m+1 (3.71)

= s · 2−`m + 2−`m+1 (3.72)

= s · 2−(`m+1−u) + 2−`m+1 (3.73)

= (s2u + 1)2−`m+1 . (3.74)

36

Thus,

∃s ∈ N : Lm = s2−`m+1 . (3.75)

Assume now Lm < 1, i.e., there exists an integer s < 2`m+1 and equivalently, s ≤ 2`m+1−1
such that Lm = s2−`m+1 . We now have

1 = 2`m+12−`m+1 (3.76)

= (2`m+1 − 1 + 1)2−`m+1 (3.77)

≥ (s+ 1)2−`m+1 (3.78)

= Lm + 2−`m+1 (3.79)

= Lm+1. (3.80)

Thus, we have shown the following implication:

Lm < 1⇒ Lm+1 ≤ 1. (3.81)

Since `1 ≥ 0, L1 ≤ 1. Thus, the statements (3.70) and (3.81) can only both be true if
there exists an m′ ≤ n with Lm′ = 1. This concludes the proof.

Having shown that Gcm is well-defined, we next show that for d = Gcm(t), the
relative entropy D(d‖t) is bounded.

Proposition 3.7. For any target pmf t and d = Gcm(t), we have

D(d‖t) ≤ log 2. (3.82)

Proof. Assume t has n entries and is sorted, i.e., t1 ≥ t2 ≥ · · · ≥ tn. Denote by m the
number of non-zero entries that Gcm assigns to d. Then

D(d‖t) =
n∑
i=1

di log
di
ti

(3.83)

=
m∑
i=1

di log
2−b− log2 tic

ti
(3.84)

≤
n∑
i=1

di log
2−b− log2 tic

ti
(3.85)

≤
∑
i

di log
2−(− log2 ti−1)

ti
(3.86)

=
∑
i

di log
2ti
ti

= log 2. (3.87)

Notice how the range of the sum changes from m to n in (3.85). The inequality in (3.86)
follows since

bxc ≥ x− 1. (3.88)

This concludes the proof.

37

Asymptotic achievability of Ghc

With the results for the sub-optimal algorithm Gcm, we are now in the position to show
asymptotic achievability for Ghc.

Proposition 3.8. Denote by x a non-negative vector. For dk = Ghc(xk),

D(dk‖xk)
k

k→∞−→ D = D(p∗‖x). (3.89)

In particular, for a target pmf t and dk = Ghc(tk),

D(dk‖tk)
k

k→∞−→ 0. (3.90)

Proof. Define d̃k = Gcm(p∗k). We now have

D(dk‖xk)
k

≤ D(d̃k‖xk)
k

(3.91)

= D +
D(d̃k‖p∗k)

k
(3.92)

≤ D +
log 2

k
(3.93)

where the first inequality follows via Proposition 3.3 from the optimality of Ghc. The
second line follows from Proposition 3.5 and the inequality in the last line follows from
Proposition 3.7. The term log 2/k goes to zero for k → ∞ and the statement of the
proposition follows.

3.3 Noiseless channel

We now apply the results from the previous section to a noiseless channel . In this
section, we consider a very simple model and we will extend the results to other models
in later chapters. A noiseless channel is given by n input symbols. These symbols are
transmitted noiselessly, i.e., at the output of the channel, exactly the symbol at the input
is recovered. We assume that each symbol is of duration 1. Then, the maximum rate
at which we can transmit information over the channel is the maximum entropy rate H,
which is given by the optimal value of the optimization problem

maximize
p

H(p)

subject to p is a pmf.
(3.94)

If the input pmf has to be generated by a prefix-free matcher, the corresponding matching
problem is

maximize
dyadic d

H(d). (3.95)

38

By observing that

H(p) = −D(p‖1) (3.96)

it follows that all results from the previous section apply to the problem of maximizing
the entropy rate of a noiseless channel. We detail this in the following. For the problem
of minimizing D(p‖1), we denote in the following by D the optimal value.

3.3.1 Matching

Because of (3.96), the matching problem (3.95) is according to Proposition 3.3 optimally
solved by d = Ghc(1).

3.3.2 Optimal pmf

Because of (3.96), the maximum entropy rate is by Proposition 3.4 given by

H = −D (3.97)

= log
∑
i

1 (3.98)

= log n. (3.99)

Again by Proposition 3.4, the entries of the optimal pmf p∗ are given by

p∗i = eD1 (3.100)

= e−H (3.101)

= e− logn (3.102)

=
1

n
, i = 1, . . . , n (3.103)

i.e., the uniform pmf is optimal.

3.3.3 Using a ‘wrong’ pmf

Denote by p an arbitrary pmf. The entropy rate achieved by an arbitrary pmf p can be
expressed in terms of the optimal value H as

H(p) = H(p) + H− H (3.104)

= H−
∑
i

pi log pi −
∑
i

piH (3.105)

= H−
(∑

i

pi log pi −
∑
i

pi log e−H
)

(3.106)

= H−
(∑

i

pi log pi −
∑
i

pi log p∗i

)
(3.107)

= H− D(p‖p∗) (3.108)

39

i.e., the penalty of using p instead of the optimal pmf is D(p‖p∗). This shows that
the matching problem (3.95) can alternatively be solved by minimizing D(d‖p∗) over all
dyadic pmfs d.

3.3.4 Asymptotic Achievability

Because of (3.96) and by Proposition 3.8, we have for dk = Ghc(1k)

H(dk)

k
= −D(dk‖1k)

k
(3.109)

k→∞−→ −D(p∗‖1) (3.110)

= −D (3.111)

= H (3.112)

i.e., Ghc asymptotically achieves the maximum entropy rate.

3.4 Discrete memoryless channel

We will now show how Ghc can be used to find dyadic pmfs that achieve the capacity
of dmcs. Recall that a dmc is specified by a matrix H of transition probabilities from n
input symbols to m output symbols. An input pmf p relates to its corresponding output
pmf r as

r = Hp. (3.113)

By (2.91), the mutual information between input and output can be written as

I(p) =
∑
i

pi
∑
j

hji log
hji
rj
. (3.114)

The capacity of a dmc is the maximum mutual information between input and output,
where the maximum is taken over all input pmfs. To find the best dyadic input pmf, we
need to solve the matching problem

maximize
dyadic d

I(d). (3.115)

In contrast to the matching problems for relative entropy (3.7) and entropy rate (3.95),
we do not know an efficient method to directly solve the matching problem for mutual
information. In order to overcome this difficulty, we proceed as follows. First, we drop
the restriction to dyadic pmfs and characterize the capacity-achieving pmf p∗. Then,
we derive the penalty that results from using a pmf p different from p∗. Finally, we
minimize an upper-bound on this penalty over all dyadic pmfs and show asymptotic
achievability.

40

3.4.1 Capacity

Capacity of a dmc is the optimal value of the following optimization problem.

minimize
p

− I(p)

subject to 1Tp− 1 = 0.
(3.116)

The domain of I is Rn
≥0. This is a convex optimization problem and the solution can

efficiently be found by numerical methods as provided for example by the software pack-
age CVX [41]. The topic of this subsection is to analytically characterize the entries of
p∗.

Proposition 3.9. The following conditions are necessary and sufficient for a pmf p to
be capacity-achieving. ∑

j

hji log
hji
rj

= C, ∀i : pi > 0 (3.117)

∑
j

hji log
hji
rj
≤ C, ∀i : pi = 0. (3.118)

Proof. By Proposition 2.5 strong duality holds. By Proposition 2.7 the partial deriva-
tives of − I are well-defined with the possible exception of taking the value −∞ on the
boundary. Thus, Proposition 2.4 applies. The Lagrangian of Problem (3.116) is

L(p, ν) = − I(p) + ν(1Tp− 1). (3.119)

Note that any pmf is feasible. Thus, by Proposition 2.4, a pmf p is optimal if and only
if the KKT conditions are fulfilled, i.e.,

∂L(p, ν)

∂pi
= −∂ I(p)

∂pi
+ ν = 0, ∀i : pi > 0 (3.120)

−∂ I(p)

∂pi
+ ν ≥ 0, ∀i : pi = 0. (3.121)

By Proposition 2.7, these conditions imply that all partial derivatives of I in p are
well-defined and given by

∂ I(p)

∂pi
=
∑
j

hji log
hji
rj
− 1, i = 1, . . . , n. (3.122)

Plugging this into the KKT conditions, we get∑
j

hji log
hji
rj
≤ 1 + ν, with equality if pi > 0. (3.123)

41

For a capacity-achieving pmf p∗, we have

C = I(p∗) (3.124)

=
∑
i

p∗i
∑
j

hji log
hji
r∗j

(3.125)

=
∑
i

p∗i (1 + ν) (3.126)

= 1 + ν (3.127)

where we used (3.123) in the third line. Note that we have equality in (3.123) for all i
with p∗i > 0. We conclude that 1 + ν = C. Plugging this into (3.123), we finally get∑

j

hji log
hji
rj
≤ C, with equality if pi > 0. (3.128)

This concludes the proof.

3.4.2 Using a ‘wrong’ pmf

We now use Proposition 3.9 to express the mutual information I(p) achieved by some
pmf p in terms of capacity C and capacity-achieving pmf p∗. We will need the following
property of mutual information.

Proposition 3.10. For a dmc, denote by p′ an input pmf and by p some other input
pmf with the only restriction that

pi = 0, whenever p′i = 0. (3.129)

Then the mutual information achieved by p is given by

I(p) =
∑
i

pi
∑
j

hji log
hji
r′j
− D(r‖r′) (3.130)

where r and r′ are the output pmfs resulting from p and p′, respectively.

42

Proof.

I(p) =
∑
i

pi
∑
j

hji log
hji
rj

(3.131)

=
∑
i

pi
∑
j

hji log
hjir

′
j

rjr′j
(3.132)

=
∑
i

pi
∑
j

hji log
hji
r′j

+
∑
i

pi
∑
j

hji log
r′j
rj

(3.133)

=
∑
i

pi
∑
j

hji log
hji
r′j
−
∑
j

(∑
i

pihji

)
log

rj
r′j

(3.134)

=
∑
i

pi
∑
j

hji log
hji
r′j
− D(r‖r′). (3.135)

The term in (3.132) is well-defined even if r′j = 0. This can be seen as follows. Since
r′j =

∑
i hjip

′
i, r
′
j = 0 implies p′ihji = 0 for each i. But according to the assumption

(3.129), this also implies pihji = 0 for each i. Thus, because of 0 log 0
0 = 0, (3.132) is

well-defined.

We are now in the position to quantify the penalty that results when we do not use
the capacity-achieving pmf of a dmc.

Proposition 3.11. Consider a dmc with capacity-achieving pmf p∗ and capacity C.
Denote by p an arbitrary input pmf with the only restriction that

pi = 0, whenever p∗i = 0. (3.136)

The mutual information that is achieved by p is given by

I(p) = I(p∗)− D(r‖r∗) (3.137)

= C− D(r‖r∗). (3.138)

Proof. We have

I(p) =
∑
i

pi
∑
j

hji log
hji
r∗j
− D(r‖r∗) (3.139)

=
∑
i

piC− D(r‖r∗) (3.140)

= C− D(r‖r∗) (3.141)

= I(p∗)− D(r‖r∗). (3.142)

where equality in the first line follows from assumption (3.136) and Proposition 3.10 and
where equality in the second line follows from assumption (3.136) and Proposition 3.9.

43

3.4.3 Matching

Proposition 3.11 suggests to match a dmc by minimizing the relative entropy D(r‖r∗)
of the output pmfs over all dyadic input pmfs. However, we do not know an efficient
algorithm to do so. We will therefore use the fact that the relative entropy at the output
is upper-bounded by the relative entropy at the input.

Proposition 3.12. For a dmc the relative entropy between the output pmfs is upper
bounded by the relative entropy between the input pmfs, i.e., for two input pmfs p and
p′ and the corresponding output pmfs r and r′,

D(r‖r′) ≤ D(p‖p′). (3.143)

Proof. This follows from the log sum inequality (2.81):

D(r‖r′) =
∑
j

rj log
rj
r′j

(3.144)

=
∑
j

(∑
i

hjipi

)
log

∑
i hjipi∑
i hjip

′
i

(3.145)

≤
∑
j

∑
i

hjipi log
hjipi
hjip′i

(3.146)

=
∑
j

∑
i

hjipi log
pi
p′i

(3.147)

=
∑
i

pi log
pi
p′i

(∑
j

hji

)
(3.148)

=
∑
i

pi log
pi
p′i

(3.149)

= D(p‖p′). (3.150)

Thus, according to Proposition 3.11, if pi = 0 whenever p∗i = 0, we have the following
lower bound on I(p):

I(p) ≥ C− D(p‖p∗). (3.151)

According to Proposition 3.2, d = Ghc(p∗) guarantees di = 0 whenever p∗i = 0. Thus,

I(d) ≥ C− D(d‖p∗) (3.152)

and by Proposition 3.3, d = Ghc(p∗) minimizes D(d‖p∗) over all dyadic pmfs, i.e., it
minimizes our upper-bound on the penalty term.

44

3.4.4 Asymptotic achievability

We now show that dyadic pmfs asymptotically achieve capacity. To this end, we consider
k consecutive input symbols. Since the channel is memoryless, the capacity-achieving
joint pmf of k symbols is p∗k and the mutual information achieved by p∗k is I(p∗k) = kC.
We now have the following result.

Proposition 3.13. Denote by p∗ the capacity-achieving pmf of a dmc with capacity C.
Then for dk = Ghc(p∗k), it holds that

I(dk)
k

k→∞−→ C (3.153)

i.e., Ghc asymptotically achieves the capacity of the dmc.

Proof. Denote by rk and r∗k the output pmfs resulting from the input pmfs dk and p∗k,
respectively. We have

I(dk) = I(d∗k)− D(rk‖r∗k) (3.154)

= kC− D(rk‖r∗k) (3.155)

≥ kC− D(dk‖p∗k) (3.156)

where the first line follows from Proposition 3.11 and where the third line follows from
Proposition 3.12, which applies because of Proposition 3.2. Dividing by k, we get

I(dk)
k
≥ C− D(dk‖p∗k)

k
(3.157)

k→∞−→ C (3.158)

where the last line follows from Proposition 3.8. This concludes the proof.

3.5 References

Parts of this chapter were published in [17].
A fair bit stream at the binary interface in a digital communication system can be

obtained in several ways. In [43], Han proves that optimal source coding achieves this. In
practice, source encoders are seldom perfect. Here, pseudorandomness can help. Vasić
et al propose in [74] to use a scrambler to generate fair bit streams. A similar approach
is proposed by Ungerböck in [73]. In [4], we show how Huffman source codes can be
optimized to make the source encoder output resemble a fair bit stream.

The problem of minimizing D(d‖t) for a pmf t over dyadic pmfs d is stated by Abra-
hams in [3], but no solution is provided. In [71], Stubley and Blake propose a sub-optimal
algorithm. An algorithm in terms of codeword lengths that is equivalent to Ghc was
independently found by Dubé and Beaudoin [29]. Lemma 1 and Lemma 2 are stated and
proved by Gallager in [40, Lemma 2.5.1] and [40, Lemma 2.5.3], respectively. Asymp-
totic optimality of Huffman source coding is shown in [24, Section 5.4] by proving this

45

property for Shannon coding. The role of Gcm for prefix-free matching corresponds to
the role of Shannon coding for prefix-free source coding.

The maximum entropy (3.99) and the entropy maximizing pmf (3.103) of a random
variable over a finite set are well-known, see for example [24, Theorem 2.6.4].

Gallager states Proposition 3.9 in [39, Theorem 4.5.1]. An efficient algorithm to nu-
merically solve Problem (3.116) was proposed by Blahut [6] and Arimoto [5]. Under
condition (3.129), the identity (3.130) in Proposition 3.10 is equivalent to [25, Equa-
tion (8.7)] stated by Csiszár and Körner. The latter result is also stated by Topsøe in
[72, Theorem 9.1] and referred to as the compensation identity . Proposition 3.11 is stated
for additive white Gaussian noise (AWGN) channels in [76, Equation (5)] by Wu and
Verdú. The Gaussian case follows directly from [24, Theorem 8.6.5]. Proposition 3.12
and proof are stated as part of the data processing lemma by Csiszár and Körner in
[25, Lemma 3.11]. Under a certain condition, the bound can be strengthened, see [25,
Problem 3.19]. Proposition 3.12 can also be shown following [24, Section 4.4].

46

4 Matching channels with unequal symbol
durations

In the previous chapter, we implicitly assumed that the symbols generated by the pmf
of interest are all of equal duration. We then minimized relative entropy and maximized
entropy and mutual information. In this chapter, we assume that each symbol has an
associated duration and that different symbols have possibly different durations. We
now want to optimize performance per average duration. For example for a dmc, the
capacity is now

C = max
pmf p

I(p)

wTp
(4.1)

where the ith entry of w is the duration of the ith input symbol and where wTp is
the average duration. Our goal is to find methods that yield the best dyadic pmfs
with respect to the new objective function. We start with the problem of minimizing
the relative entropy per average duration for a given non-negative target vector over all
dyadic pmfs. We then show how the obtained results can be applied to noiseless channels
and dmcs with unequal symbol durations. The main new ingredients of this chapter are
iterative algorithms.

4.1 Normalized geometric Huffman coding

Consider an arbitrary non-negative target vector x with n entries and a vector of positive
durations w. The objective is to approximate x by a dyadic pmf d such that the relative
entropy D(d‖x) normalized by wTd is minimized, i.e., the objective is to solve the
matching problem

minimize
d dyadic

D(d‖x)

wTd
. (4.2)

We can solve Problem (4.2) iteratively. The intuition is as follows. Denote by D the
optimal value of Problem (4.2) and by d∗ the optimal dyadic pmf. Then, for an arbitrary
dyadic pmf d,

D(d‖x)

wTd
≥ D, with equality if d = d∗ (4.3)

⇒ D(d‖x)− DwTd ≥ 0, with equality if d = d∗. (4.4)

47

Thus, d∗ can be found by minimizing the left-hand side of the last line. We can write
this as

d∗ = argmin
dyadic d

D(d‖x)− DwTd (4.5)

= argmin
dyadic d

∑
i

pi

(
log

pi
xi
− Dwi

)
(4.6)

= argmin
dyadic d

∑
i

pi log
pi

xieDwi
(4.7)

= argmin
dyadic d

D(d‖x ◦ eDw) (4.8)

where we used the symbol ◦ to denote elementwise multiplication (often called Hadamard
product), i.e., for two vectors x,y with n entries,

x ◦ y := (x1y1, . . . , xnyn)T (4.9)

and where we used the notation eDw to denote exponentiation by a vector , i.e.,

eDw := (eDw1 , . . . , eDwn)T . (4.10)

According to Proposition 3.3, the minimization problem in (4.8) is solved by Ghc, i.e.,

argmin
dyadic d

D(d‖x ◦ eDw) = Ghc(x ◦ eDw). (4.11)

The remaining problem is that we in most cases do not know the optimal value D in
advance. We therefore substitute it by a guess ∆ and we update ∆ iteratively. The
resulting algorithm is as follows.

Algorithm 3.(nGhc)

d′ = Ghc(x)
repeat

1. ∆ = D(d′‖x)
wTd′

2. d′ = Ghc(x ◦ e∆w)
until D(d′‖x)−∆wTd′ = 0

We call this algorithm normalized geometric Huffman coding (nGhc) and write d =
nGhc(x,w).

4.1.1 Optimality of normalized geometric Huffman coding

Proposition 4.1. The algorithm nGhc finds the optimal solution of Problem (4.2) in
finitely many steps.

48

Proof. ∆ is strictly monotonically decreasing. Denote by ∆i the value that is assigned
to ∆ in step 1. of the ith iteration and denote by d′i the value that is assigned to d′ in
step 2. of the ith iteration. Assume that the algorithm does not terminate in the ith
iteration. We have

∆i =
D(d′i−1‖x)

wTd′i−1

(4.12)

⇒ D(d′i−1‖x)−∆iw
Td′i−1 = 0. (4.13)

Thus, since by (4.11)

d′i = argmin
dyadic d

D(d‖x)−∆iw
Td (4.14)

and since according to our assumption, the algorithm does not terminate in the ith
iteration, we have

D(d′i‖x)−∆wTd′i < 0 (4.15)

⇒ D(d′i‖x)

wTd′i
< ∆i (4.16)

⇒ ∆i+1 < ∆i (4.17)

which shows that ∆ is strictly monotonically decreasing until termination.
Optimality after termination. Assume the algorithm terminated, and denote by d′ the

pmf after termination. Because of the assignments in step 1. and step 2., the terminating
condition implies for any dyadic pmf d

D(d‖x)−∆wTd ≥ 0, with equality if d = d′. (4.18)

Consequently,

D(d‖x)

wTd
≥ ∆, with equality if d = d′ (4.19)

and we conclude that after termination, d′ is the solution of (4.2).
Termination in finitely many steps. It remains to show that the algorithm terminates

after finitely many steps. This can be seen as follows. First, as we have shown, the
algorithm is strictly monotonically decreasing in ∆. In particular, until termination,
d′i 6= dj for all j < i . Second, there are only finitely many distinct dyadic pmfs with n
entries. Thus, the algorithm has to terminate after finitely many steps.

4.1.2 Optimal pmf

We now want to quantify the penalty that results from the restriction to dyadic pmfs.
To this end, we first determine what can be achieved without this restriction, i.e., we
consider the optimization problem

minimize
p

D(p‖x)

wTp

subject to p is a pmf.

(4.20)

49

Denote by D the optimal value of this problem and denote by p∗ the corresponding
optimal pmf. We next characterize D and p∗.

Proposition 4.2. The optimal pmf of Problem (4.20) is given by

p∗ = x ◦ eDw (4.21)

and the optimal value is given by the solution of∑
i

xie
swi = 1, s ∈ R. (4.22)

Proof. Denote by p some pmf. Then

D(p‖x)

wTp
≥ D, with equality if p = p∗ (4.23)

which is equivalent to

D(p‖x)− DwTp ≥ 0, with equality if p = p∗. (4.24)

The left-hand side can be written as

D(p‖x)− DwTp = D(p‖x ◦ eDw). (4.25)

Thus, p∗ minimizes the objective of (4.20) if it minimizes

D(p‖x ◦ eDw) (4.26)

and furthermore,

min
pmf p

D(p‖x ◦ eDw) = 0. (4.27)

Thus, by Proposition 3.4,

p∗i = e0xie
Dwi (4.28)

= xie
Dwi , i = 1, . . . , n. (4.29)

Since p∗ is a pmf, D is given by the solution of∑
i

xie
swi = 1, s ∈ R. (4.30)

This concludes the proof.

Note that the sum ∑
i

xie
swi (4.31)

is monotonically increasing in s, which follows from

∂

∂s

∑
i

xie
swi =

∑
i

xiwie
swi > 0. (4.32)

Thus, D can be found via bisection.

50

Using a ‘wrong’ pmf

We are now in the position to express the relative entropy per average duration that is
achieved by some pmf p in terms of the optimal value D and the optimal pmf p∗.

Proposition 4.3. Denote by x a non-negative target vector and by D and p∗ the optimal
value and the optimal pmf of Problem (4.20), respectively. Denote by p some arbitrary
pmf with the only restriction that

pi = 0, whenever xi = 0. (4.33)

Then

D(p‖x)

wTp
= D +

D(p‖p∗)
wTp

. (4.34)

Proof. We write

D(p‖x)

wTp
=

∑
i pi log pi

xi

wTp
(4.35)

=

∑
i pi log

pip
∗
i

xip∗i

wTp
(4.36)

=

∑
i pi log

p∗i
xi

+
∑

i pi log pi
p∗i

wTp
(4.37)

=
DwTp+ D(p‖p∗)

wTp
(4.38)

= D +
D(p‖p∗)
wTp

(4.39)

which is what we wanted to show. The term in the second line is well-defined even if
p∗i = 0 for some i. This can be seen as follows. According to Proposition 4.2, p∗i = xie

Dwi ,
therefore (4.33) implies pi = 0 whenever p∗i = 0. Thus, because of 0 log 0

0 = 0, the second
line is well-defined. This concludes the proof.

4.1.3 Asymptotic achievability

We finally show that the optimal value D can be achieved by dyadic pmfs if we jointly
consider consecutive symbols. We will need the following notation. The vector vk
denotes the durations of k consecutive symbols. It can be calculated by

vk = w ⊕w ⊕ · · · ⊕w (4.40)

=: ⊕kw (4.41)

where we call w ⊕w the cost sum. The cost sum w ⊕w has n2 entries and is given by

w ⊕w = (w1 + w1, . . . , w1 + wn, w2 + w1, . . . , w2 + wn, . . . , wn + w1, . . . , wn + wn)T

i.e., the [(i− 1)n+ j]th entry is given by wi + wj .

51

Proposition 4.4. Denote by x a given non-negative target vector. Then for dk =
nGhc(xk,vk = ⊕kw),

D(dk‖xk)
vTk dk

k→∞−→ D =
D(p∗‖x)

wTp∗
. (4.42)

In particular, for a target pmf t and dk = nGhc(tk,vk = ⊕kw),

D(dk‖tk)
vTk dk

k→∞−→ 0. (4.43)

Proof. Define

wmin = min{w1, . . . , wm}. (4.44)

Furthermore, define d̃k = Ghc(p∗k). We have

D(dk‖xk)
vTk dk

= D +
D(dk‖p∗k)
vTk dk

(4.45)

≤ D +
D(d̃k‖p∗k)
vTk d̃k

(4.46)

≤ D +
D(d̃k‖p∗k)
kwmin

(4.47)

= D + w−1
min

D(d̃k‖p∗k)
k

. (4.48)

Equality in the first line follows from Proposition 4.3, which applies because of Propo-
sition 3.2. The inequality in the second line follows since by Proposition 4.1, the pmf
dk = nGhc(xk,vk) minimizes the left-hand side of the first line over all dyadic pmfs.
Thus, it also minimizes the right-hand side of the first line and d̃k = Ghc(p∗k) in the sec-
ond line can only do worse. The inequality in the third line follows from vTk dk ≥ kwmin.
For k →∞, the normalized relative entropy

D(d̃k‖p∗k)
k

(4.49)

in (4.48) goes by Proposition 3.8 to zero. Since nGhc can only do better, the proposition
follows.

4.2 Noiseless channel

In this section, we apply the results from the previous section to a noiseless channel with
unequal symbol durations. Such a channel is specified by a vector of positive durations
w. Capacity is given by the maximum entropy per average duration, i.e., by

H = max
pmf p

H(p)

wTp
. (4.50)

52

If we generate the input pmf by a prefix-free matcher, the best entropy rate that can be
achieved is given by the optimal value of the corresponding matching problem

maximize
dyadic d

H(d)

wTd
. (4.51)

Similar to Section 3.3, we can write the entropy rate achieved by an input pmf p as

H(p)

wTp
= −

∑
i pi log pi

1

wTp
(4.52)

= −D(p‖1)

wTp
. (4.53)

Thus, all results from the previous section directly apply to noiseless channels with
unequal symbols durations. We detail them for noiseless channels in the following. For
the problem of minimizing D(p‖1)/(wTp), we denote the optimal value by D.

4.2.1 Matching

Because of (4.53), the matching problem (4.51) is according to Proposition 4.1 optimally
solved by d = nGhc(1,w).

4.2.2 Optimal pmf

By Proposition 4.2 and because of (4.53), −H = D is given by the solution of∑
i

1 · eswi = 1. (4.54)

Consequently, the maximum entropy can directly be obtained by solving∑
i

e−swi = 1. (4.55)

The solution can be found by Algorithm 6, which we derive for a more general setting
in Subsection 6.3.1. Furthermore, the capacity-achieving pmf is given by

p∗ = 1 ◦ eDw (4.56)

= e−Hw. (4.57)

4.2.3 Using a ‘wrong’ pmf

Denote by p an arbitrary input pmf. The achieved entropy rate can be written as

H(p)

wTp
= −D(p‖1)

wTp
(4.58)

= −D− D(p‖p∗)
wTp

(4.59)

= H− D(p‖p∗)
wTp

(4.60)

53

where the first line follows from (4.53), the second line follows from Proposition 4.3 and
the last line again follows from (4.53). The second term in the last line gives the penalty
that results from using p instead of p∗.

4.2.4 Asymptotic achievability

For dk = nGhc(1k,vk = ⊕kw), we have

H(dk)

vTk dk
= −D(dk‖1k)

vTk dk
(4.61)

k→∞−→ −D (4.62)

= H. (4.63)

where we used (4.53) in the first and last line and where we used Proposition 4.1 in the
second line. We conclude that nGhc asymptotically achieves the capacity of a noiseless
channel with durations.

4.3 Discrete memoryless channels

In this section, we consider dmcs where the input symbols are of possibly unequal du-
rations and we will show how nGhc can be used to generate asymptotically capacity-
achieving dyadic pmfs. Recall that a dmc is specified by a matrix H of transition
probabilities from n input symbols to m output symbols. An input pmf p relates to its
corresponding output pmf r as

r = Hp. (4.64)

By (2.91), the mutual information between input and output can be written as

I(p) =
∑
i

pi
∑
j

hji log
hji
rj
. (4.65)

The input symbols have possibly unequal positive durations w. The capacity of such a
dmc is given by the maximum mutual information per average weight I(p)/(wTp). To
find the best dyadic input pmf, we need to solve the matching problem

maximize
dyadic d

I(d)

wTd
. (4.66)

We do not know an efficient algorithm that solves this problem directly. We therefore
proceed as follows. First, we drop the restriction to dyadic pmfs. After deriving an
algorithm for calculating capacity C and capacity-achieving pmf p∗, we analytically
characterize C and p∗. Based on this characterization, we derive the penalty that results
from using a pmf p different from p∗. Finally, we minimize an upper-bound on this
penalty over all dyadic pmfs and show asymptotic achievability.

54

4.3.1 Capacity

We consider the problem

maximize
p

I(p)

wTp

subject to p is a pmf.

(4.67)

The following variation of nGhc solves this problem iteratively. See Section 4.1 for the
intuition behind the algorithm.

Algorithm 4.

p′ = (1
n , . . . ,

1
n)T

ε > 0
repeat

1. C = I(p′)
wTp′

2. p′ = argmax
pmf p

I(p′)− CwTp′

until I(p′)− CwTp′ < ε

Operation 1. is a simple assignment and operation 2. consists in solving a convex
optimization problem, which can efficiently be done by convex optimization software as
for example CVX [41].

Proposition 4.5. Algorithm 4 solves Problem (4.67) in the following sense. Denote by
Ci the capacity estimate in the ith step.

1. For ε = 0, {Ci}∞i=1 converges to capacity C from below.

2. For ε > 0, the error after terminating is bounded as

C ≥ C− ε

wmin
. (4.68)

Proof. Convergence: The capacity estimates {Ci}∞i=1 form a strictly monotonically in-
creasing sequence. This can be seen as follows. Assume the algorithm does not terminate
in the ith step. Thus,

I(p′)− CiwTp′ ≥ ε (4.69)

⇒ Ci+1 =
I(p′)
wTp′

≥ Ci +
ε

wTp′
(4.70)

≥ Ci +
ε

wmax
(4.71)

which shows that Ci+1 > Ci. The sequence is bounded from above by the capacity C.
Thus, the sequence converges to some limit C∞. We now show in two steps that the
limit is equal to capacity.

55

First, assume Ci is a fixed point, i.e., Ci+1 = Ci. Then Ci is equal to capacity, i.e.,
Ci = C. This can be seen as follows.

I(p′)− CiwTp′ = I(p′)− Ci+1w
Tp′ (4.72)

= 0 (4.73)

where equality in the first line follows from the fixed point assumption and where equality
in the second line follows from the assignment in step 1. of the algorithm in the (i+1)th
iteration. Thus, because of step 2. of the algorithm in the ith iteration, for any pmf p,

I(p)− CiwTp ≤ 0, with equality if p = p′ (4.74)

⇒ I(p)

wTp
≤ Ci, with equality if p = p′. (4.75)

Thus Ci = C.
Next, we show that the limit C∞ is a fixed point. To this end, define the function

f(C) =
I(p′)
wTp′

: p′ = argmax
pmf p

I(p)− CwTp. (4.76)

Note that Ci+1 = f(Ci). The value C∞ is the limit of the sequence and the function f
is continuous in C, so for each ε > 0, there exists an i0 such that for each i with i ≥ i0,
it holds that |C∞ − Ci| < ε

2 and |f(C∞)− f(Ci)| < ε
2 . Thus

|f(C∞)− C∞| = |f(C∞)− C∞ + Ci+1 − Ci+1| (4.77)

≤ |f(C∞)− Ci+1|+ |Ci+1 − C∞| (4.78)

= |f(C∞)− f(Ci)|+ |Ci+1 − C∞| (4.79)

≤ ε

2
+
ε

2
(4.80)

= ε (4.81)

where the inequality in the second line follows from the triangular inequality. This holds
for any ε > 0, thus f(C∞) = C∞, i.e., the limit C∞ is a fixed point and equal to capacity.

Error bound: Assume the algorithm terminates. Then, from step 2. and the termi-
nating condition,

∀p : I(p)− CwTp < ε (4.82)

⇒∀p :
I(p)

wTp
< C +

ε

wTp
≤ C +

ε

wmin
(4.83)

this holds for any pmf, and in particular, the capacity-achieving pmf p∗. Consequently,

I(p∗)
wTp∗

= C (4.84)

≤ C +
ε

wmin
. (4.85)

56

Solving for C, we get

C ≥ C− ε

wmin
(4.86)

which is the statement in the proposition.

4.3.2 Capacity-achieving pmf

As we have shown, capacity C and capacity-achieving pmf p∗ can efficiently be found by
Algorithm 4. The topic of this subsection is to analytically characterize the entries of
p∗.

Proposition 4.6. For a dmc with possibly unequal symbol durations w and capacity C,
the following conditions are necessary and sufficient for an input pmf p to be capacity-
achieving: ∑

j

hji log
hji
rj

= wiC, ∀i : pi > 0 (4.87)

∑
j

hji log
hji
rj
≤ wiC, ∀i : pi = 0. (4.88)

Proof. Denote by p an arbitrary pmf and by p∗ a capacity-achieving pmf. We have

− I(p)

wTp
≥ −C, with equality if p = p∗ (4.89)

⇒ − I(p) + CwTp ≥ 0, with equality if p = p∗. (4.90)

Thus, the capacity-achieving pmf p∗ is also a solution of minimizing the left-hand side
in the last line and it is therefore given by the optimal point of

minimize
p

− I(p) + CwTp

subject to 1Tp− 1 = 0.
(4.91)

where the domain of the objective function is Rn
≥0. For this modified problem, by

Proposition 2.5, strong duality holds. By Proposition 2.7, the partial derivatives of the
objective function are well-defined with the possible exception of taking the value −∞
on the boundary. Thus, Proposition 2.4 applies. The Lagrangian is

L(p, ν) = − I(p) + CwTp+ ν(1Tp− 1) (4.92)

Note that any pmf p is feasible. Thus, by Proposition 2.4, a pmf p is optimal if and
only if the KKT conditions are fulfilled, i.e.,

∂L(p, ν)

∂pi
= −∂ I(p)

∂pi
+ Cwi + ν = 0, ∀i : pi > 0 (4.93)

−∂ I(p)

∂pi
+ Cwi + ν ≥ 0, ∀i : pi = 0. (4.94)

57

If p fulfills these conditions, then all partial derivatives of I in p are well-defined and
given by

∂ I(p)

∂pi
=
∑
j

hji log
hji
rj
− 1, i = 1, . . . , n. (4.95)

Plugging this into the KKT conditions, we get∑
j

hji log
hji
rj
≤ 1 + Cwi + ν, with equality if pi > 0. (4.96)

For a capacity-achieving pmf p∗, we have

CwTp∗ = I(p∗) (4.97)

=
∑
i

p∗i
∑
j

hji log
hji
r∗j

(4.98)

=
∑
i

p∗i (1 + Cwi + ν) (4.99)

= 1 + CwTp∗ + ν (4.100)

where we used (4.96) in the third line. Note that (4.96) holds with equality for all i with
p∗i > 0. Comparing first and last line, we conclude 1 + ν = 0 and (4.96) becomes∑

j

hji log
hji
rj
≤ Cwi, with equality if pi > 0. (4.101)

This concludes the proof.

4.3.3 Using a ‘wrong’ pmf

We now quantify the penalty that results from using an input pmf different from the
capacity-achieving one.

Proposition 4.7. Consider a dmc with possibly unequal symbol durations w. Denote
by C and p∗ capacity and capacity-achieving pmf, respectively. Let p be some pmf with
the only restriction that

pi = 0, whenever p∗i = 0. (4.102)

Then the mutual information per average duration achieved by p can be expressed as

I(p)

wTp
= C− D(r‖r∗)

wTp
. (4.103)

58

Proof. We write the mutual information achieved by p as

I(p) =
∑
i

pi
∑
j

hji log
hji
r∗j
− D(r‖r∗) (4.104)

=
∑
i

piCwi − D(r‖r∗) (4.105)

= CwTp− D(r‖r∗) (4.106)

where we used Proposition 3.10 in the first line and Proposition 4.6 and assumption
(4.102) in the second line. Dividing by wTp yields

I(p)

wTp
= C− D(r‖r∗)

wTp
(4.107)

which is the statement of the proposition.

4.3.4 Matching

Denote by p∗ the capacity-achieving pmf of a dmc with capacity C. Define the dyadic
pmf d = nGhc(p∗,w) and denote by r and r∗ the output pmfs resulting from d and p∗,
respectively. The achieved mutual information per average duration is lower-bounded
as

I(d)

wTd
= C− D(r‖r∗)

wTd
(4.108)

≥ C− D(d‖p∗)
wTd

(4.109)

where equality in the first line follows from Proposition 4.7, which applies because of
Proposition 3.2. In the second line we used Proposition 3.12. According to Propo-
sition 4.1, nGhc maximizes the lower-bound on I(d)/(wTd) in the last line over all
dyadic pmfs.

4.3.5 Asymptotic achievability

We conclude this section by showing that nGhc asymptotically achieves capacity. We
use the notation from Subsection 4.1.3.

Proposition 4.8. Denote by C and p∗ the capacity and the capacity-achieving pmf,
respectively, of a dmc with possibly unequal symbol durations w. For the dyadic pmf
dk = nGhc(p∗k,vk = ⊕kw), we have

I(dk)
vTk dk

k→∞−→ C (4.110)

i.e., nGhc is asymptotically capacity-achieving.

59

Proof. Denote by rk and r∗k the output pmfs that result from the input pmfs dk and
p∗k, respectively. We have

I(dk)
vTk dk

= C− D(rk‖r∗k)
vTk dk

(4.111)

≥ C− D(dk‖p∗k)
vTk dk

(4.112)

k→∞−→ C (4.113)

where the first line follows from Proposition 4.7, which applies because of Proposi-
tion 3.2. The second line follows from Proposition 3.12 and the last line follows from
Proposition 4.4. This concludes the proof.

4.4 References

Lempel et al proposed in [53] an algorithm that finds the optimal dyadic pmf for a
noiseless channel with unequal symbol durations. In the literature, their algorithm is
usually called the Lempel-Even-Cohn (LEC) algorithm, see for example Abrahams [2, 3].
It can be shown that the LEC algorithm is basically equivalent to nGhc, however, it
misses an efficient way to determine where the dyadic pmf should have entries of value
zero. Abrahams used in [2] the LEC Algorithm to determine a pmf of signal points that
maximizes the energy efficiency in terms of bits/energy.

Capacity and capacity-achieving pmf of noiseless channels with unequal symbol du-
rations are derived using different methods by Marcus [60, Page 8–9], by Krause [51,
Theorem 1], and by ourselves [16, Lemma 1].

Kerpez suggests in [48] to use the Huffman source code of the capacity-achieving pmf
as a prefix-free matcher for a class of noiseless channels with unequal symbol durations.
In [48, Theorem 1], he also claims asymptotic achievability for this approach. However,
the proof is rough and difficult to follow. There is a vast amount of literature on source
coding and matching for source symbols with non-uniform pmfs and channel symbols
with unequal durations, respectively. See Abrahams [1] and references therein.

Verdú called in [75, Theorem 2] the capacity of a dmc with unequal symbol durations
capacity per unit cost . He showed that the operational capacity per unit cost is actually
given by the solution of (4.67). In contrast to our work, he allowed one symbol to be of
duration zero. Jimbo and Kunisawa provide in [47] an algorithm that solves (4.67). They
also state without proof Proposition 4.6 in [47, Lemma 2]. An additional alternative to
solve Problem (4.67) is to observe that the objective function is quasiconvex and then
to solve the problem via the bisection method as Boyd and Vandenberghe propose in
[19, Section 4.2.5]. An example of a dmc with unequal symbol durations is formulated
by MacKay in [56].

60

5 Matching channels with cost constraints

In this chapter, we consider another variation of the basic setup from Chapter 3. We
let all symbols be of equal duration, but we now associate with each symbol a cost.
Different symbols can have different costs. In addition, we introduce a cost constraint
E. All optimization problems in this chapter are subject to the constraint that the
average cost cannot exceed E. For example, the capacity of a dmc with symbol costs w
is now given by

C = max
pmf p:wTp≤E

I(p). (5.1)

The goal of this chapter is to find good dyadic pmfs under the new constraint. We start
with the problem of minimizing the relative entropy for a given non-negative target
vector over all dyadic pmfs subject to the cost constraint. We then apply the results to
noiseless channels and dmcs and show that capacity can asymptotically be achieved by
prefix-free matchers.

5.1 Cost constrained geometric Huffman coding

Consider a non-negative vector x and a positive cost vector w. The objective is to
approximate x by a dyadic pmf d such that the relative entropy D(d‖x) is minimized
subject to an average cost constraint E, i.e., the objective is to solve

minimize
d dyadic

D(d‖x)

subject to wTd ≤ E.
(5.2)

We do not know an efficient algorithm that directly solves this problem. To tackle this
problem, we include the cost constraint into the objective function by adding a scaled
version ξwTd of the cost constraint to the objective function. This can be written as

D(d‖x) + ξwTd =
∑
i

di log
di
xi

+
∑
i

diξwi (5.3)

= D(d‖x ◦ e−ξw). (5.4)

By Proposition 3.3, the term in the last line is minimized over all dyadic pmfs by d =
Ghc(x◦e−ξw). The cost constraint can be guaranteed by iteratively adapting ξ: if for the
resulting d, wTd > E, increase ξ and repeat, if wTd < E, decrease ξ and repeat. Thus,
the solution can be found by bisection. In summary, we have the following algorithm,
which we call cost constrained geometric Huffman coding (ccGhc).

61

Algorithm 5.(ccGhc)

` < u
ε > 0
repeat

1. ξ = `+u
2

2. d = Ghc(x ◦ e−ξw)
3. if wTd ≤ E, u← ξ; else `← ξ

until u− ` < ε
ξ = u
d = Ghc(x ◦ e−ξw)

We will argue in Subsection 5.3 why ccGhc not always finds the optimal dyadic pmf for
Problem (5.2), but we will show in Subsection 5.1.4 that ccGhc asymptotically achieves
the optimal value.

5.1.1 Optimal pmf

To be able to quantify the performance of ccGhc, we first need to derive what can be
achieved without the restriction to dyadic pmfs. We start by characterizing the optimal
possibly non-dyadic pmf. We define the distance-cost function D(E) pointwise by the
solution of

minimize
p

D(p‖x)

subject to wTp− E ≤ 0

1Tp− 1 = 0

(5.5)

where the domain of the problem is Rn
≥0. That is, if p∗ is the optimal pmf for a specific

E, we define

D(E) := D(p∗‖x) (5.6)

Define

wmin := min
i:xi>0

wi. (5.7)

The objective can only take finite values if E ≥ wmin. The unconstrained solution is by
Proposition 3.4 given by

t :=
x∑
i xi

. (5.8)

For the rest of this section, we assume wmin < w
T t and we say the constraint is active

if wmin < E < wT t.

62

Proposition 5.1. Given is a non-negative target vector x, symbol costs w, and an
active cost constraint E. Then necessary and sufficient conditions for a feasible pmf p
to solve Problem (5.5) are

pi = 0, ∀i : xi = 0 (5.9)

log pi = log xi − 1− ν − λwi, ∀i : xi > 0 (5.10)

where ν is a finite real value and λ > 0. From these conditions, the capacity-achieving
pmf p∗ can be calculated as

p∗i =
xie
−λwi∑

j xje
−λwj

, i = 1, . . . , n (5.11)

where λ is given by the solution of∑
iwixie

−λwi∑
i xie

−λwi
= E. (5.12)

Proof. The problem we want to solve is

minimize
p

D(p‖x)

subject to wTp− E ≤ 0

1Tp− 1 = 0

(5.13)

where the domain is Rn
≥0. By Proposition 2.5 strong duality holds for this problem. By

the convention log 0 = −∞, clearly, whenever xi = 0, we have to assign pi = 0, since
otherwise, the objective function would take the value infinity. Therefore, without loss
of generality, we assume for now that xi > 0 for all i. Under this assumption, according
to Proposition 2.6, the partial derivatives of D(p‖x) are well-defined with the exception
of taking the value −∞ on the boundary of Rn

≥0. All together, Proposition 2.4 applies.
The Lagrangian is

L(p, λ, ν) = D(p‖x) + λ(wTp− E) + ν(1Tp− 1). (5.14)

According to Proposition 2.4, a feasible p is optimal if and only if the KKT conditions
are fulfilled, i.e.,

λ ≥ 0 (5.15)

λ(wTp− E) = 0 (5.16)

∂L(p, ν, λ)

∂pi
=
∂ D(p‖x)

∂pi
+ ν + λwi = 0, ∀i : pi > 0 (5.17)

∂ D(p‖x)

∂pi
+ ν + λwi ≥ 0, ∀i : pi = 0. (5.18)

63

The two last conditions imply together with Proposition 2.6 that all partial derivatives of
D(p‖x) are well-defined in p. In particular, pi > 0, i = 1, . . . , n, and by Proposition 2.6,

∂ D(p‖x)

∂pi
= log

pi
xi

+ 1, i = 1, . . . , n. (5.19)

Thus

log pi = log xi − 1− ν − λwi, i = 1, . . . , n. (5.20)

Since p is a pmf, its entries have to sum up to one. Therefore,

pi =
pi∑
j pj

=
xie
−1−ν−λwi∑

j xje
−1−ν−λwj

(5.21)

=
xie
−λwi∑

j xje
−λwj

. (5.22)

Furthermore, since by assumption the constraint is active, λ > 0 and condition (5.16)
holds if and only if

wTp = E (5.23)

⇔ xiwie
−λwi∑

j xje
−λwj

= E. (5.24)

Note that the resulting pmf p is actually feasible.
In the case when xi = 0 for some i, as argued above, an optimal pmf has to assign

pi = 0. This assignment is provided by (5.22), so this formula yields the optimal pmf
for any non-negative vector x. This concludes the proof.

5.1.2 Strict convexity of distance-cost function

Next, we show that the distance-cost function is a strictly convex function of the cost
constraint when the constraint is active. We need this result to show asymptotic achiev-
ability for ccGhc.

Proposition 5.2. For an active cost constraint E, the distance-cost function D(E) is
strictly convex in E.

Proof. Denote by p∗ an optimal pmf for cost constraint E. Since by assumption the cost
constraint is active, λ > 0. Thus, by (5.16), wTp∗ = E, i.e,

wTp∗ =

∑
iwixie

−λwi∑
j xje

−λwj
(5.25)

=: f(λ) (5.26)

= E. (5.27)

64

We differentiate f(λ) and get

∂f(λ)

∂λ
=

∑
i

∑
j(wiwj − w2

i)xixje
−λ(wi+wj)[∑

j xje
−λwj

]2 (5.28)

We now want to show that ∂f(λ)
∂λ < 0. Since the denominator is positive, we only need

to consider the numerator. We have∑
i

∑
j

(wiwj − w2
i)xixje

−λ(wi+wj)

=
∑
i

∑
j>i

(wiwj − w2
i + wjwi − w2

j)xixje
−λ(wi+wj) (5.29)

=
∑
i

∑
j>i

[−(wi − wj)2]xixje
−λ(wi+wj) (5.30)

≤ 0 (5.31)

where the inequality follows because each summand is smaller or equal to 0. We now
show that the inequality in the last line can be replaced by a strict inequality. By
assumption, E is active, and in particular, wmin < E. Denote by m the index of wmin

in w. By definition of wmin, xm > 0. An active cost constraint is fulfilled with equality,
therefore, there has to be another index k with wk > wmin and xk > 0. Consequently,
the corresponding summand has to be negative, i.e.,

[−(wm − wk)2]xmxke
−λ(wm+wk) < 0. (5.32)

As a result, the sum in (5.30) is also strictly smaller than zero and the inequality in
(5.31) can be replaced by a strict inequality. Thus, f is strictly monotonically decreasing
and thereby invertible on its image, i.e., on (wmin,w

T t). Recall that we defined t as
the optimal pmf of the unconstrained problem. Consequently, λ = f−1(E) is strictly
monotonically decreasing. By [19, Section 5.6.3],

λ = −∂D(E)

∂E
(5.33)

thus,

∂2D(E)

∂E2
= −∂f

−1(E)

∂E
> 0 (5.34)

which is by [24, Theorem 2.6.1] a sufficient condition for the strict convexity of D(E) in
E.

5.1.3 Using a ‘wrong’ pmf

We now express the relative entropy achieved by a pmf different from the optimal one
in terms of the optimal pmf and the cost constraint.

65

Proposition 5.3. Given is a non-negative target vector x and a positive cost vector
w. For a given active cost constraint E, denote by p∗ an optimal pmf. Denote by p an
arbitrary pmf with the only restriction that

pi = 0, whenever p∗i = 0. (5.35)

Then

D(p‖x) = D(E)− λ(wTp− E) + D(p‖p∗). (5.36)

where −λ is the slope of the tangent of D in [E,D(E)], i.e.,

−λ =
∂D(E)

∂E
. (5.37)

Proof. We write the relative entropy of p and x as

D(p‖x) =
∑
i

pi log
pi
xi

(5.38)

=
∑
i

pi log
pip
∗
i

xip∗i
(5.39)

=
∑
i

pi log
p∗i
xi

+ D(p‖p∗) (5.40)

=
∑
i

pi log p∗i −
∑
i

pi log xi + D(p‖p∗) (5.41)

where the second line is well-defined even if p∗i = 0 for some i because of (5.35) and
0 log 0

0 = 0. We further develop the first term:∑
i

pi log p∗i =
∑
i

(pi + p∗i − p∗i) log p∗i (5.42)

= −H(p∗) +
∑
i

(pi − p∗i) log p∗i (5.43)

= −H(p∗) +
∑
i

(pi − p∗i)(log xi + 1− ν − λwi) (5.44)

= −H(p∗)− λ(wTp−wTp∗) +
∑
i

pi log xi −
∑
i

p∗i log xi (5.45)

= D(p∗‖x)− λ(wTp−wTp∗) +
∑
i

pi log xi (5.46)

where we used Proposition 5.1 in the third line. Using (5.46) in (5.41), we get

D(p‖x) = D(p∗‖x)− λ(wTp−wTp∗) + D(p‖p∗) (5.47)

= D(E)− λ(wTp− E) + D(p‖p∗) (5.48)

66

average cost E

re
la

ti
ve

en
tr

op
y

D(dk‖p∗k)
k

−λ(
vTk dk
k − E∗)

vTk dk
k − E∗

Q

Q∗

D(E)

g(E)

−λ

D(dk‖xk)
k

D(E∗)

E∗vTk dk
k

Figure 5.1: Existence of good dyadic operating points.

where wTp∗ = E in the second line since the constraint is by assumption active. Ac-
cording to [19, Section 5.6.3], for an active constraint E, λ is given by

λ = −∂D(E)

∂E
. (5.49)

This concludes the proof.

5.1.4 Asymptotic Achievability

We finally show that ccGhc is asymptotically capacity-achieving. Given is a non-
negative target vector x, positive costs w, and an active cost constraint E∗. We con-
sider k consecutive symbols. The corresponding target vector is given by the Kronecker
product xk of k copies of x. The cost vector is given by the cost sum vk = ⊕kw where
we used the notation from Subsection 4.1.3. The cost constraint becomes kE∗ and for
an active cost constraint, the optimal pmf p∗k fulfills vkp

∗k = kE∗. For k to infinity, we
have the following result.

Proposition 5.4. Given is a non-negative target vector x, positive costs w, and an
active cost constraint E∗. Define dk = ccGhc(xk,vk = ⊕kw, kE∗). Then,

D(dk‖xk)
k

→D(p∗‖x) (5.50)

and
vTk dk
k
→E∗,

vTk dk
k
≤ E∗ (5.51)

67

average cost E

re
la

ti
ve

en
tr

op
y

Q∗ D(E)

Q′

ε
Q′′

−ξ

E′ E′′ E∗

Figure 5.2: Finding good dyadic operating points.

minimize

average cost E

Q′ Q∗

D(E) + ξ(E − E∗)

Figure 5.3: Rotated relative entropy geometry.

68

i.e., the relative entropy per symbol converges to the optimal value and the average cost
per symbol converges to the cost constraint E∗, while the cost constraint is always fulfilled.

Proof. We now show that for any active cost constraint E∗, the target operating point
Q∗ = [E∗,D(E∗)] can be achieved by a dyadic pmf. We do this in two steps. First, we
show the existence of dyadic operating points close to the target operating point, and
then we show that ccGhc actually finds them.

Existence of good dyadic points. Consider the optimal pmf p∗k of k consecutive sym-
bols. Define vk = ⊕kw. Furthermore, define dk = Ghc(p∗k). Proposition 5.3 applies
for dk because of Proposition 3.2 and the relative entropy achieved by dk can be written
as

D(dk‖xk)
k

= D(E∗)− λ
(vTk dk

k
− E∗

)
+

D(dk‖p∗k)
k

. (5.52)

By Proposition 3.8, since dk = Ghc(p∗k), the normalized relative entropy on the right-
hand side goes to zero as k →∞. Consider now Figure 5.1. The tangent of D(E) in Q∗

is given by

g(E) := D(E∗)− λ(E − E∗). (5.53)

As the normalized relative entropy of dk and p∗k gets smaller, the normalized rela-
tive entropy of dk and xk on the left-hand side of (5.52) is approaching the tangent g
from above. However, because the tangent is linear in E and D is according to Propo-

sition 5.2 strictly convex in E and lower-bounds D(dk‖xk)
k , the dyadic operating point

Q = (
vTk dk
k , D(dk‖xk)

k) has to approach Q∗ both in terms of distance and cost. However, Q
may approach Q∗ also from the right, i.e., there is no guarantee that for dk = Ghc(p∗k),
the cost constraint is fulfilled.

Finding good dyadic points. The algorithm ccGhc guarantees that the cost constraint
is fulfilled. It remains to show that ccGhc finds good dyadic points. This can best be
seen in Figure 5.2. Suppose we want to find a dyadic pmf dk such that for a given ε > 0,

D(dk‖x)

k
≤ D(E∗) + ε and

vTk dk
k
≤ E∗. (5.54)

Define

E′ : D(E′) = D(E∗) + ε (5.55)

and define further

E′′ =
E′ + E∗

2
. (5.56)

The chord from Q∗ = [E∗,D(E∗)] to Q′ = [E′,D(E′)] cuts a segment from the area
above D. Because of the strict convexity of D, this segment is nonempty. Note that all
operating points in the segment fulfill the requirements (5.54). As shown in the first part

69

of this proof, for a large enough k, there exist dyadic operating points approximating
Q′′ = [E′′,D(E′′)] that lie within this segment. Define now ξ as the negative slope of the
chord, i.e.,

ξ = −D(E∗)− D(E′)

E∗ − E′
. (5.57)

By adding ξ · (E − E∗) to the points in Figure 5.2, all points rotate around the target
point Q∗ such that Q′ and Q∗ are on the same height, i.e.,

D(E′) + ξ(E′ − E∗) = D(E′)− D(E∗)− D(E′)

E∗ − E′
(E′ − E∗) (5.58)

= D(E∗). (5.59)

See Figure 5.3 for an illustration. Since all dyadic points in the segment lie below Q∗,
we can find them by minimization in the direction of the vertical axis. Thus, we assign

dk = argmin
dyadic d

D(d‖xk)
k

+ ξ
(vTk d

k
− E∗

)
(5.60)

= argmin
dyadic d

D(d‖xk)
k

+ ξ
vTk d

k
(5.61)

= argmin
dyadic d

D(d‖xk) + ξvTk d (5.62)

= argmin
dyadic d

D(d‖xk ◦ e−ξvk) (5.63)

= Ghc(xk ◦ e−ξvk) (5.64)

where the last line follows from Proposition 3.3. The value of ξ will also be evaluated
by ccGhc, thus dk = ccGhc(xk,vk, kE

∗) will give a dyadic operating point at least as
good as dk = Ghc(xk ◦ e−ξvk). This concludes the proof.

5.2 Noiseless channel

We now apply the results from the previous section to noiseless channels with average
cost constraint . The input symbols are all of duration 1, but each symbol has an as-
sociated positive cost and for different symbols, the cost can be different. The average
cost cannot exceed a prescribed value E. The capacity of such a channel is given by the
maximum entropy rate subject to the cost constraint, i.e., by

H = max
pmf p:wTp≤E

H(p) (5.65)

where the entries of w are the costs of the symbols. When we generate the pmf by a
prefix-free matcher, the maximum rate that we can achieve is given by the optimal value
of the matching problem

maximize
dyadic d

H(d)

subject to wTd ≤ E.
(5.66)

70

As we have seen in Section 3.3 and Section 4.2, we can express entropy as a relative
entropy, i.e.,

H(p) = −D(p‖1). (5.67)

Thus, all results that we derived for relative entropy in the previous section also apply
to noiseless channels. We detail this in the following.

5.2.1 Matching

Because of (5.67), d = ccGhc(1,w, E) yields according to Section 5.1 a good feasible
dyadic pmf for the matching problem (5.66).

5.2.2 Optimal pmf

Capacity H and capacity-achieving pmf p∗ are given by the solution of the optimization
problem

minimize
p

−H(p)

subject to wTp− E ≤ 0

1Tp− 1 = 0

(5.68)

where the domain of the problem is Rn
≥0. We define the entropy-cost function H(E)

pointwise by the solution of (5.68), i.e., for the cost constraint E, H(E) is the optimal
value of (5.68). Because of (5.67), Proposition 5.1 directly gives us the following result.

Proposition 5.5. Given are symbol costs w and an active cost constraint E. Then
necessary and sufficient conditions for a feasible pmf p to solve Problem (5.68) are

log pi = 1− ν − λwi, i = 1, . . . , n (5.69)

where ν is a finite real number and λ > 0. From these conditions, the capacity-achieving
pmf p∗ can be calculated as

p∗i =
e−λwi∑
j e
−λwj

, i = 1, . . . , n (5.70)

where λ is given by the solution of ∑
iwie

−λwi∑
i e
−λwi

= E. (5.71)

5.2.3 Strict concavity of entropy-cost function

Because of the relation (5.67), Proposition 5.2 gives us the following result for the
entropy-cost function.

Proposition 5.6. For an active cost constraint E, the entropy-cost function H(E) is
strictly concave in E.

71

5.2.4 Using a ‘wrong’ pmf

We now express the entropy rate achieved by some pmf p in terms of the cost constraint
E and the capacity-achieving pmf p∗. Because of (5.67), we get from Proposition 5.3
the following result.

Proposition 5.7. Let w denote positive symbol costs. Denote by E an active cost
constraint and by p∗ the corresponding capacity-achieving pmf. Let p be an arbitrary
input pmf with the only restriction that

pi = 0, whenever p∗i = 0. (5.72)

The entropy rate achieved by p can then be written as

H(p) = H(E) + λ(wTp− E)− D(p‖p∗) (5.73)

where λ is the slope of the tangent of H in [E,H(E)], i.e.,

λ =
∂H(E)

∂E
. (5.74)

5.2.5 Asymptotic achievability

From Proposition 5.4, because of (5.67), we can conclude the asymptotic achievability
of ccGhc for noiseless channels with cost constraints.

Proposition 5.8. Given are positive symbol costs w and an active cost constraint E.
Then dk = ccGhc(1k,vk = ⊕kw, kE) achieves capacity, i.e.,

H(dk)

k

k→∞−→ H(E) (5.75)

and
vTk dk
k
≤ E,

vTk dk
k

k→∞−→ E. (5.76)

5.3 ccGhc is not necessarily optimal: an example

We consider the signal constellation of quadrature amplitude modulation with 16 signal
points (16-QAM). The cost of a signal point x is given by w = |x|2. We normalize by
the greatest cost, and the resulting costs are given by

w = 1
9(9 5 5 9

5 1 1 5
5 1 1 5
9 5 5 9)T

(5.77)

where we wrote the 16 entries of w in four rows to mimic the signal constellation of
16-QAM. We want to maximize entropy subject to an average cost constraint E. For
E < wmin = 1

9 , the problem is infeasible. For E = 1
9 , only the inner four points can be

72

0.1 0.2 0.3 0.4 0.5 0.6

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6

2

2.5

3

3.5

4

Figure 5.4: In both plots, the horizontal position gives the average cost and the vertical
position the entropy. The blue lines mark the entropy-cost function. In
the left plot, the red crosses mark the dyadic operating points found by
ccGhc(1,w, E). The red crosses in the right plot show the dyadic operating
points found by ccGhc(12,⊕2w, 2E). The dotted line indicates the convex
hull of the set of dyadic operating points. A yellow triangle marks a region
that may contain optimal dyadic operating points that ccGhc cannot find.
The dyadic pmf that generates the point marked by a green cross was found
by random search. Its codeword lengths are given in (5.81).

used and entropy is according to Subsection 3.3.2 maximized by the uniform pmf over
these four points, i.e., by

pmin = 1
4(0 0 0 0

0 1 1 0
0 1 1 0
0 0 0 0)T

(5.78)

and the entropy achieved by pmin is 2 bits. According to Subsection 3.3.2, without the
constraint, entropy is maximized by the uniform pmf over all 16 points, i.e., by

pmax = 1
16(1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1)T

(5.79)

and the entropy achieved by pmax is 4 bits. The constraint is active for

wTpmin < E < wTpmax (5.80)

and we use the formula from Proposition 5.5 to calculate the entropy-cost function.
The resulting curve is displayed in Figure 5.4. We now use ccGhc to calculate dyadic
pmfs. We call ccGhc(1,w, E) for 100 values of E equally spaced in the active interval.

73

We get 8 distinct dyadic pmfs. The resulting dyadic operating points are displayed by
red crosses in Figure 5.4. This small number is surprising. If for each value of E, the
rightmost red cross to the left of E yields the optimal dyadic operating point under the
constraint E, then this would in particular imply that there is no dyadic operating point
in the yellow triangular in the figure. However, by randomly generating dyadic pmfs, we
find the dyadic pmf

drand = 2−(7 5 5 7 5 2 2 5 5 3 4 4 7 5 5 7)T . (5.81)

The corresponding dyadic operating point is displayed by a green cross and lies inside the
yellow triangular. So, for E = wTdrand, ccGhc could not find the optimal dyadic pmf.
The reason is the following: ccGhc optimizes the sum of the objective function and a
scaled version of the cost function. Consequently, ccGhc can only find dyadic operating
points that lie on the boundary of the convex hull of the set of all dyadic operating points.
See [19, Section 4.7.4] for a related discussion. All red crosses in Figure 5.4 lie on this
boundary, but the green cross does not. We can compensate for the non-optimality of
ccGhc by invoking Proposition 5.8, which states that ccGhc is asymptotically capacity
achieving for noiseless channels with cost constraints. In Figure 5.4, the dyadic operating
points that result from jointly considering two consecutive symbols are displayed. They
were calculated by ccGhc(12,⊕2w, 2E) again for 100 equally spaced values of E. As
we can see, ccGhc now outperforms the randomly found operating point of drand, i.e.,
there is a dyadic operating point found by ccGhc that lies left and above of the random
operating point.

We discussed the possible non-optimality of ccGhc for noiseless channels with costs,
but the same occurs when ccGhc is applied to relative entropy and dmcs.

5.4 Discrete memoryless channel

In this section, we consider the important class of dmcs with average cost constraint.
The main result of this section is that ccGhc is asymptotically capacity-achieving for
this class of dmcs. Recall that a dmc is specified by a matrixH of transition probabilities
from n input symbols to m output symbols. An input pmf p relates to its corresponding
output pmf r as

r = Hp. (5.82)

By (2.91), the mutual information between input and output can be written as

I(p) =
∑
i

pi
∑
j

hji log
hji
rj
. (5.83)

All input symbols are now of equal duration 1. Each symbol has an associated positive
cost and different symbols can have different costs. The input pmf is subject to an
average cost constraint E. Capacity is now given by

C = max
pmf p:wTp≤E

I(p) (5.84)

74

where the entries of w are the costs of the symbols. To find the best dyadic input pmf,
we need to solve the matching problem

maximize
dyadic d

I(d)

subject to wTd ≤ E.
(5.85)

As for the other variations of the dmc, we do not know an algorithm that directly solves
this problem efficiently. To tackle this problem, we use the same approach as we did for
the simple dmc in Section 3.4 and the dmc with unequal symbol durations in Section 4.3.
First, we drop the restriction to dyadic pmfs and analytically characterize the capacity-
achieving pmf p∗. Based on this characterization, we derive the penalty that results
from using a pmf p different from p∗. Then, we upper-bound this penalty and minimize
this bound over all dyadic pmfs. Finally, we show that ccGhc finds dyadic input pmfs
that are asymptotically capacity-achieving.

5.4.1 Capacity-achieving pmf

Capacity of a cost constrained dmc is given by the optimal value of the following opti-
mization problem.

minimize
p

− I(p)

subject to wTp− E ≤ 0

1Tp− 1 = 0

(5.86)

where the domain of the problem is Rn
≥0. This is a convex optimization problem and

both optimal pmf p∗ and optimal value −C are efficiently found by numerical methods
as provided for example by the software package CVX [41]. The goal is to analytically
characterize the optimal pmf p∗.

Proposition 5.9. For a dmc with positive symbol costs w and an active cost constraint
E, the following conditions are necessary and sufficient for a feasible p to be capacity-
achieving. ∑

j

hji log
hji
rj

= λ(wi − E) + C, ∀i : pi > 0 (5.87)

∑
j

hji log
hji
rj
≤ λ(wi − E) + C, ∀i : pi = 0 (5.88)

where λ > 0.

Proof. By Proposition 2.5 strong duality holds. By Proposition 2.7, the partial deriva-
tives of the objective function − I are well-defined with the possible exception of taking
the value −∞ on the boundary of the domain Rn

≥0. Thus, Proposition 2.4 applies. The
Lagrangian of Problem (5.86) is

L(p, λ, ν) = − I(p) + λ(wTp− E) + ν(1Tp− 1). (5.89)

75

By Proposition 2.4, a feasible pmf p is optimal if and only if the KKT conditions are
fulfilled, i.e.,

λ ≥ 0 (5.90)

λ(wTp− E) = 0 (5.91)

∂L(p, λ, ν)

∂pi
= −∂ I(p)

∂pi
+ λwi + ν = 0 ∀i : pi > 0 (5.92)

−∂ I(p)

∂pi
+ λwi + ν = 0 ∀i : pi = 0. (5.93)

If these conditions are fulfilled, then according to Proposition 2.7, all partial derivatives
of I in p are well-defined and given by

∂ I(p)

∂pi
=
∑
j

hji log
hji
rj
− 1 (5.94)

Plugging this into the KKT conditions, we get∑
j

hji log
hji
rj
≤ 1 + λwi + ν, with equality if pi > 0. (5.95)

The unknown ν can be expressed in terms of capacity C. For a capacity-achieving pmf
p∗, we have

C = I(p∗) (5.96)

=
∑
i

p∗i
∑
j

hji log
hji
r∗j

(5.97)

=
∑
i

p∗i (1 + λwi + ν) (5.98)

= 1 + ν + λwTp∗ (5.99)

= 1 + ν + λE (5.100)

where we used (5.95) in the third line and where the last line follows since the constraint
is by assumption active. Solving for ν gives

ν = −1− λE + C. (5.101)

Plugging this into (5.95), we finally get∑
j

hji log
hji
rj
≤ λ(wi − E) + C, with equality if pi > 0. (5.102)

This concludes the proof.

76

5.4.2 Using a ‘wrong’ pmf

We define the capacity-cost function C(E) pointwise by the solution of (5.86), i.e., if
p∗ is the optimal pmf for the cost constraint E, we define C(E) = I(p∗). This allows
us to express the mutual information achieved by an arbitrary pmf p in terms of a
cost constraint E, the corresponding optimal pmf p∗, and the value of the capacity-cost
function C(E).

Proposition 5.10. Given is a dmc with positive symbol costs w, an active cost con-
straint E, and the corresponding capacity-achieving pmf p∗ . Denote by p an arbitrary
pmf with the only restriction that

pi = 0, whenever p∗i = 0. (5.103)

Then the mutual information achieved by p can be written as

I(p) = C(E) + λ(wTp− E)− D(r‖r∗) (5.104)

where λ is given by the slope of the tangent of the capacity-cost function in [E,C(E)],
i.e.,

λ =
∂C(E)

∂E
. (5.105)

Proof. Because of our assumption (5.103), we can write the mutual information achieved
by p according to Proposition 3.10 as

I(p) =
∑
i

pi
∑
j

hji log
hji
r∗j
− D(r‖r∗). (5.106)

We write the first term further as∑
i

pi
∑
j

hji log
hji
r∗j

=
∑
i

(p∗i + pi − p∗i)
∑
j

hji log
hji
r∗j

(5.107)

= I(p∗) +
∑
i

(pi − p∗i)
∑
j

hji log
hji
r∗j

(5.108)

= C(E) +
∑
i

(pi − p∗i)[λ(wi − E) + C] (5.109)

= C(E) + λ(wTp−wTp∗) (5.110)

= C(E) + λ(wTp− E) (5.111)

where we used Proposition 5.9 in the third line. Plugging (5.111) into (5.106), we get

I(p) = C(E) + λ(wTp− E)− D(r‖r∗). (5.112)

Since the constraint is active, the value of λ is according to [19, Section 5.6.3] given by

λ =
∂ I(E)

∂E
. (5.113)

This concludes the proof.

77

5.4.3 Strictly concave lower bound on capacity-cost function

An important issue for the design of algorithms that find capacity-achieving pmfs of
dmcs with average cost constraints is the question if the capacity-cost function is strictly
concave in the cost constraint E. While this is for many dmcs of practical interest indeed
the case, we do not know if this property holds in general. This motivates us to present a
lower bound on the capacity-cost function that is provable strictly concave for any dmc.
Denote by E an active cost constraint and by p∗ the corresponding capacity-achieving
pmf. Denote further by p an arbitrary pmf with the restriction that

pi = 0, whenever p∗i = 0. (5.114)

The mutual information achieved by p can now be bounded as

I(p) = C(E) + λ(wTp− E)− D(r‖r∗) (5.115)

≥ C(E) + λ(wTp− E)− D(p‖p∗) (5.116)

where we used Proposition 5.10 in the first line and where we used Proposition 3.12 in
the second line. Denote now by E′ ≤ E another active cost constraint and by p′ the
optimal pmf of

minimize
pmf p

D(p‖p∗)

subject to wTp ≤ E′.
(5.117)

Denote the optimal value by D(E′). This problem is an instance of the problem solved in
Proposition 5.1. Note that according to this proposition, p′ fulfills the condition (5.114).
Thus, we can set p = p′ in (5.116) and get

C(E) + λ(wTp′ − E)− D(p′‖p∗) = C(E) + λ(E′ − E)− D(E′) (5.118)

=: C (E′, E). (5.119)

This function has some interesting properties.

• For E′ ≤ E, it lower bounds the capacity cost-function C(E′), i.e.,

C (E′, E) ≤ C(E′) (5.120)

• For E′ = E, the bound is tight, i.e.,

C (E,E) = C(E). (5.121)

• According to Proposition 5.2, D(E′) is strictly convex in E′ and consequently,
C (E′, E) is strictly concave in E′.

The concavity of this bound gives the intuition why ccGhc is capacity-achieving for
dmcs with average cost constraints. We will give a formal proof for this property in the
next subsection.

78

5.4.4 Matching

For a dmc with positive symbol costs w, an active cost constraint E, and a capacity-
achieving pmf p∗, the dyadic pmf d = ccGhc(p∗,w, E) yields a good feasible dyadic
pmf. This is a consequence of the proposition on asymptotic achievability, which we will
state in the next subsection.

5.4.5 Asymptotic achievability

We finally show how ccGhc can be used to generate capacity-achieving dyadic pmfs.

Proposition 5.11. Given is a dmc with positive symbol costs w and an active cost
constraint E. The corresponding capacity-achieving pmf is denoted by p∗. Denote the
capacity by C and assign dk = ccGhc(p∗k,vk = ⊕kw, kE). Then

I(dk)
k

k→∞−→ C (5.122)

and
vTk dk
k
≤ E,

vTk dk
k

k→∞−→ E. (5.123)

Proof. For the mutual information achieved by dk, we have

I(dk)
k

= C(E) + λ(
vTk dk
k
− E)− D(rk‖r∗k)

k
(5.124)

≥ C(E) + λ(
vTk dk
k
− E)− D(dk‖p∗k)

k
(5.125)

where we used Proposition 5.3 in the first line and Proposition 3.12 in the second line.
According to Proposition 5.4, we have

D(dk‖p∗k)
k

→ 0 (5.126)

and
vTk dk
k
≤ E,

vTk dk
k
→ E. (5.127)

Thus, as k goes to infinity, we have for the lower bound (5.125)

C(E) + λ(
vTk dk
k
− E)− D(dk‖p∗k)

k

k→∞−→ C(E) + λ(E − E)− 0 (5.128)

= C. (5.129)

Thus, since the lower bound on I(dk)/k converges to capacity, so does I(dk)/k. This
concludes the proof.

5.5 References

We presented ccGhc and the proof of asymptotic achievability for the first time in [9].

79

The pmf that maximizes entropy subject to a cost constraint is stated by, e.g., Kschis-
chang and Pasupathy in [52, Section IV], Ungerböck in [73, Section 2] and Fischer in
[33, Section 4.1.2].

The problem (5.66) of maximizing entropy over all dyadic pmfs subject to a cost
constraint was formulated by Kschischang and Pasupathy in [52, Section VII.B]. They
proposed to use the dyadic pmf induced by the Huffman source code of the optimal pmf,
see also Fischer [33, Example 4.1]. The same approach was proposed by Ungerböck in
[73] and he called it Huffman shaping .

For noisy channels with cost constraint, the common approach in literature is to use as
a prefix-free matcher the Huffman source code of the input pmf that maximizes entropy
[52, 73]. In [10], we formulate a version of Proposition 5.10 for additive noise channels
and propose to use the prefix-free matcher obtained by applying Ghc to the capacity-
achieving pmf of the channel.

80

6 Noiseless channels with memory

This chapter is about capacity, maximum entropy rate, and capacity-achieving coding
for noiseless channels with memory. This generalizes the results we obtained in Sec-
tion 4.2 for noiseless channels with unequal symbol durations. The chapter is organized
as follows. In Section 6.2 we define general noiseless channels. We introduce the two
different concepts of general sources and sources. We then show that for any noiseless
channel, the maximum entropy rate of general sources is equal to the combinatorial
capacity and that the maximum entropy rate of sources is upper-bounded by the combi-
natorial capacity. This precisely establishes the relation between the combinatorial and
probabilistic notion of capacity in the most general setting. In Section 6.3, we consider
noiseless channels that are generated by walks on graphs with finitely many states. For
finite state channels, we show that there is no loss in terms of capacity when the set of
strings is restricted to strings that start and end at the same state. We then impose
the restriction that all cycles in the graph form uniquely decodable codes. Under this
restriction, we state an explicit formula for the combinatorial capacity. We then give
an explicit formula for the pmf of a capacity-achieving source. We show that coding
can directly be done by matching a dyadic pmf to the capacity-achieving pmf using the
techniques introduced in the previous chapters. Finally, in Section 6.4, we apply our
framework for noiseless channels with memory to four examples from the literature.

6.1 Preliminaries

We start by introducing some notations and definitions that we will need in the following.

Regular operations

Denote by A and B two sets of strings. According to Sipser [70, Definition 1.23], the
regular operations union, concatenation, and star are defined as follows.

Union: A ∪ B = {a ∈ A or a ∈ B} (6.1)

Concatenation: AB = {ab|a ∈ A and b ∈ B} (6.2)

Star: A? = {a1a2 · · · ak|k ≥ 0 and each ai ∈ A}. (6.3)

We shortly discuss the implication of concatenation on the respective cardinalities of the
involved sets. This is important when calculating the capacity of noiseless channels. For
A = {aa, a} and B = {b, ab}, the concatenation of A and B is

AB = {aab, aaab, ab}. (6.4)

81

In particular, |AB| < |A||B|, where we use |S| to denote the cardinality of set S. This
illustrates that concatenation and Cartesian product are two different set operations.
For a set A, we denote by Ak the concatenation of k copies of A, i.e.,

Ak = AA · · ·A︸ ︷︷ ︸
k times

. (6.5)

For the cardinality, it holds that

|Ak| ≤ |A|k (6.6)

with equality if A is a uniquely decodable code. This property can be checked by the
Sardinas-Patterson test . This test was original published by Sardinas and Patterson
[68]. A working description is given by Cover and Thomas [24, Problem 5.27]. A formal
proof of the correctness of the test is for instance given by Salomaa [67].

Limit superior

Denote by xk a sequence of real numbers. The limit superior is defined as

lim sup
k→∞

xk := lim
k→∞

(sup
`≥k

x`) (6.7)

If the limit superior is a finite number x′, then x′ is equivalently characterized by

for any ε > 0 : xk > x′ − ε infinitely often and xk < x′ + ε almost everywhere. (6.8)

In our derivations, we will make use of the latter characterization of the limit superior.

General Dirichlet series

We briefly state two results from [44] that we will need in the following. A general
Dirichlet series is a series of the form

f(s) =

∞∑
k=1

ake
−λks, s ∈ C (6.9)

where C denotes the set of complex numbers, the ak are complex numbers, and where
{λk}k∈N is a sequence of increasing real numbers whose limit is infinity. Denote by Re(s)
the real part of s.

Proposition 6.1. [44, Theorem 3] The series may converge for all values of s, or for
none, or for some only. In the last case, there is a number Q such that the series is
convergent for Re(s) > Q and divergent for Re(s) < Q.

By divergent , we mean non-convergent. The number Q is called the abscissa of con-
vergence. Define

A(k) =

k∑
`=1

a`. (6.10)

82

Proposition 6.2. [44, Theorem 7] If the abscissa of convergence of the series is positive,
it is given by the formula

Q = lim sup
k→∞

log |A(k)|
λk

. (6.11)

6.2 General noiseless channels

In this section, we establish two fundamental results for the most general setting of
noiseless channels. First, we define combinatorial capacity and characterize it analyt-
ically. We then show that the maximum entropy rate is equal to or smaller than the
combinatorial capacity.

6.2.1 Combinatorial capacity

A discrete noiseless channel (A, w) consists of a countably infinite set A of strings and a
weight function w : A → R>0 that associates with each element a ∈ A a positive length
w(a). For memoryless channels, the weight function corresponds to the symbol durations
w that we defined in Section 4.2. The length of a string a ∈ A can be any positive real
value and is in particular not restricted to the positive integers. The weight function has
the following recursive property: if a ∈ A can be written as the concatenation of two
elements b, c ∈ A, i.e., if a = bc, then w(a) = w(b) + w(c).

In this chapter, discrete noiseless channel, noiseless channel, and channel are all syn-
onyms. For notational convenience, we will refer to a channel (A, w) simply by its set
A, the corresponding weight function is either generic or clear from the context. Let Ω
denote the set of distinct string lengths of elements in A. We order and index the set Ω
such that Ω = {νk}∞k=1 with ν1 < ν2 < · · · . For every νk ∈ Ω, N(νk) denotes the number
of distinct strings of length νk in A. We define the combinatorial capacity of a channel
A as

C = lim sup
k→∞

log
[k∑̀

=1

N(ν`)
]

νk
. (6.12)

This definition subsumes the definitions given in the literature. In particular, consider
the case when Ω is not too dense, i.e., there exists some constant L ≥ 0 and some
constant K ≥ 0 such that for any integer k ≥ 0

max
ν`<k

` ≤ LkK . (6.13)

In other words, the number of distinct string lengths in Ω that are smaller or equal to k
increases only polynomial with k. Then our definition (6.12) coincides with the original
definition

C = lim sup
k→∞

logN(νk)

νk
(6.14)

83

that was given by Shannon in [69]. This follows from [16, Theorem 1 (ii)] and an
alternative proof is given in [15, Appendix B.3].

Here, we do not assume that Ω is not too dense. The only restriction that we make
on the channels under consideration is that the combinatorial capacity is well-defined,
i.e., that the limit in (6.12) exists and is finite. This implies in particular that N(ν) is
finite for any finite ν. We define the generating function of A as

GA(s) :=
∑
a∈A

e−w(a)s, s ∈ C. (6.15)

Note that the series expansion on the right-hand side is a general Dirichlet series. The
generating function of A can be written as

GA(s) =
∑
a∈A

e−w(a)s (6.16)

=
∞∑
k=1

∑
a∈A:w(a)=νk

e−νks (6.17)

=
∞∑
k=1

N(νk)e
−νks. (6.18)

The abscissa of convergence of GA identifies capacity:

Proposition 6.3. The combinatorial capacity of a channel A is equal to the abscissa of
convergence Q of its generating function GA, i.e.,

C = lim sup
k→∞

log
[k∑̀

=1

N(ν`)
]

νk
= Q. (6.19)

Proof. Since N(ν`) is a non-negative integer,

k∑
`=1

N(ν`) =
∣∣∣ k∑
`=1

N(ν`)
∣∣∣. (6.20)

With

|A(k)| =
k∑
`=1

N(ν`) (6.21)

he statement of the proposition now follows directly from Proposition 6.2.

6.2.2 Maximum entropy rate

For the general setting of noiseless channels as introduced in the previous subsection,
we now want to relate the combinatorial notion of capacity to a probabilistic notion of
capacity. We do this by introducing two distinct concepts, general sources and sources.
For both types, we define entropy rate. We show for general sources that the maxi-
mum entropy rate is equal to combinatorial capacity and we show for sources that the
maximum entropy rate is upper-bounded by the combinatorial capacity.

84

Entropy rate of general sources

The objective is to relate the combinatorial characterization of channels as given by
the combinatorial capacity (6.12) to a probabilistic measure in terms of the maximum
entropy per average length. Ultimately, we have a process in mind that generates at each
time instant a substring, which is then appended to the string that has been generated
so far, such that at each time instant, the generated string is element of A. In magnetic
recording, such a process would generate a substring, write it to the tape, generate
another substring, write it to the tape, and so forth, without ever rewinding the tape.
The difficulty of analyzing such a process is the following: fix two time instants k and k′,
k < k′. The probability that the process writes a specific string to the tape until time
instant k′ depends in general on the probabilities of the strings that it can write until
time instant k. This dependency can become arbitrarily complicated depending on the
composition of the elements of A. Because of these interdependencies, it is difficult to
bound the entropy rate of such a process. We solve these interdependencies by decoupling
the time instants k and k′: each time the recording system wants to write to the tape, it
first rewinds the tape completely and then overwrites everything that has been written
before. We call such a system a general source. In accordance with the definition by
Han [42, Remark 1.3.2], a general source is a sequence of random variables

X = {Xk}∞k=1 (6.22)

where Xk takes values in a countable (possibly infinite) set Xk. Each random variable
Xk is distributed according to a pmf pXk

. In particular, the Xk are stochastically
independent and for each index k, pXk

can be chosen independent from the pmfs chosen
for other indices. Similar to [42, Equation (1.7.1)], we define the entropy rate of a general
source X by

H̄(X) = lim sup
k→∞

H(Xk)

E[w(Xk)]
(6.23)

where E[w(Xk)] is the expected length of Xk according to pXk
. Clearly, for a sequence

X to be a general source of a channel A, the Xk need to generate elements from A, i.e.,
Xk ⊆ A. However, this is not enough to guarantee that (6.23) is a meaningful measure
for the entropy rate of X. This can best be seen in an example.

Example 1. Let A be the set of all binary strings and assume w(1) = w(0) = 1.
Because of the recursive property of w, this defines the length of each string in A, e.g.,
w(01) = w(1) + w(0) = 2. Define Xk = {a ∈ A | w(a) ≤ k}, i.e., Xk can generate any
string of length smaller or equal to k. Then, the maximum entropy per average length
of Xk is according to (4.55) given by the solution of∑

a∈Xk

e−w(a)s = 1. (6.24)

Assume Xk is distributed according to the optimal pmf (4.57) for each k. Then, since
Xk → A for k → ∞, the entropy rate of X = {Xk}∞k=1 is according to the definition

85

(6.23) given by the solution of ∑
a∈A

e−w(a)s = 1. (6.25)

For A, the set of distinct lengths is Ω = {k}∞k=1 and the number of distinct strings of
length k is N(k) = 2k. Thus

∑
a∈A

e−w(a)s =
∞∑
k=1

2ke−ks (6.26)

= 2e−s
∞∑
k=0

(2e−s)k (6.27)

=
2e−s

1− 2e−s
. (6.28)

Setting the last line equal to one, we get

2e−s

1− 2e−s
= 1 (6.29)

⇔ 2e−s = 1− 2e−s (6.30)

⇔ s = log 4. (6.31)

Thus, the entropy rate of the general source X is two bits per bit length, but a binary
process can at most transmit one bit per bit length. The reason for this is that the
elements of A are generated ambiguously, in our example, X1 ⊂ X2 ⊂ · · · , e.g., the
string 0 can be generated by all Xk, k = 1, 2, . . . and thus contributes multiple times
when calculating the entropy rate (6.23).

To guarantee that (6.23) correctly measures the entropy rate, we define X = {Xk}∞k=1

is a general source of A if and only if

(i) For each k: Xk ⊆ A

(ii) X` ∩ Xk = ∅ if ` 6= k.

That is, a general source can only generate elements of A and in addition, each element
of A can be element of Xk for at most one value of k. With this definition, we have the
following result.

Proposition 6.4. The maximum entropy rate of a general source of a channel A is
equal to its combinatorial capacity, i.e.,

max
X

H̄(X) = C. (6.32)

86

Proof. The proof has two parts. First, we show achievability, i.e., we define a particular
general source that has an entropy rate larger than or equal to the combinatorial capacity.
We then show the converse, i.e., that no general source can have an entropy rate larger
than the combinatorial capacity.

Achievability: For a general source X = {Xk}∞k=1, define the sets Xk as

Xk = {a ∈ A | k ≤ w(a) < k + 1} (6.33)

and define the pmf of Xk as

pXk
(a) =

1

|Xk|
, ∀a ∈ Xk (6.34)

i.e., for each k, Xk is uniformly distributed over Xk. Note that |Xk| < ∞ follows
automatically from C being well-defined, see (6.12). We now show that H̄(X) ≥ C.
Clearly, E[w(Xk)] < k + 1 and

H(Xk) = log |Xk| = log
∑

k≤ν<k+1

N(ν). (6.35)

Thus, we have for the entropy rate

H̄(X) ≥ lim sup
k→∞

log
∑

k≤ν<k+1

N(ν)

k + 1
(6.36)

= lim sup
k→∞

log
∑

`≤kN(ν`)

νk
(6.37)

= C (6.38)

where the second line can be shown by combinatorial arguments following the proof of
[12, Theorem 5].

Converse: We now show that the entropy rate of any general source is smaller or equal
to the combinatorial capacity, i.e.,

R := max
{Xk,pXk

}∞k=1

H̄(X) ≤ C (6.39)

where the maximization is taken over all partitions {Xk}∞k=1 of A and for each partition
and each k, over all pmfs pXk

. To show this, we pick an arbitrary partition and show
that the maximum entropy rate for this partition is upper-bounded by the combinatorial
capacity.

Denote by {Xk}∞k=1 an arbitrary partition of an arbitrary subset of A and consider
the general source X = {Xk}∞k=1 where Xk takes values in Xk. The maximization of the
entropy rate can be written as

RX := max
{pX`

}∞`=1

H̄(X) (6.40)

= max
{pX`

}∞`=1

lim sup
k→∞

H(Xk)

E[w(Xk)]
(6.41)

= lim sup
k→∞

max
pXk

H(Xk)

E[w(Xk)]
(6.42)

87

where equality in the last line follows because the Xk are by definition stochastically in-
dependent. Thus, the maximization can be done elementwise. For each k, the maximum
entropy per average length of Xk

RXk
:= max

pXk

H(Xk)

E[w(Xk)]
(6.43)

is according to (4.55) given by the solution of∑
a∈Xk

e−w(a)s = 1. (6.44)

With each Xk being distributed according to the optimal pmf (4.57), the entropy rate
of X is given by

RX = lim sup
k→∞

RXk
(6.45)

which implies in particular that for any ε > 0

RXk
≥ RX − ε infinitely often with respect to k. (6.46)

We now use this to show that the generating function GA diverges for Re(s) < RX .
Because of (6.46),∑

a∈Xk

e−w(a)(RX−ε) ≥
∑
a∈Xk

e−w(x)RXk = 1 infinitely often with respect to k. (6.47)

Because of
⋃∞
k=1Xk ⊆ A, the generating function is for any ` bounded by

GA(s) =
∑
a∈A

e−w(a)s ≥
∑̀
k=1

∑
a∈Xk

e−w(a)s. (6.48)

Because of (6.47), it holds that

∑̀
k=1

∑
a∈Xk

e−w(a)(RX−ε) `→∞−→ ∞ (6.49)

and we conclude that for any ε > 0, GA diverges in s = RX−ε. Thus, by Proposition 6.1,
GA diverges for all s ∈ C with Re(s) < RX . Since GA converges for Re(s) > Q, it must
hold that RX ≤ Q for any general source X. Since R = RX for some general source X,
R ≤ Q. Consequently, by Proposition 6.3, R ≤ C. This concludes the proof.

88

Entropy rate of sources

In most cases, general sources are a poor model for transmission over a channel. More
practical is a source that generates at each time instant a substring, which is then
appended to the string that has been generated so far. At each time instant, the complete
string has to be element of A. The notion of a source differs fundamentally from what
we defined as a general source: a general source generates a complete new string at each
time instant.

The formal definition is as follows. Denote by cat the operation of concatenation:
cat(a, b) = ab. The random process {Yk}∞k=1, Yk ∈ Y is a source of the channel A if the
sequence of random variables Xk = cat(Y1, . . . , Yk) with the supports

Xk =
{

cat(y1, . . . , yk) | (y1, . . . , yk) ∈ Yk, pY (y1, . . . , yk) > 0
}

(6.50)

is a general source of A, i.e., for each k, Xk ⊆ A and Xk ∩X` = ∅ if k 6= `. The sequence
X is called the general source induced by the source Y . Following [79, 49], we define the
entropy rate of a source Y as

H̄(Y) = lim sup
k→∞

H(Y1, . . . , Yk)

E[w(Y1, . . . , Yk)]
. (6.51)

We next show that the entropy rate of Y is upper-bounded by the entropy rate of the
induced general source X. The next example gives the intuition behind the key step in
the proof.

Example 2. Consider a channel with the set of strings A and assume

{00, 11, 0000, 1101, 1110, 1111} ⊂ A. (6.52)

Assume for the induced general source

X1 = {00, 11} (6.53)

X2 = {0000, 1101, 1110, 1111}. (6.54)

Thus, Y1 takes values in {00, 11} and Y2 takes values in {00, 01, 10, 11}. A possible joint
pmf of pY is

p(Y1,Y2)(00, 00) = p(Y1,Y2)(11, 01) = p(Y1,Y2)(11, 10) = p(Y1,Y2)(11, 11) =
1

4
(6.55)

which implies the marginal pmf

pY1(00) =
1

4
, pY1(11) =

3

4
. (6.56)

Thus,

H(Y1)

E[w(Y1)]
=
−1

4 log 1
4 −

3
4 log 3

4

2
≈ 0.2812,

H(Y1, Y2)

E[w(Y1, Y2)]
≈ 0.3466. (6.57)

89

For the general source X, the same values can be achieved by assigning pX1 = pY1 and
pX2 = p(Y1,Y2). However, X can do better, since pX1 and pX2 can be chosen indepen-

dently. By choosing pX1(00) = pX1(11) = 1
2 and pX2 = p(Y1,Y2), the entropies per average

length are

H(X1)

E[w(X1)]
≈ 0.3466 > 0.2812,

H(X2)

E[w(X2)]
≈ 0.3466. (6.58)

The same holds for any joint pmf pY of Y . Thus, the intuition is: in terms of entropy
per average length, Xk can always do as good as (Y1, . . . , Yk) by using pXk

= p(Y1,...,Yk),
but in many cases, it can do better.

Proposition 6.5. Denote by Y a source of a channel A. Then the maximum entropy
rate is upper-bounded by the combinatorial capacity, i.e.,

H̄(Y) ≤ C. (6.59)

Proof. Denote by {Xk}∞k=1 the general source induced by the source Y . The entropy
rate of Y can now be bounded as

max
pY

H̄(Y) = max
pY

lim sup
k→∞

H(Y1, . . . , Yk)

E[w(Y1, . . . , Yk)]
(6.60)

≤ max
{pX`

}∞`=1

lim sup
k→∞

H(Xk)

E[w(Xk)]
(6.61)

≤ C (6.62)

where the inequality in (6.61) holds because for a general source, the maximization can
be done in each step k independent from the other steps, see also Example 2. The
inequality in the last line follows from Proposition 6.4.

6.3 Finite state channels

In the last section, we have shown that for general noiseless channels, the combinatorial
capacity is given by the abscissa of convergence of the generating function, the maximum
entropy rate of general sources is equal to the combinatorial capacity, and the maximum
entropy rate of sources is upper-bounded by the combinatorial capacity. However, the
derivations were not constructive, i.e., we didn’t actually calculate the concrete value of
capacity or specify a capacity-achieving source. This is the topic of this section.

The idea is that, to be able to calculate the capacity of a channel A, the set A should
have some repetitive structure. We therefore consider channels where the set A can
be generated by a directed graph D with finitely many states. The transitions between
the states are labelled by substrings that are elements of A. We allow infinitely many
transitions between two states.

6.3.1 Combinatorial capacity

We start by characterizing the combinatorial capacity of finite state channels.

90

Strongly connected graph

A directed graph consists of strongly connected components. A strongly connected com-
ponent of a directed graph is a set of states S such that for each ordered pair (i, j),
i, j ∈ S, there is a path from state i to state j. Denote by A a finite state channel
that is generated by a directed graph D. Denote by C(S) the capacity of the set that is
generated by walks between the states in the strongly connected component S of D. In
the spirit of [12, Section 2.2], it can be shown that

C(A) = max
S

C(S) (6.63)

where the maximization is over all strongly connected components S of the graph D
that generates A. We therefore assume from now on without loss of generality that A
is generated by a strongly connected graph D, i.e., a graph that consists of one strongly
connected component. Denote by Ai,j the set of strings that start at state i and end at
state j. We now show that strong connectivity implies that the capacity of Ai,j is equal
to the capacity of A. The existence of capacity-achieving memoryless codes is founded
on this result.

Proposition 6.6. Assume a channel A is generated by a strongly connected graph with
n states. Let C denote the capacity of A and let Ci,j denote the capacity of Ai,j. Then

C = Ci,j , 1 ≤ i, j ≤ n. (6.64)

Proof. Denote by G and Gi,j the generating functions of A and Ai,j , respectively. The
generating function G is bounded by

max
i,j

Gi,j(s) ≤ G(s) (6.65)

≤
∑
i,j

Gi,j(s) (6.66)

≤ n2 max
i,j

Gi,j(s). (6.67)

Since the upper bound differs from the lower bound only by a factor, we conclude that G
and maxi,j Gi,j have the same abscissa of convergence and therefore, by Proposition 6.3,

C = max
i,j

Ci,j . (6.68)

From now on, denote by a, b two states for which the maximum is achieved. Denote by
Ni,j(ν) the number of paths from state i to state j of length ν. Since the channel is
strongly connected, there exist σ, τ ∈ Ω with σ, τ < ∞ such that Ni,a(σ) and Nb,j(τ)
are positive, i.e., there exists at least one path from i to a of length σ and there exists
at least one path from b to j of length τ . Now, the following bounds on the generating
function Gi,j hold:

Ga,b(s) ≥ Gi,j(s) (6.69)

≥ Ni,a(σ)e−σs Ga,b(s)Nb,j(τ)e−τs (6.70)

≥ Ga,b(s)e
−(σ+τ)s. (6.71)

91

Upper and lower bound only differ by a factor, therefore, Ga,b and Gi,j have the same
abscissa of convergence, for all pairs (i, j), 1 ≤ i, j ≤ n. Thus, by Proposition 6.3,

Ci,j = Ca,b, 1 ≤ i, j ≤ n (6.72)

which concludes the proof.

Uniquely decodable graph

For a channel A, we now identify the convergence behavior of the generating function
GA with the convergence behavior of a matrix series. The spectral radius ρ(A) of a
matrix A is defined as

ρ(A) = max
i
|λi| (6.73)

where the λi are the eigenvalues of A. The spectral radius will be useful, since it
determines if a matrix series converges or not.

Proposition 6.7. Denote by A a square matrix. Then the series

∞∑
k=0

Ak (6.74)

converges if ρ(A) < 1 and it diverges if ρ(A) > 1.

Proof. Convergence. Consider the power series

∞∑
k=0

zk, z ∈ C. (6.75)

Its radius of convergence is 1. Thus, by [20, Satz 3.64], the matrix series in (6.74)
converges if the absolute value of each eigenvalue of A is smaller than 1, but this is
equivalent to requiring ρ(A) < 1.

Divergence. If ρ(A) > 1, then for some eigenvalue λ of A, we have |λ| > 1. According
to [20, Satz 3.51], we can write A in its Jordan normal form, i.e., there exists an invertible
matrix T such that

A = T−1JT (6.76)

where J is an upper-triangular matrix with the eigenvalues of A on its diagonal. The
series (6.74) can now be written as

∞∑
k=0

Ak =
∞∑
k=0

(T−1JT)k (6.77)

= T−1
(∞∑
k=0

Jk
)
T (6.78)

and we conclude that the series (6.74) diverges if
∑

k J
k diverges. Since J is a triangular

matrix, Jk has λk on its diagonal. Thus, since |λ| > 1, this diagonal entry diverges for
k →∞. Consequently, the matrix series diverges. This concludes the proof.

92

The objective is now to use this proposition for calculating the capacity of channels.
Define the generating matrix of A as

GA(s) =

G1,1(s) · · · G1,n
...

. . .
...

Gn,1(s) · · · Gn,n

 (6.79)

where the Gi,j are, as in the proof of Proposition 6.6, the generating functions of strings
that start at state i and end at state j. Define by Ti,j(s) the transition generating
function, i.e., the generating function of the set of transitions that go directly from state
i to state j. Define further the transition generating matrix

TA(s) =

T1,1(s) · · · T1,n
...

. . .
...

Tn,1(s) · · · Tn,n

 (6.80)

We want to express GA in terms of TA. The condition for being able to do so is unique
decodability. We call a graph D uniquely decodable if each set of cycles Ai,i, i = 1, . . . , n
in the graph is uniquely decodable. It is enough to check this property for cycle-free
cycles. If D is uniquely decodable, then

GA(s) =

∞∑
k=1

[TA(s)]k. (6.81)

Thus, the following holds.

Proposition 6.8. If a uniquely decodable graph generates A, then capacity C is given
by the solution of the equation

ρ[TA(s)] = 1. (6.82)

Proof. The generating function GA converges (diverges) if GA converges (diverges).
Since the graph is uniquely decodable, GA converges (diverges) if the matrix series

∞∑
k=1

[TA(s)]k (6.83)

converges (diverges). By Proposition 6.7, the series converges (diverges) if the spectral
radius of TA(s) is smaller (greater) than 1. Thus, the abscissa of convergence Q of GA
is given by the solution of

ρ[TA(s)] = 1. (6.84)

By Proposition 6.3, C = Q and the proposition follows.

93

1 2

{0, 00}

{1, 11}

Figure 6.1: An example of a channel defined by a uniquely decodable graph.

Thus, if a channel A is generated by a strongly connected and uniquely decodable
graph, capacity is given by the solution of (6.82). The solution can efficiently be found
as follows. By [49, Page 7], ρ[TA(s)] is strictly decreasing and convex in s. Thus,
assuming that an efficient method is available to calculate the spectral radius of a fixed
matrix, the solution can efficiently be found via the bisection method. Algorithm 6
summarizes this method.

Algorithm 6.

u > C > `
ε > 0
repeat

1. s = `+u
2

2. q = ρ[TA(s)]
if q > 1, ` = s; else u = s

until |u− `| < ε
C = `

The following example illustrates this method.

Example 3. Consider the graph in Figure 6.1. The weights of the symbols 0 and 1 are
both equal to 1, i.e., w(0) = w(1) = 1. The transition generating matrix is given by

T(s) =

(
0 e−s + e−2s

e−s + e−2s 0

)
. (6.85)

We first have to check if the graph is uniquely decodable: the cycles starting and ending
at state 1 are given by

M = {01, 011, 001, 0011}. (6.86)

This set is neither prefix- nor suffix-free. We therefore apply the Sardinas-Patterson test
[68] as described in [24, Problem 5.27]. The set of dangling suffixes is {1}, and 1 /∈ M.
Thus M is uniquely decodable. The same can be shown for the cycles starting and
ending at state 2, and consequently, the graph is uniquely decodable. The capacity of
the channel is now given by solving

ρ[T(s)] = ρ

[(
0 e−s + e−2s

e−s + e−2s 0

)]
= 1. (6.87)

We apply Algorithm 6 and find C ≈ 0.4812.

94

6.3.2 Maximum entropy rate

We now relate the maximum entropy rate of sources to the combinatorial capacity of
finite state channels that are generated by uniquely decodable graphs.

Proposition 6.9. For a channel A generated by a uniquely decodable graph D, the
maximum entropy rate of a source is equal to the combinatorial capacity.

Proof. Choose some state i, denote byMi the set of strings that start at state i, end at
state i, but do not pass through state i in-between. Since D is uniquely decodable by
assumption,

Gi,i(s) =

∞∑
k=1

[GMi(s)]
k (6.88)

= GM+
i

(s) (6.89)

where M+
i denotes the plus operation defined as M+

i = MiM?
i . By Proposition 6.6,

A and Ai,i have the same capacity and consequently, the channel M+
i has the same

capacity as A. SinceMi is uniquely decodable by assumption, a source Y with entropy
rate equal to C is by (4.57) given by a sequence of random variables {Yk}∞k=1 that are
iid according to

for each a ∈Mi : pY (a) = e−w(a)C. (6.90)

By Proposition 6.5, the entropy rate cannot be larger than C and the proposition follows.

In the proof of Proposition 6.9, we definedMi as the set of strings that start at state
i, end at state i and do not pass through state i in-between. If the graph D of A is
uniquely decodable, then the capacity of M+

i is equal to the capacity of A. Since M+
i

can be generated by a graph with only one state, we call it a memoryless representation
of A. A memoryless representation is useful in two ways: first it allows for an alternative
calculation of capacity, and second, it allows for the definition of a capacity-achieving
source. We illustrate this in the following example.

Example 4. Consider again the graph in Figure 6.1. Recall that the cycles starting
and ending at state 1 are given by

M = {01, 011, 001, 0011}. (6.91)

By Proposition 6.6, the capacity of the channel is given by the abscissa of convergence
of the generating function G1,1, which is given by

G1,1(s) =
∞∑
k=1

[GM(s)]k. (6.92)

95

By Proposition 6.7, the abscissa of convergence is given by the solution of the equation

ρ[GM(s)] = ρ[e−2s + e−3s + e−3se−4s] (6.93)

= e−2s + e−3s + e−3se−4s (6.94)

= 1. (6.95)

We again use Algorithm 6 to find C ≈ 0.4812, which is in accordance with the value
found in Example 3. A capacity-achieving source Y = {Yk}∞k=1 is directly given: let the
Yk take values in M and be iid according to

pY (a) = e−w(a)C, ∀a ∈M. (6.96)

Note that the method proposed in the proof of [49, Theorem 5.1] cannot be used for the
channel in Figure 6.1. The reason is that the adjacency matrix

A =

[
0 1
1 0

]
(6.97)

is periodic, for instance, for all k ∈ N, (A2k)1,1 = 1 and (A2k+1)1,1 = 0. Thus, Perron-
Frobenius theory cannot be applied and in particular, there is no stationary distribution
of the states for a random walk on the graph.

6.3.3 Coding

As we have shown, channels that are generated by a uniquely decodable graph have
a memoryless representation M. A source that takes values in M iid according to
a certain pmf is capacity-achieving. In many cases, M is an infinite set. Denote by
M` = {a1, . . . , a`} the subset of M with the ` elements of shortest length. Then,
according to Proposition 6.8, the capacity C` of M+

` is given by the solution of

∑̀
i=1

e−w(ai)s = 1. (6.98)

As ` increases, C` approaches capacity, i.e.,

lim
`→∞

C` = C. (6.99)

For a finite `, denote by w` the string lengths of the elements in M`. Then, according
to Subsection 4.2.1, the dyadic pmf d` = nGhc(1,w`) maximizes entropy per average
length over all dyadic pmfs. According to Subsection 4.2.4, the capacity C` can be
arbitrarily well approximated by a dyadic pmf in terms of achieved entropy rate by
jointly considering blocks of consecutive symbols. We thus have the following result.

Proposition 6.10. Let A be a channel with capacity C that is generated by a uniquely
decodable graph. Denote by M a memoryless representation of A. Denote by d`,k =
nGhc(1,⊕kw`) the optimal dyadic blocklength-k pmf of M`. Then

lim
`,k→∞

H̄(d`,k) = C. (6.100)

96

` = 1 ` = 2 ` = 3 ` = 4

k = 2 0.4 0.4 0.4 0.4026
k = 3 0.6 0.6 0.6016 0.6024
k = 4 0.6667 0.6856 0.69 0.6919

Table 6.1: Capacity is 0.6942. For k = 4 and ` = 4, i.e., for a code with 256 codewords,
the achieved rate is within −0.3457% of capacity.

We call the coding strategy described in the proposition variable length memoryless
(vlm) coding . For a memoryless representationM, vlm(M`, k) denotes the dyadic pmf
that maximizes the entropy rate when jointly generating by a prefix-free matcher blocks
of length k of the ` symbols of shortest length from M.

Example 5. Consider again the graph in Figure 6.1. The memoryless representation is

M+ = {01, 011, 001, 0011}+. (6.101)

Note that already for ` = 4, M` = M. The entropy rates achieved by vlm(M`, k)
coding for ` = 2, 3, 4 and k = 1, 2, 3, 4 are displayed in Table 6.1. For ` = 4 and k = 4,
i.e., for a code with 256 codewords, the achieved rate is within −0.3457% of capacity.

6.4 Applications

6.4.1 Capacity of asynchronous channel

The asynchronous channel was introduced by Cai and Yeung in [22]. By [22, Theorem 1],
the asynchronous channel can be specified by a set W of run-lengths and a set L of
labels. The set of run-lengths W is a non-empty and countable subset of the positive
real numbers R>0. The set of labels L is non-empty and finite. One run is the substring
of a string during which the label does not change. We refer to the length of a run r by
the weight function w(r) and we refer to the label of a run r by the label function `(r).
The set of an asynchronous channel is given by

〈W,L〉 :=
{

cat(r1, . . . , rk)
∣∣ k ∈ N,

for i = 1, . . . , k : w(ri) ∈ W and `(ri) ∈ L,
for i = 1, . . . , k − 1: `(ri+1) 6= `(ri)

}
. (6.102)

Note that the graph in Figure 6.1 can be interpreted as an asynchronous channel with

W = {1, 2}, L = {0, 1}. (6.103)

If the cardinality of L is equal to one, then each string in 〈W,L〉 consists of only one
run with its length in W and with its label equal to the unique label from L. From
now on, we therefore assume |L| ≥ 2. The asynchronous channel can be represented by
a graph of |L| states as follows. Index the labels in L, i.e., L = {`1, . . . , `|L|}. Then,

97

between any ordered pair (i, j) of states, there are |W| transitions, one for each w ∈ W.
Furthermore, each transition to state i has label `i. This completely specifies the graph.
We now choose as memoryless representation M the set of strings that start at state 1,
end at state 1, but do not pass through state 1 in-between. Denote by r = r1 · · · rk a
string in M where each ri is a run. For the labels, the following holds:

`(r1) ∈ L \ `1 (6.104)

for i = 2, . . . , k − 1 : `(ri) ∈ L \ {`1, `(ri−1)} (6.105)

`(rk) = `1. (6.106)

The weight of each run can be chosen arbitrarily fromW. Denote by GW the generating
function of W. The generating function of the first run of strings in M is

GR1(s) = (|L| − 1) GW(s). (6.107)

For the intermediate runs, the generating function is

GR(s) = (|L| − 2) GW(s) (6.108)

and for the last run, the generating function is

GRlast
(s) = GW(s). (6.109)

The number of intermediate runs can be any integer between 0 and ∞. Thus, the
generating function of M is

GM(s) = GR1(s)
∞∑
k=0

[GR(s)]k GRlast
(s) (6.110)

= (|L| − 1) GW(s)
∞∑
k=0

[
(|L| − 2) GW(s)

]k
GW(s) (6.111)

= (|L| − 1) GW(s)
GW(s)

1− (|L| − 2) GW(s)
. (6.112)

The capacity is given by the solution of GM(s) = 1. This equation can be simplified as
follows.

GM(s) = (|L| − 1) GW(s)
GW(s)

1− (|L| − 2) GW(s)
= 1 (6.113)

⇔(|L| − 1) GW(s) GW(s) = 1− (|L| − 2) GW(s) (6.114)

⇔(|L| − 1) GW(s) GW(s) = 1 + GW(s)− (|L| − 1) GW(s) (6.115)

⇔(|L| − 1) GW(s)[1 + GW(s)] = 1 + GW(s) (6.116)

⇔(|L| − 1) GW(s) = 1. (6.117)

98

1 2 3 8
0 0 0 0

1

Figure 6.2: Directed graph generating the (2, 7)-constrained channel.

vlm code

00 001

01 0001

10 00001

110 000001

1110 0000001

1111 00000001

Franaszek’s code [36]

11 0100

10 1000

011 000100

010 001000

000 1001000

0011 00100100

0010 00001000

Table 6.2: vlm code and Franaszek’s code for the (2, 7) constraint.

The last line coincides with the formula given by Yeung et al [77, Theorem 2]. Denote
by C the capacity of the channel. Then, the source Y = {Yk}∞k=1 where the Yk take
values in M and are iid according to

pY (y) = e−w(y)C, ∀y ∈M (6.118)

has an entropy rate equal to C. Furthermore, by Proposition 6.5, the entropy rate cannot
be larger. These two statements prove [77, Theorem 4], i.e., that the maximum entropy
rate is equal to the combinatorial capacity for asynchronous channels. Furthermore, vlm
coding is directly applicable to the memoryless representation M and asymptotically
capacity-achieving. Thus, vlm coding provides an alternative to the arithmetic coding
approach chosen by Cai et al in [21].

6.4.2 Coding for (2, 7) constraint

A (d, k)-constrained channel allows the transmission of binary strings where two consec-
utive 1s are separated by at least d and at most k 0s. (d, k) constraints can be generated
by directed graphs. Figure 6.2 shows a graph that generates (2, 7)-constrained binary
strings. We choose as a memoryless representation the set of strings that start and end
at state one. It is given by

M+ = {001, 0001, 00001, 000001, 0000001, 00000001}+. (6.119)

We apply the vlm code to the whole set M with blocklength 1. The resulting code
is displayed in Table 6.2. For comparison, Franaszek’s (2, 7)-constraint code [36] is
displayed. The capacity of the (2, 7)-constraint is C = 0.5174. The vlm code achieves
a rate of 0.50667 with 6 codewords and is within −2.11% of capacity, while Franaszek’s
code achieves a rate of 0.5 with 7 codewords and is within −3.47% of capacity.

99

1 2

0

1

1

Figure 6.3: Directed graph generating the (0, 1)-constrained channel.

1 2

10 7→ 010

01 7→ 011

11 7→ 110

00 7→ 101

01 7→ 111

10 7→ 101

11 7→ 111

00 7→ 011

00 7→ 111

010 7→ 1101

011 7→ 1011

1000 7→ 10101

101 7→ 0111

110 7→ 01101

111 7→ 01011

1001 7→ 010101

State splitting algorithm vlm(M, 3) code

Figure 6.4: On the left-hand side, the code from [54, Example 5.4.5] for the (0, 1) con-
straint is displayed. A memoryless representation of the (0, 1) constraint
is M = {1, 01}+. On the right-hand side, the vlm code for ` = 2 and
blocklength k = 3 is shown.

6.4.3 Coding for (0, 1) constraint

We now consider the (0, 1) constraint. A generating graph is displayed in Figure 6.3.
As memoryless representation, we choose the set of strings that start and end at state
1, i.e,

M+ = {1, 01}+. (6.120)

The vlm code for the whole set M and blocklength 3 is displayed in Figure 6.4. For
comparison, we list the fixed-rate 2/3 code that was obtained by the State Splitting
Algorithm in [54, Example 5.4.5]. The capacity of the (0, 1) constraint is C = 0.6942.
The rate achieved by the vlm code is 0.6866 and −1.1% within capacity, while the
fixed-rate code has rate 2/3 and is −2.9% within capacity.

6.4.4 Huffman source coding is not optimal

Kerpez proposed in [48] to use the Huffman code [45] of the capacity-achieving pmf as
matching code for (d, k) constraints. We now provide an example that shows that doing
so is in general suboptimal. For (d, k) = (10, 19), the memoryless representation M+ is
given by

M+ = {0 · · · 0︸ ︷︷ ︸
k times

1 | 10 ≤ k ≤ 19}+. (6.121)

100

Capacity C of M+ is calculated by Algorithm 6 and the capacity-achieving pmf p∗ is
calculated according to (4.57). We calculate the Huffman code of p∗ and we also calculate
vlm(M, 1). The codeword lengths found by vlm and Huffman coding are respectively
given by

− log2 dvlm =(3 3 3 3 3 3 4 4 4 4)T (6.122)

− log2 dHc =(2 3 3 3 3 4 4 4 5 5)T (6.123)

Capacity and the rates achieved by vlm and Huffman coding are respectively given by

C = 0.22334, Rvlm = 0.22034, RHc = 0.22022. (6.124)

Thus, vlm lies within −1.3622% of capacity, which is slightly better than Huffman
coding, which lies within −1.4148% of capacity.

6.5 References

Parts of this chapter were published in [15, 14, 16].
The investigation of the exponential growth of combinatorial structures by generating

functions is put forward by Flajolet and Sedgewick [34]. The authors restrict their
investigations to integer valued string lengths.

Finite state noiseless channels were introduced by Shannon in [69, Chapter 1]. Shan-
non’s results on capacity and entropy rate were made precise and extended to arbitrary
(in particular non-integer valued) symbol lengths by Khandekar et al [49]. They state
explicit formulas for the combinatorial capacity and the transition probabilities that
achieve capacity. The resulting sources are Markov chains on the generating graph.
Their results apply for finite state channels with primitive adjacency matrices and are
based on Perron-Frobenius theory. Khandekar et al observed (6.68) in the proof of [49,
Corollary 4.3].

The construction of fixed rate capacity-achieving codes is based on the State Splitting
Algorithm. The surrounding theory is developed in detail by Lind and Marcus [54] and
by Marcus et al [59]. This technique applies for integer valued symbols and the resulting
codes have memory.

101

7 Matching for systematic block codes

The result of this work so far is that when the input pmf of a communication channel
is generated by a prefix-free matcher, the resulting mutual information between input
and output can be made arbitrary close to capacity. An important operational meaning
of capacity is that, according to the channel coding theorem [24, Theorem 7.7.1], there
exist error-correcting codes that allow for any rate smaller than capacity the transmission
of data with a probability of error that vanishes when the length of the codes goes to
infinity. This theorem was originally stated by Shannon in 1948 [69, Theorem 11] and
it was a long standing problem to find such codes. To a certain extend, this problem is
solved now. To quote MacKay [57, Section 50.7],

The best solution to the communication problem is: Combine a simple, pseudo-
random code with a message-passing decoder.

The topic of this chapter is the question how prefix-free matchers can be combined with
existing error-correcting codes. We consider this question for a family of codes that form
a part of MacKay’s solution, namely systematic linear block codes. We will define them
precisely in Subsection 7.1.2. The two main results of this chapter are as follows:

1. We develop analytical formulas for shaping gain and coding gain. The shaping
gain quantifies how much rate is lost compared to capacity because of mismatched
channel input pmfs. The coding gain quantifies how much rate is lost because
of imperfections of the applied systematic block code. Shaping and coding gain
allow to determine if rather the imperfection of the prefix-free matcher or the
imperfection of the error-correcting code form the bottleneck of the considered
system.

2. We develop a scheme that allows to combine a prefix-free matcher with existing
systematic block codes such that the resulting shaping gain is one, i.e., no loss
occurs because of mismatched channel input pmfs.

Our results apply to any systematic block code. In Chapter 8, we apply the results
to the low-density parity-check codes used in the DVB-S2 standard. We derive our
results for dmcs with unequal symbol durations. One reason for this is that, by choosing
unequal symbol durations, it is easy to create examples where rather the shaping gain
than the coding gain is the bottleneck, even in the case of channels with binary input.
For equal symbol durations, the shaping gain of a uniform input pmf for channels with
binary input is lower bounded by 0.942 [58], with equality for the Z channel when the
transition probability ε approaches 1 [66, Section 5.2]. This implies that the shaping
gain will hardly become the bottleneck for a practical binary channel with equal symbol

102

101001 matcher 012 Sbc 012312

channel

101001 dematcher 012 decoder 112312

Figure 7.1: Reverse concatenation. The channel input alphabet is {0, 1, 2, 3} and the
matcher code is 1 7→ 0, 01 7→ 1, 001 7→ 2, 000 7→ 3. The encoder adds

parity checks. The parity check matrix is H =
[

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

]
. The vector of

information symbols that corresponds to the data in the figure is s = (0 1 2)T

and the vector of parity check symbols is (3 1 2)T . The transmitted symbols
are t = [sr]. It can be checked that the “parity check” is fulfilled, i.e., Ht = 0
mod 4. After the channel, one symbol is corrupted. This is indicated by the
color red. The decoder corrects this error and as a consequence, the bit
sequence at the output of the dematcher is identical to the original sequence.
This illustrates that reverse concatenation allows the combination of prefix-
free matchers with error-correcting codes without resulting in a disastrous
symbol-error propagation.

durations. Of course, all our results of this chapter apply as a special case to channels
with equal symbol durations.

7.1 Matching and error-correction

In this section, we first introduce the problem of combining prefix-free matchers with
error-correcting codes. We then formally define systematic block codes and develop the
notions of shaping and coding gain. For clarity, we postpone the consideration of unequal
symbol durations to the following sections.

7.1.1 Reverse concatenation

Lets recall how channel matching is incorporated into a digital communication system.
The digital interface between source and channel coding is a stream of iid equiprobable
bits. By parsing the stream by a full prefix-free code, a dyadic pmf can be generated.
For example, consider the set of symbols {0, 1, 2, 3}. Then the mapping

1 7→0

01 7→1

001 7→2

000 7→3

(7.1)

103

generates the pmf (2−1, 2−2, 2−3, 2−3)T over the set {0, 1, 2, 3} when the stream of iid
equiprobable bits is parsed by the prefix-free code {1, 01, 001, 000}. A device that im-
plements this procedure is called a prefix-free matcher. When prefix-free matchers are
used for noisy channels, a severe problem occurs: one single bit error can lead to a
complete loss of a block, since the binary input and output streams are out of sync, e.g.,
suppose the data bits 101001 were mapped by the matcher (3.4) to the block 012 and
then transmitted over the channel, and suppose 112 was detected at the channel output.
Then,

101001 7→ 012 (7.2)

112 7→0101001 (7.3)

i.e., matcher input and dematcher output are of different length and aligning the first two
bits leads to 5 bit errors in the overlapping strings. Error-correction based on matcher
input and dematcher output needs the capability of correcting insertion and deletion
errors, which is difficult [62]. The above problem can be solved by interchanging the
order of matching and error-correction. This is illustrated in the generic block-diagram
in Figure 7.1. We refer to this scheme by reverse concatenation, a term that was coined
in [7].

7.1.2 Systematic linear block codes

We consider systematic linear block codes as described in [26, Appendix A]. Both the
information symbols, the check symbols, and the entries of the parity check matrix are
elements from Zn = {0, 1, . . . , n−1}. Addition is taken modulo n. Denote by s a vector
of information symbols with K entries. Denote the number of check symbols by M
and the codeword length by N = K + M . The information symbols s are encoded by
multiplying s by a matrix G. The matrix is called a systematic generator matrix if it is
of the form

G =

[
I
P

]
(7.4)

where I is the identity matrix of dimension K and where P ∈ ZMn ×ZKn . The codeword
is then given by

t = Gs =

[
s
r

]
mod n. (7.5)

Thus, the upper K entries of t reproduce the information symbols and the lower M
entries of t contain the check symbols r. The systematic parity-check matrix H is given
by

H =
[
−P I

]
mod n. (7.6)

104

Thus, for any information vector s ∈ ZKn , the parity-check for the corresponding uncor-
rupted codeword

Ht = HGs = (−P + P)s = 0s = 0 mod n (7.7)

is fulfilled. We define the coding rate by

c :=
K

M +K
=
K

N
. (7.8)

See Figure 7.1 for a simple example of a systematic block code.

7.1.3 Shaping gain, coding gain, and capacity

A systematic block code replicates the information symbols s and generates the check
symbols r as a deterministic function of s. The concatenation of s and r is then trans-
mitted over the channel. As a consequence, the block code influences the pmf of the
channel input. To evaluate the performance of a block code, we compare the achieved
transmission rate at a certain target block error rate to the capacity C of the considered
channel. In our theoretical derivations, we leave the target block error rate implicit, but
we make it explicit in Chapter 8 where we give numeric results. Assume the information
symbols at the output of the matcher are iid according to the pmf p and denote by c
the employed coding rate. We define the overall gain of the considered code as the ratio
of the achieved transmission rate R(p, c) and the capacity C of the considered channel,
i.e.,

R(p, c)

C
. (7.9)

For example, consider a dmc where all input symbol durations are equal to one. Since
there are K information symbols and N symbols in total in one block, the transmission
rate is given by

R(p, c) =
K H(p)

N
= cH(p) (7.10)

and the overall gain is

cH(p)

C
. (7.11)

We now want to split the overall gain into two factors, the shaping gain and the coding
gain. The shaping gain should characterize the influence of the channel input pmf on
the transmission rate and the coding gain should characterize the effect of the error-
correcting code onto the transmission rate. The goal of this subsection is to formally
define shaping and coding gain. Our definition is based on two assumptions, which we
detail next.

105

Uniform check symbol assumption

Consider an infinite sequence of symbols {Si}∞i=1. Assume the symbols take values in Zn
and are iid according to some pmf p. Then, under mild restrictions on p (the Toeplitz
matrix with cyclic shifts of p as rows has to be aperiodic) the sum of all symbols modulo
n takes values in Zn and is uniformly distributed, i.e.

∞∑
i=1

Si mod n ∼ u. (7.12)

Because of this, we assume the following.

Assumption 1. For any pmf of the information symbols, the check symbols of a sys-
tematic block code are iid according to the uniform pmf.

Ideal systematic block code assumption

Denote by S the random vector of information symbols that are iid according to p.
Denote by R the random vector of check symbols and by T the random codeword that
results from stacking S and R. Then

H(T) = H(S) + H(R|S) (7.13)

= H(S) (7.14)

= K H(p) (7.15)

where the second line follows since the check symbols R depend deterministically on the
information symbols S. Denote by Y the channel output that results from the input T .
We now have

I(T ;Y) ≤ I(S;Y K
1) + I(R;Y N

K+1) (7.16)

= K I(p) +M I(u) (7.17)

where Y K
1 = (Y1, . . . , YK)T and where Y N

K+1 is defined accordingly. The inequality in the
first line follows from [24, Lemma 7.9.2] and the equality in the second line follows from
the assumption that the information symbols are iid according to p and the uniform
check symbol assumption. We now assume the following.

Assumption 2. For each information symbol pmf p, there exists an ideal systematic
block code with block error rate zero for which the transmission rate is equal to the
mutual information, i.e.,

H(S) = I(T ;Y). (7.18)

Furthermore, we have equality in (7.16), i.e.

I(T ;Y) = K I(p) +M I(u). (7.19)

106

Normalizing by N = K +M yields

I(T ;Y)

N
= c I(p) + (1− c) I(u). (7.20)

We call the coding rate c for which H(S) = I(T ;Y) the ideal coding rate and denote it
by c∗(p).

We are now in the position to define shaping and coding gain.

Shaping gain

For an information symbol pmf p, we define the shaping gain as the ratio of the trans-
mission rate achieved by an ideal systematic block code and the capacity of the channel,
i.e.,

R[p, c∗(p)]

C
. (7.21)

Coding gain

For an information symbol pmf p and an employed coding rate c, we define the coding
gain as the ratio of the achieved transmission rate and the transmission rate of an ideal
systematic block code, i.e.,

R(p, c)

R[p, c∗(p)]
. (7.22)

Overall gain

The overall gain is given by the product of shaping gain and coding gain, i.e.,

R[p, c∗(p)]

C
· R(p, c)

R[p, c∗(p)]
=

R(p, c)

C
. (7.23)

This coincides with the definition of overall gain that we originally started with. Thus,
although our definitions of shaping and coding gain are based on two idealizing assump-
tions, their product is well-defined in practice for any systematic block code.

Capacity of a transmission scheme

We will in the following evaluate three schemes to operate systematic block codes, namely
uniform transmission, sparse-dense transmission, and matched transmission. Denote by
p the pmf of the information symbols and denote by Rscheme[p, c

∗(p)] the transmission
rate that is achieved when an ideal systematic block code is operated by the considered
scheme. We define the capacity of the scheme as

Cscheme := max
p

Rscheme[p, c
∗(p)] (7.24)

i.e., the capacity of a transmission scheme is the highest rate that can be achieved within
the possible configurations of the scheme by an ideal systematic block code.

107

7.2 Uniform transmission

We start by considering the case when the matcher generates a uniform pmf by using
a prefix-free code where all codewords are of equal length. This is only possible if the
number n of channel input symbols is a power of two. Uniform transmission is often
found in practice, since in this configuration, the matcher maps blocks of a fixed length
of log2 n bits to each channel symbol, matcher input and dematcher output are always in
sync and a corrupted bit does not lead to a disastrous error propagation as we observed
in Subsection 7.1.1. We call this scheme uniform transmission.

7.2.1 Uniform capacity

For uniform transmission, the information symbols at the matcher output are distributed
according to the uniform pmf u. Thus, the only remaining parameter is the employed
coding rate c. Define

Iu(c) :=
c I(u) + (1− c) I(u)

cwTu+ (1− c)wTu
(7.25)

=
I(u)

wTu
. (7.26)

To ensure that an ideal systematic block code achieves this mutual information per
average cost, it has to be equal to the transmission rate, i.e.,

Ru(c) :=
cH(u)

cwTu+ (1− c)wTu
(7.27)

=
cH(u)

wTu
(7.28)

!
=

I(u)

wTu
. (7.29)

Thus, the ideal coding rate is given by

c∗ =
I(u)

H(u)
(7.30)

and the ideal transmission rate is

Ru =
I(u)

wTu
. (7.31)

We conclude that uniform capacity is given by

Cu = Ru (7.32)

=
I(u)

wTu
. (7.33)

108

7.2.2 Uniform gains

Shaping gain

The shaping gain of uniform transmission is given by

Ru

C
=

I(u)

wTu

1

C
(7.34)

=
Cu

C
. (7.35)

Coding gain

For an employed coding rate c, the coding gain is

Ru(c)

Ru
=

cH(u)
wTu
I(u)
wTu

(7.36)

= c
H(u)

I(u)
. (7.37)

Note that the average duration wTu cancels out.

Overall gain

The overall gain is

Ru

C
· Ru(c)

Ru
=

Ru(c)

C
(7.38)

=
cH(u)

wTu
· 1

C
. (7.39)

7.3 Sparse-dense transmission

We can improve upon uniform transmission by allowing the matcher to use any full prefix-
free code. In addition, we now drop the restriction that the number of channel inputs n
has to be a power of two. Thus, we can now optimize over the pmf of the information
symbols. We start by allowing any (possibly non-dyadic) pmf p and show then that the
obtained results can also be achieved by dyadic pmfs d. Assume the information symbols
are iid according to p. Because of Assumption 1, the check symbols continue to be
uniformly distributed. This configuration was introduced in [65, Chapter 5] and called
sparse-dense transmission. Using a non-uniform pmf p for the information symbols
reduces the per symbol entropy. The term sparse refers to this reduction. The uniform
pmf of the check symbols corresponds to the maximum entropy per symbol and the term
dense refers to this property.

109

7.3.1 Sparse-dense capacity

We start by allowing the information symbols to be distributed according to any pmf
from the probability simplex. We will show in Subsection 7.3.5 that the same perfor-
mance can be achieved by dyadic pmfs. The two parameters we have to choose for
sparse-dense transmission are the information symbol pmf p and the coding rate c.
Define

Isd(p, c) :=
c I(p) + (1− c) I(u)

cwTp+ (1− c)wTu
. (7.40)

Note that this expression depends on the pmf p and on the coding rate c. The trans-
mission rate achieved by coding rate c is given by

Rsd(p, c) =
cH(p)

cwTp+ (1− c)wTu
. (7.41)

An ideal systematic block code achieves the mutual information Isd(p, c) if it is equal
to the transmission rate. Thus, sparse-dense capacity is given by the solution of the
following optimization problem.

maximize
p,c

Rsd(p, c)

subject to Rsd(p, c) = Isd(p, c)

0 ≤ c ≤ 1

p is a pmf.

(7.42)

For a fixed input pmf p, we solve the equality constraint for the code rate c, i.e,

Rsd(p, c) = Isd(p, c) (7.43)

⇔ cH(p) = c I(p) + (1− c) I(u) (7.44)

⇔ c =
I(u)

H(p)− I(p) + I(u)
(7.45)

and we conclude that the ideal coding rate is given by

c∗(p) =
I(u)

H(p)− I(p) + I(u)
. (7.46)

110

Using this expression for the coding rate in (7.41), we get for the transmission rate
achieved by an ideal systematic block code

Rsd(p) := Rsd[p, c∗(p)] (7.47)

=
cH(p)

cwTp+ (1− c)wTu

∣∣∣∣
c=c∗(p)

(7.48)

=
H(p)

wTp+ (1
c − 1)wTu

∣∣∣∣∣
c=c∗(p)

(7.49)

=
H(p)

wTp+ (H(p)−I(p)+I(u)
I(u) − 1)wTu

(7.50)

=
H(p)

wTp+ 1
Cu

[H(p)− I(p)]
(7.51)

We define

Isd(p) := Isd[p, c∗(p)]. (7.52)

Note that Isd(p) = Rsd(p), i.e., the transmission rate achieved by an ideal block code
is identical to the mutual information rate achieved by an ideal block code. We will
use in the following the notion of mutual information rate rather than the notion of
transmission rate. In summary, we have shown the following.

Proposition 7.1. Sparse-dense capacity Csd is given by

Csd = max
p

Isd(p) = max
p

H(p)

wTp+ 1
Cu

[H(p)− I(p)]
. (7.53)

Denote by p∗ the capacity-achieving pmf. The corresponding ideal code rate is given by

c∗(p∗) =
I(u)

H(p∗)− I(p∗) + I(u)
. (7.54)

7.3.2 Calculating sparse-dense capacity

The objective of this subsection is to solve the optimization problem (7.53), i.e., we want
to derive an algorithm that finds the pmf p∗ that maximizes the mutual information per
average duration Isd(p). Recall that I(p) and H(p) are concave in p. Thus, Isd(p) is
a fraction with a concave numerator and a denominator that is the difference of two
concave functions. There is no algorithm known to us that directly maximizes this kind
of functions. Therefore, we first remove the fraction from the objective function by the
same technique we applied before in Algorithm 4. Denote by p∗ a capacity-achieving
pmf, i.e., Csd = Isd(p∗). Then

Isd(p) =
H(p)

wTp+ 1
Cu

[H(p)− I(p)]
≤ Csd, with equality if p = p∗. (7.55)

111

Multiplying by the denominator and moving all terms to the left-hand side, we get

H(p)− Csd

{
wTp+

1

Cu

[
H(p)− I(p)

]}
≤ 0, with equality if p = p∗. (7.56)

Thus, p∗ can be found by maximizing the left-hand side of the last inequality. Sparse-
dense capacity Csd is in general not known, so we replace it by an estimate C. By
iteratively maximizing (7.56) and using the resulting pmf p′ to update C via C = Isd(p′),
the estimate C converges to the maximum Csd. This can be shown along the lines of
the proof of Proposition 4.5. It remains to find a way to maximize the left-hand side of
(7.56) over the pmf p. Replacing Csd by its estimate C, the negative of the left-hand
side of (7.56) can be written as

−H(p) + C
{
wTp+

1

Cu

[
H(p)− I(p)

]}
= C

[
wTp− I(p)

Cu

]
︸ ︷︷ ︸

=:f(p,C)

−H(p)
(
1− C

Cu

)
︸ ︷︷ ︸

=:g(p,C)

(7.57)

= f(p, C)− g(p, C) (7.58)

=: h(p, C). (7.59)

Since − I(p) is convex in p and wTp is linear in p, the first function f is convex in
p. The sparse-dense capacity is greater than or equal to the uniform capacity, so for
Cu ≤ C ≤ Csd, we have

1− C

Cu
≤ 0. (7.60)

Consequently, for Cu ≤ C ≤ Csd, also the second function g is convex in p and we
conclude that h(p) is the difference of two convex functions. This says little about h.
For example, according to [78, Theorem 2], any function with bounded Hessian can
be written as the difference of two convex functions. However, a local minimum can
be found by the convex-concave procedure as defined in [18, slide 26]. The convex-
concave procedure is an iterative method and works as follows. In some iteration step,
denote the result from the previous step by p′. Then, replace g by its first order Taylor
approximation in p′. Without the factor (1− C

Cu
), this approximation is given by

H(p′) +
∑
i

∂H(p′)

∂p′i
(pi − p′i) = H(p′) +

∑
i

(− log p′i − 1)(pi − p′i) (7.61)

= −
∑
i

pi log p′i −
∑
i

(pi − p′i) (7.62)

= −
∑
i

pi log p′i. (7.63)

Thus, including the factor (1 − C
Cu

), the first order Taylor approximation of g in p′ is
given by

ĝ(p,p′, C) =
(
1− C

Cu

)[
−
∑
i

pi log p′i

]
. (7.64)

112

Note that ĝ(p,p′, C) is affine in p. The new objective becomes

ĥ(p,p′, C) = f(p, C)− ĝ(p,p′, C). (7.65)

The function ĥ is now the difference of a convex and an affine function and thus convex.
Thus, it can efficiently be minimized over p. The whole algorithm now is as follows.

Algorithm 7.

p′ = u
repeat

1. C = Isc(p′)
repeat

2. p′′ = argmin
p pmf

ĥ(p,p′, C)

3. p′ = p′′

until convergence
until convergence

Operations 1. and 3. are simple assignments and operation 2. consists in solving a convex
optimization problem, which can efficiently be done by convex optimization software as
for example CVX [41]. We have the following observations about Algorithm 7:

• Algorithm 7 finds a local maximum of Isd(p).

• If the channel is noiseless, i.e., if I(p) = H(p), then the objective function h is
given by

CwTp−H(p) (7.66)

and convex in p. Thus, in this case, Algorithm 7 globally solves the optimization
problem and finds capacity and capacity-achieving pmf.

• If Algorithm 7 always converges to the true sparse-dense capacity remains an open
question.

In the following, we assume that sparse-dense capacity was actually found by Algo-
rithm 7. This can be achieved by using an alternative way (e.g., exhaustive search) to
find capacity and capacity-achieving pmf and then by initializing Algorithm 7 with an
appropriate starting point. The key observation is that sparse-dense capacity Csd and
capacity-achieving pmf p∗ are optimal value and optimal point of a convex optimization
problem, namely the optimization problem that is solved in the inner loop of Algorithm 7
after convergence, i.e., with the parameters C = Csd and p′ = p∗. Thus, we can use
KKT conditions to characterize Csd and p∗. We will need this for showing asymptotic
achievability of prefix-free matchers.

113

7.3.3 Capacity-achieving pmf

Proposition 7.2. The pmf p∗ that achieves sparse-dense capacity fulfills∑
j

hji log
hji
r∗j
≤ Cuwi +

(
1− Cu

Csd

)
(− log p∗i), with equality if p∗i > 0. (7.67)

Proof. The optimization problem is

minimize
p

ĥ(p,p∗,Csd)

= Csd

[
wTp− I(p)

Cu

]
−
(
1− Csd

Cu

)[
−
∑
i

pi log p∗i

]
subject to 1Tp− 1 = 0.

(7.68)

If p∗i = 0, then pi = 0, since otherwise, the objective function takes the value ∞.
Without loss of generality, we assume p∗i > 0 for all i. Under this assumption, the
objective function is defined on Rn

≥0 and by Proposition 2.5, strong duality holds. By
Proposition 2.7, the partial derivatives of the objective function are defined with the
possible exception of taking the value −∞ on the boundary. Thus, Proposition 2.4
applies. The Lagrangian is

L(p, ν) = ĥ(p,p∗,Csd) + ν(1Tp− 1). (7.69)

Note that any pmf is feasible. Thus, according to Proposition 2.4, a pmf p is optimal if
and only if there exists a ν such that the following conditions hold.

∂L(p, ν)

∂pi
= Csdwi −

Csd

Cu

∂ I(p)

∂pi
−
(

1− Csd

Cu

)
(− log p∗i) + ν

= 0, ∀i : pi > 0 (7.70)

∂L(p, ν)

∂pi
≥ 0, ∀i : pi = 0. (7.71)

If these conditions hold, then all partial derivatives of I in p are well-defined and given
by

∂ I(p)

∂pi
=
∑
j

hji log
hji
rj
− 1. (7.72)

Plugging this into the KKT conditions, we get

∂L(p, ν)

∂pi
= Csdwi −

Csd

Cu

(∑
j

hji log
hji
rj
− 1
)
−
(

1− Csd

Cu

)
(− log p∗i) + ν (7.73)

≥ 0, with equality if pi > 0. (7.74)

114

We multiply the inequality by Cu/Csd and solve for the sum to get∑
j

hji log
hji
rj
≤ Cuwi +

(
1− Cu

Csd

)
(− log p∗i) + 1 +

Cu

Csd
ν, with equality if pi > 0.

(7.75)

We take the expectation with respect to p∗ and get

I(p∗) = Cuw
Tp∗ +

(
1− Cu

Csd

)
H(p∗) + 1 +

Cu

Csd
ν. (7.76)

On the other hand, we can evaluate (7.53) in p∗. By noting that Isd(p∗) = Csd and by
solving (7.53) for I(p∗), we get

I(p∗) = Cuw
Tp∗ +

(
1− Cu

Csd

)
H(p∗). (7.77)

By comparing the two expressions for I(p∗), we conclude that

1 +
Cu

Csd
ν = 0. (7.78)

Using this in (7.75) yields the statement of the proposition.

7.3.4 Using a ‘wrong’ pmf

We now derive an expression for the penalty that results from using a pmf different from
the capacity-achieving one.

Proposition 7.3. Denote by p∗ a pmf that achieves sparse-dense capacity. Denote by
p a pmf with the only restriction that

pi = 0 whenever p∗i = 0. (7.79)

Then the mutual information per average cost achieved by p is given by

Isd(p) = Csd
H(p)

−
∑

i pi log p∗i −
Csd
Cu

[
D(p‖p∗)− D(r‖r∗)

] . (7.80)

Proof. Because of our assumption (7.79), Proposition 3.10 applies and the mutual infor-
mation I(p) can be written as

I(p) =
∑
i

pi
∑
j

hji log
hji
r∗j
− D(r‖r∗). (7.81)

By (7.53), the mutual information per average duration that results from p is given by

Isd(p) =
H(p)

wTp+ 1
Cu

[H(p)− I(p)]
. (7.82)

115

The denominator can now be written as

wTp+
1

Cu
[H(p)− I(p)]

= wTp+
1

Cu

H(p)−
∑
i

pi
∑
j

hji log
hji
r∗j

+ D(r‖r∗)

 (7.83)

= wTp+
1

Cu

{
H(p)−

∑
i

pi

(
Cuwi +

(
1− Cu

Csd

)
(− log p∗i)

)
+ D(r‖r∗)

}
(7.84)

= wTp+
1

Cu

{
H(p)−

[
Cuw

Tp+
(

1− Cu

Csd

)
(−
∑
i

pi log p∗i)

]
+ D(r‖r∗)

}
(7.85)

=
1

Cu

{
H(p)−

(
1− Cu

Csd

)
(−
∑
i

pi log p∗i) + D(r‖r∗)

}
(7.86)

=
1

Cu

{
H(p) +

∑
i

pi log p∗i −
Cu

Csd

∑
i

pi log p∗i + D(r‖r∗)

}
(7.87)

=
1

Cu

{
− Cu

Csd

∑
i

pi log p∗i − D(p‖p∗) + D(r‖r∗)

}
(7.88)

=
1

Csd

{
−
∑
i

pi log p∗i −
Csd

Cu

[
D(p‖p∗)− D(r‖r∗)

]}
. (7.89)

Thus, we get

Isd(p) =
H(p)

wTp+ 1
Cu

[H(p)− I(p)]
(7.90)

=
H(p)

1
Csd

{
−
∑

i pi log p∗i −
Csd
Cu

[
D(p‖p∗)− D(r‖r∗)

]} (7.91)

= Csd
H(p)

−
∑

i pi log p∗i −
Csd
Cu

[
D(p‖p∗)− D(r‖r∗)

] (7.92)

which is the statement of the proposition.

7.3.5 Matching

We now show that sparse-dense capacity can be approximated arbitrarily well by a
prefix-free matcher.

Proposition 7.4. Denote by p∗ a pmf that achieves sparse-dense capacity. Denote by
p an arbitrary pmf with the only restriction that

pi = 0 whenever p∗i = 0. (7.93)

The following holds.

116

1. The mutual information per average duration I(p) is lower-bounded by

Isd(p) ≥ Csd
H(p)

−
∑

i pi log p∗i
. (7.94)

2. The lower bound is maximized over all dyadic pmfs by d = nGhc(1, `) where
`i = − log p∗i , i = 1, . . . , n.

3. dk = nGhc(1, `⊕k) achieves capacity for blocklength k →∞.

Proof. Because of (7.93), Proposition 7.3 applies and we have

Isd(p) = Csd
H(p)

−
∑

i pi log p∗i −
Csd
Cu

[
D(p‖p∗)− D(r‖r∗)

] (7.95)

≥ Csd
H(p)

−
∑

i pi log p∗i −
Csd
Cu

[
D(r‖r∗)− D(r‖r∗)

] (7.96)

= Csd
H(p)

−
∑

i pi log p∗i
(7.97)

where we used Proposition 3.12 in the second line. This shows part 1. of the proposition.
Define ` by `i = − log p∗i , i = 1, . . . , n. The fraction in the lower bound can be written

as

H(p)

−
∑

i pi log p∗i
= −D(p‖1)∑

i pi`i
. (7.98)

Note that, by the information inequality,

−
∑
i

pi log p∗i ≥ −
∑
i

pi log pi (7.99)

= H(p) (7.100)

≥ 0. (7.101)

Consequently, the fractions in (7.98) are always positive and

D(p‖1)∑
i pi`i

< 0. (7.102)

Define now d = nGhc(1, `). nGhc calculates in each step

d′ = Ghc(1 ◦ e∆`) (7.103)

= Ghc[(e−`)−∆] (7.104)

= Ghc(p∗−∆) (7.105)

for some ∆. The exponentiation is elementwise, i.e.,

(p∗)−∆ = (p∗1
−∆, . . . , p∗n

−∆)T . (7.106)

117

Because of (7.102), ∆ < 0 and consequently −∆ > 0. Thus, whenever p∗i = 0, p∗1
−∆ = 0.

This implies because of Proposition 3.2 that di = 0 whenever p∗i = 0, i.e., nGhc(1, `)
assigns di = 0 whenever p∗i = 0. Thus, the bound from statement 1. of this proposition
applies for Isd(d). We have

Isd(d) ≥ Csd
H(d)

−
∑

i di log p∗i
(7.107)

= Csd
−D(d‖1)∑

i di`i
(7.108)

which shows that d = nGhc(1, `) maximizes the lower bound. This shows part 2 of this
proposition.

Statement 3 follows from the asymptotic achievability of nGhc as stated in Proposi-
tion 4.1. This concludes the proof.

7.3.6 Sparse-dense gains

Shaping gain

Suppose the applied input pmf is p. The shaping gain is given by

Rsd[p, c∗(p)]

C
=

Rsd(p)

C
(7.109)

=
H(p)

wTp+ 1
Cu

[H(p)− I(p)]

1

C
. (7.110)

The shaping gain is upper-bounded by

Rsd(p)

C
≤ Csd

C
≤ 1. (7.111)

Coding Gain

For an applied coding rate c, the coding gain is given by

Rsd(p, c)

Rsd(p)
=

Rsd(p, c)

Rsd(p, c∗)
(7.112)

=
cH(p)

cwTp+ (1− c)wTu
·
wTp+ 1

Cu
[H(p)− I(p)]

H(p)
(7.113)

=
wTp+ 1

Cu
[H(p)− I(p)]

wTp+ (1
c − 1)wTu

. (7.114)

118

Overall gain

The overall gain is

Isd(p)

C
· Rsd(p, c)

Isd(p)
=

Rsd(p, c)

C
(7.115)

=
cH(p)

cwTp+ (1− c)wTu
· 1

C
. (7.116)

7.4 Matched transmission

We now introduce matched transmission. The key part of matched transmission is the
bootstrap scheme, which allows to match the pmf of the check symbols to the capacity
achieving pmf of the considered channel. As before, we consider a systematic block code
that generates M check symbols per K information symbols, i.e., a rate c = K/(K+M)-
code. Assume further that the number n of symbols is a power of two and denote the
exponent by b, i.e., n = 2b.

7.4.1 Bootstrapping the check symbols

At the transmitter side, B blocks are sequentially encoded and then transmitted in
reverse order. For the first block, the matcher generates K matched data symbols from
a fair bit stream. These K matched data symbols form the first block of K symbols to be
transmitted over the channel. The very sameK matched symbols are also passed through
the encoder. The encoder calculates M check symbols. In a binary representation, this
corresponds to bM check bits. According to the uniform check symbol assumption, the
check symbols are iid and equiprobable. Consequently, the binary representation of the
check symbols forms a vector of fair bits. This binary vector is passed through the
matcher to generate matched check symbols. These matched check symbols are kept
back. In the next round, the matcher again generates matched data symbols from the
bit stream. These matched data symbols are concatenated with the matched check
symbols from the first round. The number of matched data symbols is chosen such
that the total number of matched data symbols and matched check symbols is equal to
K. This concatenation of matched data symbols and matched check symbols from the
previous round again forms a block of K symbols to be transmitted over the channel.
This procedure continuous until the last but second round. In the last round, a (M ′,K ′)
sparse-dense code is applied. Matched check symbols from round B−1 plus matched data
symbols are concatenated to form a block ofK ′ matched symbols. The encoder calculates
M ′ check symbols from the K ′ matched symbols and appends them (unmatched) to the
K ′ matched symbols. These M ′ check symbols of the last round are the ur-symbols from
which the decoder will start to bootstrap all B blocks. All B blocks are transmitted in
reverse order such that the decoder can immediately start decoding. See Figure 7.4 for
an illustration.

119

data bits

matcher

matched data symbols 3. transmission

sbc

data bits
binary

conversion

matcher matcher

matched data symbols |matched check symbols 2. transmission

sbc

data bits
binary

conversion

matcher matcher

matched data symbols |matched check symbols

sbc’

matched data symbols |matched check symbols |unmatched ur-symbols 1. transmission

Figure 7.2: Bootstrap scheme. The encoder sbc takes K symbols as input and gener-
ates M check symbols as output. The corresponding values for the encoder
sbc′ are K ′ and M ′, respectively. The symbol | denotes concatenation. The
diagram displays the bootstrap scheme for B = 3 rounds. The second round
can be repeated various times to jointly process any number B of blocks.
Increasing the number B increases the fraction of matched symbols and con-
sequently increases the effective transmission rate.

120

Sbc

M check symbols

binary conversion

bM check bits

matcher

mbM matched check symbols

Figure 7.3: Number of matched check symbols.

Number of matched check symbols

We now explicitly calculate the number of matched check symbols that are embedded
in the K matched symbols in an intermediate round of the bootstrap scheme. As-
sume the matched symbols are iid according to p. Because we have a fair bit stream
at the binary interface, each bit contains the information of log 2 nats. Thus, before
matching, the information is]{unmatched bits} log 2. After matching, the information
is]{matched symbols}H(p). Because the matcher applies a deterministic bijective map-
ping, the information before and after matching is the same, i.e.,

]{matched symbols}H(p) =]{unmatched bits} log 2. (7.117)

We define the matching rate as

m :=
]{matched symbols}
]{unmatched bits}

=
log 2

H(p)
(7.118)

The M unmatched check symbols are converted into bM unmatched bits and then
matched to the channel, thus, the number of matched check symbols is

]{matched check symbols} = mbM =
b log(2)M

H(p)
. (7.119)

7.4.2 Matched capacity

The number M ′ of unmatched ur-symbols is independent of the number of packets B.
Thus as B grows, the fraction of matched symbols approaches 1. Therefore, we will focus
now on the building block of the bootstrap scheme, which consists in the transmission
of K matched symbols over a channel and decoding conditioned on M perfectly known
check symbols. The M perfectly known check symbols are not for free: the M check

121

K matched symbols channel K potentially corrupted symbols

Sbc M perfectly known check symbols

Figure 7.4: Building block of the bootstrap scheme.

symbols of the next packet to be transmitted are embedded in matched form in the K
matched symbols. We will take this into account when calculating the transmission rate.

One block contains mbM matched check symbols and K−mbM matched information
symbols. Since the matched check symbols belong to the matched information sym-
bols of the previous block, in one block, check symbols and information symbols are
stochastically independent. To take the dependencies into account, we now consider
K −mbM information symbols from one block together with the corresponding mbM
check symbols, which are transmitted as part of the next block. Define

Ibs(p, c) :=
(K −mbM) I(p) +mbM I(p)

(K −mbM)wTp+mbMwTp
(7.120)

=
I(p)

wTp
. (7.121)

To ensure that an ideal systematic block code achieves this mutual information per
average duration, it has to be equal to the transmission rate. The transmission rate is
information per average duration, i.e.,

Rbs(p, c) =
(K −mbM)H(p)

(K −mbM)wTp+mbMwTp
(7.122)

=
(K −mbM)H(p)

KwTp
(7.123)

=
H(p)− mbM

K H(p)

wTp
(7.124)

=
H(p)− b log(2)M

K

wTp
(7.125)

=
H(p)− b log(2)M+K−K

K

wTp
(7.126)

=
H(p)− b log(2)(1

c − 1)

wTp
(7.127)

122

where we used (7.118) in the fourth line. We calculate the ideal coding rate by

Rbs(p, c) = Ibs(p, c) (7.128)

⇔
H(p)− b log(2)(1

c − 1)

wTp
=

I(p)

wTp
(7.129)

⇔ H(p)− b log(2)
(1

c
− 1
)

= I(p) (7.130)

⇔ c =
1

1 + 1
b log(2) [H(p)− I(p)]

. (7.131)

Thus, the ideal coding rate is given by

c∗(p) =
1

1 + 1
b log(2) [H(p)− I(p)]

(7.132)

and the ideal transmission rate is given by

Rbs(p) = Rbs[p, c
∗(p)] (7.133)

= Ibs[p, c
∗(p)] (7.134)

=
I(p)

wTp
. (7.135)

Matched capacity is given by the maximum rate that can be achieved by an ideal sys-
tematic block code, i.e.,

Cbs = max
p

Rbs(p) (7.136)

= max
p

I(p)

wTp
(7.137)

= C. (7.138)

Thus, matched capacity is equal to capacity.

7.4.3 Matching

The matching problem consists in maximizing I(d)/(wTd) where d is a dyadic pmf.
This problem is solved in Section 4.3. The dyadic pmf d = nGhc(p∗,w) maximizes
a lower bound on the achieved mutual information per average duration and dk =
nGhc(p∗k,w⊕k) achieves capacity for k →∞.

7.4.4 Matched gains

Shaping gain

The shaping gain of matched transmission is

Rbs(p)

C
=

I(p)

wTp
· 1

C
. (7.139)

123

As we showed in the previous subsection, for matched transmission, dyadic pmfs are
asymptotically capacity-achieving. This implies that prefix-free matchers can achieve a
shaping gain of one.

Coding gain

The coding gain of matched transmission is

Rbs(p, c)

Rbs(p)
=

H(p)− b log(2)(1
c − 1)

wTp
· w

Tp

I(p)
(7.140)

=
H(p)− b log(2)(1

c − 1)

I(p)
. (7.141)

Note that the average cost cancels out.

Overall gain

For the overall gain of matched transmission, we get

Rbs(p)

C
· Rbs(p, c)

Rbs(p)
=

Rbs(p, c)

C
(7.142)

=
1

C

H(p)− b log(2)(1
c − 1)

wTp
. (7.143)

7.5 References

Parts of this chapter were published in [11].
The combination of a systematic block code with a prefix-free matcher was considered

by Vasić et al [74]. Related to the combination of error correcting codes and matchers
are the MacKay-Neal (MN) codes proposed by MacKay in [55, Section VI]. For MN
codes, arithmetic coding is used to generate a sequence of bits distributed according to
(p, 1 − p)T . The same MN code can then be used to reliably transmit over bsc with
different crossover probability ε by adapting p.

Gallager invented ldpc codes in [38]. Ldpc codes can be put into the form of systematic
block codes. Non-binary ldpc codes were for example designed by Davey and MacKay
[27] and Declercq and Fossorier [28].

Sparse-dense codes were introduced by Ratzer [65, Section 5.3] for binary crosstalk
channels where the crossover probability depends on the frequency of transmitted 1s.
Ratzer used both arithmetic coding and Huffman source coding as matchers [65, Sec-
tion 5.2]. We use the techniques introduced in Section 7.3.2 in [13] to calculate bit-
interleaved coded modulation (BICM) capacity.

Another approach to achieve non-uniform pmfs on the channel is to do error-correction
encoding, matching, and jointly dematching and decoding in this order. Gallager pro-
posed this approach in [39, Page 208] and it is nicely explained in McEliece [61, Section 5].

124

Jiang and Narayanan [46] use multilevel coding to achieve non-uniform pmfs on the chan-
nel. Yet another approach is presented by Ratzer and MacKay in [64]. All approaches
have in common that decoding and dematching cannot be performed separately. This
stands in contrast to our proposed schemes.

125

8 Case study: error-correction for a bsc
with unequal symbol durations

We consider a binary symmetric channel (bsc) with unequal symbol durations. The
crossover probability is ε, i.e., the transition matrix is given by

H =

(
1− ε ε
ε 1− ε

)
. (8.1)

The durations of the binary input symbols 0 and 1 are given by

w(0) = 1, w(1) = 5 (8.2)

i.e., in vector form, w = (1, 5)T . We vary the crossover probability ε between 0.00725
and 0.05775, see Table 8.2. We evaluate the performance around block-error rates of
10−2. The reason of this value is the following. Assume a one-bit feedback from the
receiver that tells the transmitter for each block if the block could be decoded correctly
or not. Then a block needs to be transmitted in the average 1/(1 − 10−2) times until
error-free reception. This corresponds to a reduction of the rate by one percent and is
thus negligible. For each considered setup, we transmit 5000 blocks.

8.1 Setup

8.1.1 Systematic block codes

As systematic block codes, we use the low-density parity-check (ldpc) codes as used in
the DVB-S2 standard. We consider codes with the rates 8/9, 5/6, 4/5, and 3/4. The
blocklength is for all code rates given by N = 64800. Thus, the number of information
bits K and the number of check bits M can easily be calculated. For example, for the
coding rate c = 3/4, we have

K = cN = 3/4 · 64800 = 48600, M = N −K = 16200. (8.3)

The DVB-S2 codes are systematic and amenable for simulation, since an implementation
is readily available in the Communications System Toolbox of MATLAB. It is important
to note that for uniform, sparse-dense, and matched transmission, we use exactly the
same code, encoders, and decoders, namely the unaltered implementation in MATLAB.
The differences between uniform, sparse-dense, and matched transmission are detailed
in the next section.

126

00 7→ 0000 010 7→ 0001 011 7→ 0010 10111 7→ 0011

100 7→ 0100 10110 7→ 0101 10100 7→ 0110 1010111 7→ 0111

110 7→ 1000 11101 7→ 1001 11100 7→ 1010 101011 7→ 1011

11110 7→ 1100 111110 7→ 1101 111111 7→ 1110 1010100 7→ 1111

d4 = (2−2 2−3 2−3 2−5 2−3 2−5 2−5 2−7 2−3 2−5 2−5 2−6 2−5 2−6 2−6 2−7)T

Table 8.1: The vector d4 is the dyadic pmf for blocks of k = 4 symbols for sparse-dense
and matched transmission. The table above displays a prefix-free matcher
that generates d4.

8.1.2 Prefix-free matcher

We first discuss the prefix-free matcher used for sparse-dense and matched transmission.
The crossover probabilities ε that we evaluate for sparse-dense and matched transmission
are listed in Table 8.2. To generate dyadic pmfs, we jointly consider blocks of k = 4
symbols on the channel. For sparse-dense transmission, we first use Algorithm 7 to
calculate the pmf psd that achieves sparse-dense capacity. We then calculate the dyadic
pmf according to Proposition 7.4 as follows. We define ` = (− log2 p

sd
1 , − log2 p

sd
2)T and

define

dsd
4 = nGhc(1,⊕4`) (8.4)

where 1 denotes an all-one column vector with 24 = 16 entries and where ⊕4` denotes
the cost sum of 4 copies of `. For matched transmission, according to Subsection 7.4.2,
the pmf that achieves matched capacity is equal to the capacity-achieving pmf p∗. We
calculate p∗ by Algorithm 4. For example, for ε = 0.028, p∗ is given by (0.7349, 0.2651)T .
We then calculate the dyadic pmf according to Subsection 7.4.3 by

dbs
4 = nGhc(p∗4,⊕4w) (8.5)

where p∗4 denotes the Kronecker product of 4 copies of p∗ and where ⊕4w denotes the
cost sum of 4 copies of w. For all considered values of ε, dsd

4 = dbs
4 , i.e., in the considered

setup, sparse-dense and matched transmission use the same dyadic pmf. We denote it
by d4. Furthermore, d4 remains unchanged over the whole range of the considered ε.
The dyadic pmf d4 and a prefix-free matcher that generates it are displayed in Table 8.1.

8.1.3 Effective transmission rate

For calculating the coding gain of the considered transmission schemes, we use the
effective transmission rate. The effective transmission rate of one block is given by

R̂ =
information

block duration
. (8.6)

Since we assume that the data to be transmitted comes in form of a fair bit stream, the
information in one block is in bits given by the number of data bits that were mapped

127

to the transmitted block, and in nats, the information is

information =]{data bits mapped to the block} · log 2. (8.7)

The duration of one block is given by

block duration =]{0s in the block} · 1 +]{1s in the block} · 5. (8.8)

Thus, the effective transmission rate is

R̂ =
]{data bits mapped to the block} · log 2

]{0s in the block} · 1 +]{1s in the block} · 5
. (8.9)

For all three transmission schemes, the block duration is random, and while the number
of data bits mapped to one block is constant for uniform transmission, it is random
for sparse-dense and matched transmission. We evaluated the variation of the effective
transmission rate R̂ for 5000 transmissions. The statistics show that for each considered
configuration, R̂ can be modelled as Gaussian distributed with the mean given by the
expected transmission rate Rscheme(p, c) as derived for each scheme in Chapter 7 and a
very small variance. We therefore use in our evaluations for each configuration the mean
R̄ of the 5000 realizations of the effective transmission rate R̂, but because the variance
is vanishingly small, we omit to provide confidence intervals.

8.2 Transmission schemes

We now detail how we operate the ldpc codes for the different transmission schemes.

8.2.1 Uniform transmission

Matching

K iid equiprobable data bits are mapped one-to-one to K binary channel symbols. The
ldpc encoder is applied to these K channel symbols and M binary check symbols are
generated and appended to the K channel symbols. No matching is performed.

Transmission

All K+M binary channel symbols are transmitted over a bsc with crossover probability
ε.

Decoder parameters

Since we have uniform priors, we pass to the decoder for each of the N = K+M received
binary symbols the log-likelihood ratios (llrs)

llr(0) = log
(1− ε)
ε

, if received symbol = 0 (8.10)

llr(1) = log
ε

(1− ε)
, if received symbol = 1. (8.11)

128

Evaluation

For each ε, the shaping gain is according to Subsection 7.2.2 calculated as

Ru

C
=

I(u)

wTu

1

C
(8.12)

where w = (1, 5)T , u = (1/2, 1/2)T and where C is calculated by Algorithm 4. The
coding gain is calculated as

R̄
Ru

= R̄
wTu

I(u)
(8.13)

where R̄ is the mean of the observed effective transmission rates. Note that the overall
gain is given by

Ru

C
· R̄
Ru

=
R̄
C

(8.14)

that is, the overall gain only depends on capacity and effectively observed values.

8.2.2 Sparse-dense transmission

Matching

K matched binary channel symbols are generated by parsing the fair data bit stream
by the prefix-free matcher displayed in Table 8.1. The ldpc encoder is applied to these
K binary channel symbols and M unmatched binary check symbols are generated and
appended to the K matched symbols.

Transmission

AllK+M binary channel symbols are transmitted over a bsc with crossover probability ε.

Decoding

The decoder assumes that the matcher is perfect, i.e., that it generates matched binary
symbols that are iid according to the pmf psd that achieves sparse-dense capacity. We
calculate psd by Algorithm 7. For the matched K symbols, we pass to the decoder

llr(0) + log
psd

1

psd
2

= log
(1− ε)psd

1

εpsd
2

, if received symbol = 0 (8.15)

llr(1) + log
psd

1

psd
2

= log
εpsd

1

(1− ε)psd
2

, if received symbol = 1. (8.16)

For the unmatched M check symbols, we pass to the decoder

llr(0) = log
(1− ε)
ε

, if received symbol = 0 (8.17)

llr(1) = log
ε

(1− ε)
, if received symbol = 1. (8.18)

129

Evaluation

The ideal transmission rate of sparse-dense transmission is according to Proposition 7.1
given by

Rsd(p) =
H(p)

wTp+ 1
Cu

[H(p)− I(p)]
(8.19)

where p is the pmf generated by the matcher. Since our matcher jointly generated blocks
of 4 symbols according to the dyadic pmf d4, see Table 8.1, we normalize entropy, mutual
information, and average duration by 4. The ideal transmission rate for d4 is thus given
by

Rsd(d4) =
H(d4)

4
vT4 d4

4 + 1
Cu

[H(d4)
4 − I(d4)

4

] (8.20)

where v4 = ⊕4w is the cost sum of 4 copies of w. The shaping gain is now calculated as

Rsd(d4)

C
(8.21)

and the coding gain is calculated as

R̄
Rsd(d4)

. (8.22)

8.2.3 Matched Transmission

To allow comparison between the schemes, we evaluate matched transmission by simu-
lating its building block as displayed in Figure 7.4.

Matching

The matcher generates K matched binary channel symbols by parsing a fair bit stream.
The ldpc encoder generates M unmatched binary check symbols, but they are not ap-
pended to the K matched symbols.

Transmission

The K matched symbols are transmitted over a bsc with crossover probability ε. The
M check symbols remain unchanged.

Decoder

The decoder assumes a perfect matcher, i.e., it assumes that the received matched sym-
bols are iid according to the pmf that achieves matched capacity. According to Subsec-
tion 7.4.2, matched capacity is equal to capacity, and the same holds for the correspond-
ing pmfs. Thus, the decoder assumes that the matched symbols are iid according to p∗,

130

which we calculate by Algorithm 4. For the K matched symbols, we pass to the decoder

llr(0) + log
p∗1
p∗2

= log
(1− ε)p∗1
εp∗2

, if received symbol = 0

llr(1) + log
p∗1
p∗2

= log
εp∗1

(1− ε)p∗2
, if received symbol = 1.

Since the check symbols are perfectly known, we pass

∞, if check symbol = 0

−∞, if check symbol = 1.

Evaluation

According to Subsection 7.4.4, the ideal transmission rate for matched transmission is
given by

Rbs(p) =
I(p)

wTp
(8.23)

where p denotes the pmf generated by the matcher. Thus, the ideal transmission rate is
given by

Rbs(d4) =
I(d4)

vT4 d4
. (8.24)

We can now calculate the shaping gain as

Rbs(d4)

C
. (8.25)

To calculate the effective transmission rate, we need to take into account that for matched
transmission, some of the bits in the fair bit stream stem from check symbols, see Subsec-
tion 7.4.1. We know that the first M bits of the fair bit stream are check bits. Thus, the
number of information bits mapped to the K matched symbols is given by the number
of parsed bits minus M . Note that the number of information bits can vary from block
to block. With the effective transmission rates calculated that way, the coding gain is
given by

R̄
Rbs(d4)

. (8.26)

8.3 Discussion

The numerical results are displayed in Figure 8.1. Shaping and coding gain are displayed
in horizontal direction. For the coding gains, the corresponding block error probabilities
are displayed in vertical direction. The error bars mark 95% confidence intervals, which

131

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
10−3

10−2

10−1

coding gainsshaping gains

b
lo

ck
er

ro
r

p
ro

b
ab

il
it

y
Uniform transmission c = 3/4 c = 4/5 c = 5/6 c = 8/9

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
10−3

10−2

10−1

coding gains shaping gains

b
lo

ck
er

ro
r

p
ro

b
ab

il
it

y

Sparse-dense transmission

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
10−3

10−2

10−1

coding gains
shaping gains

b
lo

ck
er

ro
r

p
ro

b
ab

il
it

y

Matched transmission

Figure 8.1: Coding and shaping gains.

132

Uniform transmission
c = 3/4 c = 4/5 c = 5/6 c = 8/9

0.02850 0.02075 0.01525 0.00775
0.02825 0.02050 0.01500 0.00750
0.02800 0.02025 0.01475 0.00725

Sparse-dense transmission
c = 3/4 c = 4/5 c = 5/6 c = 8/9

0.03250 0.02400 0.01775 0.00900
0.03225 0.02375 0.01750 0.00875
0.03200 0.02350 0.01725 0.00850

Matched transmission
c = 3/4 c = 4/5 c = 5/6 c = 8/9

0.05775 0.03750 0.02600 0.01150
0.05750 0.03725 0.02575 0.01125
0.05725 0.03700 0.02550 0.01100

Table 8.2: Values for the channel parameter ε. The locations of the values in the table
correspond to the location of the corresponding numerical result in Figure 8.1.

were calculated according to [32, Section 9.4.2]. To facilitate the orientation in the graph,
the shaping gains are displayed at the same vertical position as the corresponding coding
gains. The upper plot displays the results for uniform transmission, the plot in the middle
shows the results for sparse-dense transmission, and the lower plot displays the results
for matched transmission. As we can see, for uniform transmission, the shaping gains are
smaller than the coding gains, i.e., for the considered channel, the bottleneck is shaping
rather than coding. For sparse-dense transmission, the picture changes. Now the coding
gains are smaller than the shaping gains and the bottleneck is now coding rather than
shaping. The huge improvement of the shaping gain compared to uniform transmission
is because the considered codes are high-rate codes, i.e., K � M . Since sparse-dense
transmission can match the K information symbols but not the M check symbols, and
since K �M , most of the transmitted symbols are matched. As the code rate decreases,
so does the shaping gain: we observe the greatest shaping gain for code rate 9/8 and
the smallest shaping gain for code rate 3/4. For low-rate codes, we can expect that the
shaping gain remains the bottleneck even when using sparse-dense transmission. For
matched transmission, the situation is different. Here, we have a shaping gain of almost
1 and this remains unchanged for all considered coding rates. We would observe the
same shaping gains for low-rate codes, so with matched transmission, the coding gain is
always the bottleneck.

The coding gain changes only slightly for the different transmission schemes although
each scheme operates the codes in a different way. This is in accordance with the general

133

observation that ldpc codes have universal properties, see for example [37].

134

9 Conclusions

In Chapter 3, 4, and 5, we developed algorithms to find prefix-free matchers that min-
imize relative entropy, normalized relative entropy, and relative entropy subject to a
cost constraint, respectively. In the first two cases, we proved optimality and in all
three cases, we proved asymptotic achievability. These algorithms solve the prefix-free
matching problem and form thereby a counterpart to Huffman coding, which solves the
prefix-free source coding problem. We showed that our algorithms can directly be used to
maximize the entropy rate for noiseless channels. For dmcs, with the capacity-achieving
pmf as an additional parameter, the algorithms can be used to maximize mutual infor-
mation. For this part of our work, two main problems remain open.

• As we have illustrated at two points in this work, to use the Huffman source code
of the capacity-achieving pmf as a prefix-free matcher is sub-optimal. However, in
many practical examples, the Huffman source code is a good prefix-free matcher,
and in some cases, it is even equal to the optimal prefix-free matcher obtained by
our algorithms. The conjecture is that Huffman source codes are asymptotically
capacity-achieving prefix-free matchers and vice versa, that Ghc asymptotically
achieves the maximum compression ratio when used as a source code. To prove
this conjecture is an open problem.

• Our algorithm ccGhc not necessarily finds the optimal prefix-free matcher subject
to a cost constraint. The problem is that ccGhc only finds points on the convex
hull of all points that can be achieved by prefix-free matchers. It is a challenging
question how an algorithm could be designed that finds optimal points that lie
inside of the convex hull.

In Chapter 6, we established the fundamental relation between combinatorial and prob-
abilistic capacity of general noiseless channels. We then considered finite state channels
and showed how memoryless codes can be constructed and we showed that these codes
are asymptotically capacity-achieving. In all examples that we considered, our codes
achieve a higher entropy rate than existing techniques. Further research could be per-
formed in the following directions.

• Our results for finite state channels on combinatorial capacity, maximum entropy
rate, and coding could be extended to more general settings, including e.g. context-
free grammars.

• Our vlm codes are not only variable length but also variable rate. In contrast,
most existing techniques construct fixed-rate codes for noiseless channels. The
advantages and disadvantages of vlm in more practical settings could be assessed.

135

In the Chapter 7 and 8, we considered how prefix-free matchers can be combined with
systematic block codes. We introduced the concept of shaping and coding gain. For
dmcs with unequal symbol duration, we showed how the shaping gain of systematic
block codes can be improved by sparse-dense transmission. By applying a prefix-free
matcher both to data symbols and to check symbols, we showed that the shaping gain
can be made equal to one. These are possible directions for future research:

• Any existing systematic block code can be operated by our schemes and decoding
and dematching is performed sequentially. Existing approaches require to jointly
perform decoding and dematching, see for example [39, page 208], [61, Section 5],
[64], [46]. It would be interesting to compare the different schemes in terms of
achieved shaping gain, coding gain, delay, and system complexity.

• For low rate codes, the degree of the check symbols can be very low, i.e., they are
calculated as the sum of very few data symbols. In this situation, our uniform check
symbol assumption becomes questionable and our results for capacity, shaping and
coding gain, and matching have to be rethought. The work by Vasić et al [74] may
serve as a starting point.

• Our results could be extended to channels with average cost constraints and to
channels with crosstalk [65, Section 4.2].

• Our schemes may be useful for reliable communication with a shaping gain of
one over additive noise channels in the bandwidth-limited regime. To this end,
systematic block codes over Zn with n equal to the number of signalling points
could be considered.

An open question is the following.

• Does Algorithm 7 always find sparse-dense capacity? More specifically, are there
channels where the mutual information Isd in (7.53) has more than one local max-
imum?

136

Bibliography

[1] J. Abrahams, “Code and parse trees for lossless source encoding,” in Proc. Com-
pression and Complexity of Sequences 1997, 1997, pp. 145–171.

[2] ——, “Variable-length unequal cost parsing and coding for shaping,” IEEE Trans.
Inf. Theory, vol. 44, no. 4, pp. 1648–1650, 1998.

[3] ——, “Correspondence between variable length parsing and coding,” in The math-
ematics of information coding, extraction and distribution, G. Cybenko, D. P.
O’Leary, and J. Rissanen, Eds. Springer, 1999, ch. 1, pp. 1–7.

[4] F. Altenbach, G. Böcherer, and R. Mathar, “Short Huffman codes producing 1s half
of the time,” in Proc. Int. Conf. Signal Process. Commun. Syst. (ICSPCS), 2011.

[5] S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memo-
ryless channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 14–20, 1972.

[6] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE
Trans. Inf. Theory, vol. 18, no. 4, pp. 460–473, 1972.

[7] M. Blaum, R. D. Cideciyan, E. Eleftheriou, R. Galbraith, K. Lakovic, T. Mittel-
holzer, T. Oenning, and B. Wilson, “High-rate modulation codes for reverse con-
catenation,” IEEE Trans. Magn., vol. 43, no. 2, pp. 740–743, 2007.

[8] G. Böcherer, “Geometric Huffman coding,” http://www.georg-boecherer.de/ghc,
Dec. 2010.

[9] G. Böcherer, F. Altenbach, M. Malsbender, and R. Mathar, “Writing on the facade
of RWTH ICT Cubes: Cost constrained geometric Huffman coding,” in Proc. IEEE
Int. Symp. Wireless Commun. Syst. (ISWCS), 2011.

[10] G. Böcherer, F. Altenbach, and R. Mathar, “Capacity achieving modulation for
fixed constellations with average power constraint,” in Proc. IEEE Int. Conf. Com-
mun. (ICC), 2011.

[11] G. Böcherer and R. Mathar, “Operating LDPC codes with zero shaping gap,” in
Proc. IEEE Inf. Theory Workshop (ITW), 2011.

[12] G. Böcherer, “Analytic asymptotics of discrete noiseless channels,” Master’s
thesis, ETH Zurich, 2007. [Online]. Available: http://www.georg-boecherer.de/
repository/analyticAsymptotics.pdf

137

http://www.georg-boecherer.de/ghc
http://www.georg-boecherer.de/repository/analyticAsymptotics.pdf
http://www.georg-boecherer.de/repository/analyticAsymptotics.pdf

[13] G. Böcherer, F. Altenbach, A. Alvarado, S. Corroy, and R. Mathar, “An efficient al-
gorithm to calculate BICM capacity,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2012.

[14] G. Böcherer, V. C. da Rocha Jr., C. Pimentel, and R. Mathar, “Maximum entropy
rate of Markov sources for systems with non-regular constraints,” in Proc. Int.
Symp. Inf. Theory and its Applicat. (ISITA), 2008.

[15] G. Böcherer, V. C. da Rocha Jr., and C. Pimentel, “Capacity of general discrete
noiseless channels,” in Proc. Int. Symp. Commun. Applicat. (ISCTA), 2007.

[16] G. Böcherer, V. C. da Rocha Jr., C. Pimentel, and R. Mathar, “On the capacity of
constrained systems,” in Proc. Int. ITG Conf. Source Channel Coding, 2010.

[17] G. Böcherer and R. Mathar, “Matching dyadic distributions to channels,” in Proc.
Data Compression Conf., 2011, pp. 23–32.

[18] S. Boyd, “Convex optimization II, lecture 14: Sequential convex programming,”
lecture notes, 2008. [Online]. Available: http://www.stanford.edu/class/ee364b/
lectures/seq slides.pdf

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[20] K. Burg, H. Haf, F. Wille, and A. Meister, Höhere Mathematik für Ingenieure Band
II: Lineare Algebra. B. G. Teubner, Wiesbaden, 2007.

[21] N. Cai, S.-W. Ho, and R. Yeung, “Probabilistic capacity and optimal coding for
asynchronous channel,” in Proc. IEEE Inf. Theory Workshop (ITW), 2007, pp.
54–59.

[22] N. Cai and R. W. Yeung, “Self-synchronizable codes for asynchronous communica-
tion,” in Proc. IEEE Int Information Theory Symp, 2002.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed. The MIT Press, 2001.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John
Wiley & Sons, Inc., 2006.

[25] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Mem-
oryless Systems. Cambridge University Press, 2011.

[26] M. C. Davey, “Error-correction using low-density parity-check codes,” Ph.D. dis-
sertation, University of Cambridge, Dec. 1999.

[27] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE
Commun. Lett., vol. 2, no. 6, pp. 165–167, 1998.

138

http://www.stanford.edu/class/ee364b/lectures/seq_slides.pdf
http://www.stanford.edu/class/ee364b/lectures/seq_slides.pdf

[28] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes
over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, 2007.

[29] D. Dubé and V. Beaudoin, “Constructing optimal whole-bit recycling codes,” in
Proc. IEEE Inf. Theory Workshop (ITW), Jun. 2009, pp. 27–31.

[30] C. H. Edwards, Advanced Calculus of Several Variables. Academic Press, 1973.

[31] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge University
Press, 2011.

[32] L. Fahrmeir, R. Künstler, I. Pigeot, and G. Tutz, Statistik: Der Weg zur Daten-
analyse. Springer-Verlag, 2004.

[33] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission. John
Wiley & Sons, Inc., 2002.

[34] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press,
2008.

[35] J. Forney, G., R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient mod-
ulation for band-limited channels,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp.
632–647, 1984.

[36] P. A. Franaszek, “Run-length limited variable length coding with error propagation
limitation,” US Patent 3689899, Sep. 1972.

[37] M. Franceschini, G. Ferrari, and R. Raheli, “Does the performance of LDPC codes
depend on the channel?” IEEE Trans. Commun., vol. 54, no. 12, pp. 2129–2132,
2006.

[38] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 21–28, 1962.

[39] ——, Information Theory and Reliable Communication. John Wiley & Sons, Inc.,
1968.

[40] ——, Principles of Digital Communication. Cambridge University Press, 2008.

[41] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 1.21,” http://cvxr.com/cvx, Jul. 2010.

[42] T. S. Han, Information-Spectrum Methods in Information Theory. Springer, 2003.

[43] ——, “Folklore in source coding: information-spectrum approach,” IEEE Trans.
Inf. Theory, vol. 51, no. 2, pp. 747–753, 2005.

[44] G. H. Hardy and M. Riesz, The General Theory of Dirichlet’s Series. Cambridge:
at the University Press, 1915.

139

http://cvxr.com/cvx

[45] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[46] J. Jiang and K. R. Narayanan, “Multilevel coding for channels with non-uniform
inputs and rateless transmission over the BSC,” in Proc. IEEE Int Information
Theory Symp, 2006, pp. 518–522.

[47] M. Jimbo and K. Kunisawa, “An iteration method for calculating the relative ca-
pacity,” Inf. Contr., vol. 43, no. 2, pp. 216–223, Nov. 1979.

[48] K. J. Kerpez, “Runlength codes from source codes,” IEEE Trans. Inf. Theory,
vol. 37, no. 3, pp. 682–687, 1991.

[49] A. Khandekar, R. McEliece, and E. Rodemich, “The discrete noiseless channel
revisited,” in Coding, Communications, and Broadcasting. Research Studies Press
Ltd., 2000, pp. 115–137.

[50] L. G. Kraft, “A device for quantizing, grouping, and coding amplitude modulated
pulses,” Master’s thesis, Departement of Electrical Engineering MIT, 1949.

[51] R. M. Krause, “Channels which transmit letters of unequal duration,” Inf. Contr.,
vol. 5, pp. 3–24, 1962.

[52] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian
channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929, 1993.

[53] A. Lempel, S. Even, and M. Cohn, “An algorithm for optimal prefix parsing of a
noiseless and memoryless channel,” IEEE Trans. Inf. Theory, vol. 19, no. 2, pp.
208–214, 1973.

[54] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, 1995.

[55] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, 1999.

[56] ——, “An alternative to runlength-limited codes: Turn timing errors into substitu-
tion errors,” Available at www.inference.phy.cam.ac.uk/mackay, Sep. 2000.

[57] ——, Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press, 2004.

[58] E. E. Majani and H. Rumsey, “Two results on binary-input discrete memoryless
channels,” in Proc. IEEE Int Information Theory (papers in summary form ly re-
ceived) Symp. (Cat. No.91CH3003-1), 1991.

[59] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding for con-
strained systems,” Oct. 2001.

140

www.inference.phy.cam.ac.uk/mackay

[60] R. S. Marcus, “Discrete noiseless coding,” Master’s thesis, MIT, 1957.

[61] R. McEliece, “Are turbo-like codes effective on nonstandard channels?” IEEE Inf.
Theo. Society Newsletter, vol. 51, no. 4, pp. 1,3–8, Dec. 2001. [Online]. Available:
http://backup.itsoc.org/publications/nltr/01 dec/dec01.pdf

[62] M. Mitzenmacher. (2008) A survey of results for deletion channels and related
synchronization channels. [Online]. Available: http://www.eecs.harvard.edu/
∼michaelm/postscripts/DelSurvey.pdf

[63] J. R. Munkres, Analysis on Manifolds. Addison-Wesley Publishing Company, 1991.

[64] E. A. Ratzer and D. J. C. MacKay, “Sparse low-density parity-check codes for
channels with cross-talk,” in Proc. IEEE Information Theory Workshop, 2003, pp.
127–130.

[65] E. A. Ratzer, “Error-correction on non-standard communication channels,” Ph.D.
dissertation, University of Cambridge, 2003.

[66] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University
Press, 2008.

[67] A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Inc.,
1981.

[68] A. Sardinas and G. W. Patterson, “A necessary and sufficient condition for the
unique decomposition of coded messages,” in Convention Record of the I.R.E., 1953.

[69] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, pp. 379–423 and 623–656, Jul. and Oct. 1948.

[70] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Thomson Course
Technology, 2006.

[71] P. R. Stubley and I. F. Blake, “On a discrete probability distribution matching
problem,” Jun. 1991, preprint.

[72] F. Topsøe, “Basic concepts, identities and inequalities—the toolkit of information
theory,” Entropy, vol. 3, pp. 162–190, 2001.

[73] G. Ungerböck, “Huffman shaping,” in Codes, Graphs, and Systems, R. Blahut and
R. Koetter, Eds. Springer, 2002, ch. 17, pp. 299–313.

[74] B. Vasic, O. Milenkovic, and S. McLaughlin, “Scrambling for nonequiprobable sig-
nalling,” Electronics Letters, vol. 32, no. 17, pp. 1551–1552, 1996.

[75] S. Verdu, “On channel capacity per unit cost,” IEEE Trans. Inf. Theory, vol. 36,
no. 5, pp. 1019–1030, 1990.

141

http://backup.itsoc.org/publications/nltr/01_dec/dec01.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/DelSurvey.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/DelSurvey.pdf

[76] Y. Wu and S. Verdú, “The impact of constellation cardinality on Gaussian chan-
nel capacity,” in Proc. 48th Annual Allerton Conf. Communication, Control, and
Computing (Allerton), 2010, pp. 620–628.

[77] R. Yeung, N. Cai, S.-W. Ho, and A. Wagner, “Reliable communication in the ab-
sence of a common clock,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 700–712,
2009.

[78] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural Compu-
tation, vol. 15, pp. 915–936, 2003.

[79] E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Trans. Inf. Theory, vol. 34,
no. 1, pp. 45–54, 1988.

142

Index

◦ see elementwise multiplication 48
ε ↓ 0 see limit from above 13
b·c see floor function 36
⊕ see cost sum 51
⊗ see Kronecker product 35
{·}+ see plus operation 95
ex see exponentiation by a vector 48

abscissa of convergence, 82
active constraint, 62
additive white Gaussian noise, 46
affine hull, 11
asymptotic achievability, 35
asynchronous channel, 97
AWGN see additive white Gaussian noise

46

BICM see bit-interleaved coded modula-
tion 124

binary logarithm, 18
binary symmetric channel, 126
bit-interleaved coded modulation, 124
bsc see binary symmetric channel 126

C see complex numbers 10
capacity per unit cost, 60
capacity-achieving pmf, 24
capacity-cost function, 77
Cartesian product, 10, 82
cat see operation of concatenation 89
Cbs see matched capacity 123
ccGhc see cost constrained geometric

Huffman coding 61
coding gain, 105
coding rate, 105
combinatorial capacity, 83
compensation identity, 46

complex numbers, 10
complexity, 26
concatenation see regular operation 81
concave function, 10
continuous, 13
convex function, 10
convex optimization problem, 10
convex set, 10
convex-concave procedure, 112
cost constrained geometric Huffman cod-

ing, 61
cost sum, 51
crosstalk channel, 124
Csd see sparse-dense capacity 111
Cu see uniform capacity 108

data processing lemma, 46
directed graph, 90
directional derivative, 13
discrete memoryless channel, 20
discrete noiseless channel, 83
distance-cost function, 62
divergent, 82
dmc see discrete memoryless channel 20
domain, 11
dual feasible, 12
dual function, 11
dual optimal, 12
dual problem, 12
dyadic pmf, 26

elementwise multiplication, 48
entropy, 20
entropy rate of a general source, 85
entropy rate of a source, 89
entropy-cost function, 71

143

equiprobable bits, 24
exponentiation by a vector, 48

fair bit stream, 24
feasible point, 11
feasible problem, 11
floor function, 36
full prefix-free code, 24

Gcm see greedy channel matching 36
general Dirichlet series, 82
general source, 85, 86
general source induced by a source, 89
generating function, 84
generating matrix, 93
geometric Huffman coding, 26
geometric mean, 26
Ghc see geometric Huffman coding 26
greedy channel matching, 36

Hadamard product, 48
Hc see Huffman coding 28
Huffman coding, 26, 28
Huffman shaping, 7, 80

ideal coding rate, 107
ideal systematic block code, 106
iid see independent and identically dis-

tributed 24
implementation, 26
independent and identically distributed,

24
induced pmf, 25
infeasible problem, 11
information inequality, 19
input pmf, 20
integers, 10

Jordan normal form, 92

Karush-Kuhn-Tucker conditions, 12
KKT see Karush-Kuhn-Tucker conditions

12
Kraft inequality, 24
Kronecker product, 35

Kullback-Leibler distance, 8

label, 97
label function, 97
Lagrangian, 11
ldpc codes, 126
LEC see Lempel-Even-Cohn algorithm

60
Lempel-Even-Cohn algorithm, 60
limit from above, 13
limit superior, 82
llr see log-likelihood ratio 128
log see natural logarithm 18
log sum inequality, 19
log-likelihood ratio, 128
log2 see binary logarithm 18
logarithm, 18

MacKay-Neal codes, 124
matched capacity, 123
matched transmission, 119
matching rate, 121
memoryless representation, 95
MLC see multilevel coding 125
MN codes see MacKay-Neal codes 124
multilevel coding, 125
mutual information, 20

N see natural numbers 10
N0 see natural numbers including zero

10
natural logarithm, 18
natural numbers, 10
natural numbers including zero, 10
nGhc see normalized geometric Huffman

coding 48
noiseless channel, 38
noiseless channel with cost constraint, 70
noiseless channel with unequal symbol

durations, 52
non-negative real numbers, 10
non-negative vector, 26
normalized geometric Huffman coding,

48
not too dense, 83

144

operation of concatenation, 89
optimal point, 11
optimal value, 11
output pmf, 20
overall gain, 105

partial derivative, 13
periodic matrix, 96
Perron-Frobenius theory, 9
plus operation, 95
pmf see probability mass function 18
positive real numbers, 10
prefix-free code, 24
prefix-free matcher, 7, 25
prefix-free matching, 7
primal problem, 11
probability mass function, 18

QAM see quadrature amplitude modu-
lation 72

quadrature amplitude modulation, 72

R see real numbers 10
R≥0 see non-negative real numbers 10
R>0 see positive real numbers 10
real numbers, 10
regular operation, 81
relative entropy, 18
relative interior, 11
reverse concatenation, 104
run-lengths, 97

Sardinas-Patterson test, 82
sbc see systematic block codes 104
shaping gain, 105
signal shaping, 7
Slater’s condition, 17
source, 89
sparse-dense capacity, 110, 111
sparse-dense transmission, 109
spectral radius, 92
star see regular operation 81
State Splitting Algorithm, 100, 101
strictly concave function, 10
strictly convex function, 10

strong duality, 12
strongly connected component, 91
strongly connected graph, 91
systematic block codes, 104
systematic generator matrix, 104
systematic parity-check matrix, 104

(·)T see transposition 17
transition generating function, 93
transition generating matrix, 93
transition matrix, 20
transposition, 17

uniform capacity, 108
uniform transmission, 108
union see regular operation 81
uniquely decodable code, 82
uniquely decodable graph, 93
ur-symbols, 119

variable length memoryless coding, 97
vlm see variable length memoryless cod-

ing 97

weight function, 83

Z see integers 10

145

	Introduction
	Motivation
	Contributions

	Preliminaries
	Convex optimization
	Basic definitions
	Duality
	Objective functions on R0 n
	Convex problem with affine constraints

	Information theory
	References

	Matching channels
	Prefix-free matchers and dyadic pmfs
	Geometric Huffman coding
	Example
	ghc assigns probability zero to values of zero
	Optimality of Ghc
	Optimal pmf
	Using a `wrong' pmf
	Asymptotic achievability

	Noiseless channel
	Matching
	Optimal pmf
	Using a `wrong' pmf
	Asymptotic Achievability

	Discrete memoryless channel
	Capacity
	Using a `wrong' pmf
	Matching
	Asymptotic achievability

	References

	Matching channels with unequal symbol durations
	Normalized geometric Huffman coding
	Optimality of normalized geometric Huffman coding
	Optimal pmf
	Asymptotic achievability

	Noiseless channel
	Matching
	Optimal pmf
	Using a `wrong' pmf
	Asymptotic achievability

	Discrete memoryless channels
	Capacity
	Capacity-achieving pmf
	Using a `wrong' pmf
	Matching
	Asymptotic achievability

	References

	Matching channels with cost constraints
	Cost constrained geometric Huffman coding
	Optimal pmf
	Strict convexity of distance-cost function
	Using a `wrong' pmf
	Asymptotic Achievability

	Noiseless channel
	Matching
	Optimal pmf
	Strict concavity of entropy-cost function
	Using a `wrong' pmf
	Asymptotic achievability

	ccGhc is not necessarily optimal: an example
	Discrete memoryless channel
	Capacity-achieving pmf
	Using a `wrong' pmf
	Strictly concave lower bound on capacity-cost function
	Matching
	Asymptotic achievability

	References

	Noiseless channels with memory
	Preliminaries
	General noiseless channels
	Combinatorial capacity
	Maximum entropy rate

	Finite state channels
	Combinatorial capacity
	Maximum entropy rate
	Coding

	Applications
	Capacity of asynchronous channel
	Coding for (2,7) constraint
	Coding for (0,1) constraint
	Huffman source coding is not optimal

	References

	Matching for systematic block codes
	Matching and error-correction
	Reverse concatenation
	Systematic linear block codes
	Shaping gain, coding gain, and capacity

	Uniform transmission
	Uniform capacity
	Uniform gains

	Sparse-dense transmission
	Sparse-dense capacity
	Calculating sparse-dense capacity
	Capacity-achieving pmf
	Using a `wrong' pmf
	Matching
	Sparse-dense gains

	Matched transmission
	Bootstrapping the check symbols
	Matched capacity
	Matching
	Matched gains

	References

	Case study: error-correction for a bsc with unequal symbol durations
	Setup
	Systematic block codes
	Prefix-free matcher
	Effective transmission rate

	Transmission schemes
	Uniform transmission
	Sparse-dense transmission
	Matched Transmission

	Discussion

	Conclusions
	Bibliography
	Index

