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1. Introduction

Current broadband wireless standards are based on Orthogonal frequency division mul-
tiplexing (OFDM), a multicarrier modulation scheme that provides strong robustness
against inter-symbol interference (ISI). OFDM divides the broadband channel into many
orthogonal narrowband subchannels in such a way that attenuation across each subchan-
nel stays flat [1]. Orthogonalization of subchannels is performed with low complexity
by using the Inverse Fast Fourier Transform (IFFT), an efficient implementation of the
Inverse Discrete Fourier Transform (IDFT). In this way, the serial high-rate data stream
is converted into multiple parallel low-rate streams, each modulated on a different sub-
carrier. Due to its robustness to multipath propagation at high data rates, OFDM has
been successfully used as physical layer (PHY) technology in numerous wireless stan-
dards. This includes European terrestrial digital audio and video broadcasting (DAB and
DVB-T), the IEEE 802.11 series of standards for wireless local area network (WLAN),
and the IEEE 802.16 series of standards (WiMAX) for wireless metropolitan area network
(WMAN). Moreover, OFDM is incorporated in the Long Term Evolution (LTE) standard
for 4G cellular mobile networks as well as in the recently ratified cognitive radio IEEE
802.22 standard for wireless regional area networks (WRAN).

The increasing demand for new high data rate services requires future OFDM systems to
better exploit frequency diversity offered by broadband channels. The energy and capacity
efficiency of an OFDM system in a particular wireless environment can be preserved by
adaptable transmission parameters, such as bandwidth, data rate, and power. For given
Quality of Service (QoS) demands, usually determined by the target bit error rate (BER),
this can be formulated as an optimization problem. Within the last two decades, extensive
theoretical research work has resulted in the development of optimal and suboptimal
solutions for an efficient resource allocation in OFDM wireless networks [2, 3, 4, 5].

However, the investigation and assessment of information theoretic concepts in a ra-
dio frequency (RF) environment is limited in the literature. This is mostly due to the
lack of commercial hardware that can support adaptable transmission parameters. Cur-
rently, these functionalities are only offered by Software Defined Radio (SDR) technology
supported by general purpose hardware.

The main issue in assessing resource allocation algorithms by radio testbeds is the
presence of hardware imperfections at the radio frequency (RF) frontend. Moreover, the
applicability of the given theoretical model associated with specific impairment should
also be considered during implementation. In most cases, the performance degradation
depends on specific synchronization procedures applied for timing and frequency estima-
tion. Additionally, in order to compensate the effects of multipath propagation, equaliza-
tion requires the estimation of the channel frequency response. The influence of a certain
channel estimation method on the system performance should also be taken into account.

1



2 Chapter 1. Introduction

Another very important issue for adaptive OFDM systems is the accurate and computa-
tionally efficient estimation of the signal-to-noise ratio (SNR). Representing the measure
of signal quality, SNR is used as an input parameter for any resource allocation algorithm
that produces specific power and/or rate allocation. Most of the SNR estimators from
the literature are related to a single carrier transmission and can be directly applied to
OFDM systems in the presence of additive white Gaussian noise (AWGN) [6]. However,
the SNR estimation in frequency-selective channels additionally requires the estimation of
the channel frequency response, inherently required for equalization. Several recently pro-
posed SNR estimators for OFDM systems [7, 8] have shown relatively poor performance
for frequency-selective channels. Therefore, there is a need for a robust SNR estimator
which provides accurate input to a resource allocation algorithm.

The main goal of this thesis is to identify and address the important challenges that
arise from the implementation of an adaptive OFDM communication system. This com-
prises the presence of a real radio frequency (RF) channel, as well as the critical influence
of the SNR estimation and hardware imperfections on the system performance. The
contributions in this theses are of theoretical and practical nature. The main the-
oretical contribution of the thesis is an efficient algorithm for the SNR estimation in
wireless OFDM systems. The proposed estimator is based on second-order moments of
preamble samples received in the frequency domain. Furthermore, the thesis contains
the study of the rate adaptive resource allocation algorithms in a synchronization mis-
match scenario with the proposed SNR estimator. This discussion provides information
about performance degradation of a real implementable transceiver with respect to an
ideal transmission system with perfectly estimated parameters. The main practical con-
tribution of the thesis is the design and implementation of an SDR-based reconfigurable
framework for testing the capacity-achieving adaptive OFDM transmission in a real RF
environment. The implemented framework contains a large set of reconfigurable param-
eters, which are normally static in real systems. Moreover, high flexibility of the setup
enables the implementation and assessment of different signal processing and resource
allocation algorithms for various classes of system requirements.

This thesis is organized as follows. After a short overview of wireless channels and
basic foundations of general multicarrier and OFDM transmission technology, Chapter 2
introduces the discrete-time OFDM system model, defining the SNR as a measure of signal
quality. Furthermore, the performance degradation in the presence of synchronization
errors is characterized with the SNR loss.

In Chapter 3, the basic concepts of optimization for multicarrier systems are given.
Water-filling is introduced as an optimal solution for infinite granulation of transmitted
information, thus presenting theoretical limit for the achievable rate. Furthermore, the
concept of rate-power function is presented as the link between performance requirements
and subchannel conditions expressed through the SNR per subcarrier. Since realizable
systems can support only a finite granulation of transmitted bits, several optimal and
suboptimal algorithms for resource allocation are introduced while their performance is
compared with the water-filling solution.

The preamble-based method for SNR estimation in OFDM systems is introduced in
Chapter 4. The proposed method, named PS estimator, utilizes the time-periodic pream-
ble structure of the synchronization preamble. In the frequency domain, this structure
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contains non-used (nulled) subcarriers to estimate the average noise power. Combined
with the average signal plus noise power estimation obtained on the used (loaded) sub-
carriers, the average noise power estimate is utilized for the average SNR estimation.
Moreover, the statistical properties of the PS estimator are given in order to provide an
analytical model for the analysis of performance degradation by certain resource allo-
cation algorithms. Furthermore, an improved version of the PS estimator, named IPS,
is proposed. The IPS estimator adaptively selects the most significant channel impulse
response (CIR) paths. As a result, its performance in a low SNR region is significantly
improved over the PS estimator.

Initially proposed for single input single output (SISO) antenna systems, the PS esti-
mator is further extended to a multiple input multiple output (MIMO) antenna scenario
in Chapter 5. Furthermore, a preamble-based method for joint frequency synchronization
and spectrum characterization in OFDM cognitive radio systems is introduced in Chap-
ter 6. In particular, the synchronization preamble is properly adjusted to an interference
scenario such that the proposed method enables frequency synchronization and detection
of interference within the considered band. Finally, the method provides the SNR and
interference power estimates as reliable quantitative indicators of spectrum occupancy.

In Chapter 7, resource allocation algorithms in a synchronization mismatch scenario
are studied. The influence of the variance of synchronization algorithms and the SNR
estimation onto system performance degradation is further discussed. Hardware impair-
ments are simulated and an appropriate model is proposed by including estimation noise
into the rate-power function.

The applicability of adaptive OFDM transmission in a real RF link is examined through
the experiments using a reconfigurable testbed. In Chapter 8, as the main practical
contribution of this thesis, an SDR-based real-time reconfigurable framework for adaptive
OFDM transmission, named TIGR (TI GNU Radio), is introduced. The implementation
comprises a complete reconfigurable physical layer transceiver. This framework enables
adaptivity of individual subcarriers such that practical evaluation of resource allocation
algorithms can be performed. The transceiver performance is characterized and analyzed
through the concept of SNR loss and corresponding rate-power function. Furthermore,
the performance evaluation of the resource allocation algorithms in real RF conditions
using the TIGR framework is presented. The results are compared with the simulation
results obtained in Chapter 7, showing the applicability of hardware imperfections models
and robustness of the proposed SNR estimator to the design of efficient resource allocation
algorithms.

Finally, we conclude with a summary of our work and a brief outlook in Chapter 9.
Most of the contributions in this thesis have already been published in [9, 10, 11, 12,

13, 14, 15, 16, 17]. Related material was published in [18, 19, 20, 21, 22, 23, 24]. Further
publications based on this work are in preparation.





2. OFDM Basics

2.1. Wireless Channel Propagation

Many advantages of wireless communication systems such as mobility, high scalability,
easy access and installation, can be limited by the nature of radio communication channel.
Transmitted signals are typically reflected, diffracted, and scattered from the surrounding
objects arriving at the receiver along multiple paths, each with different delay, amplitude,
and phase, as illustrated in Figure 2.1. Additionally, each multiple path undergoes time
variations due to mutual movements between transmitter, receiver, and/or surrounding
objects that contribute to the varying conditions of the wireless channel. This effect is
known as multipath propagation, or multipath fading, because the received signal presents
a constructive or destructive superposition of a possibly large number of time-variant,
attenuated, delayed, and phase-shifted copies of the transmitted signal.

A common model to describe the time-varying multipath wireless channel uses the
channel impulse response, denoted by h(τ, t). The channel impulse response represents a
time-limited pulse train that corresponds to a response of the channel at time t to a Dirac
delta function applied at time t− τ . It can be written as [25]

h(τ, t) =
L−1∑
l=0

αl(t)ejθl(t)δ(τ − τl(t)), (2.1)

where δ(τ − τl(t)) denotes the Dirac delta function defined to be zero everywhere except
at τ = τl(t), where it equals ∞ with

∫∞
−∞ δ(τ)dτ = 1. Here, L presents the total number

of received signal paths. The functions αl(t), θl(t), and τl(t) denote the time-variant
attenuation, phase shift, and time delay, respectively, associated with the lth path.

Moreover, the time-varying multipath channel is characterized in the frequency domain
by the channel frequency response, denoted as H(f, t), which represents the Fourier trans-
form of the channel impulse response, h(τ, t), with respect to τ , at time instant t, thus
giving

H(f, t) =
∫ ∞

−∞
h(τ, t)e−j2πfτdτ

=
L−1∑
l=0

αl(t)ejθl(t)e−j2πfτl(t).
(2.2)

2.1.1. Time-Invariant Frequency-Selective Channels

In fixed wireless communications environments, characterized by the absence of mutual
movements among transmitter, receiver, and surrounding objects during certain trans-
mission period, the multipath channel can be considered as time-invariant and classified

5
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Tx Rx
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Figure 2.1.: The basic principle of multipath propagation.

as a slow-fading channel. As a result, the channel impulse response in (2.1) and chan-
nel frequency response in (2.2) can be denoted as h(τ) � h(τ, t) and H(f) � H(f, t),
respectively.

The time distribution of the average received signal power associated with a given
multipath delay in time-invariant frequency-selective channels is characterized by the
power delay profile, or multipath intensity profile, denoted as P (τ), and defined as

PD(τ) ≡ E{|h(τ)|2} =
L−1∑
l=0

Ω(l)δ(τ − τl). (2.3)

Here, Ω(l) = E{|h(l, t)|2} is the statistical expectation of the received power associated
with the lth multipath component. In many practical applications, due to normaliza-
tion purposes, the sum of individual average multipath powers is normalized to 1, i.e.,∑L−1
l=0 Ω(l) = 1. A tabular representation of the power delay profile of extended ITU

channel models [26], adopted for large bandwidth transmission scenarios in LTE, is given
in Appendix A. The amount of signal dispersion transmitted over a multipath channel
is usually characterized by the root mean square (RMS) delay spread, denoted as τRMS,
and defined as [27]

τRMS =
√
τ̄ 2 − (τ̄)2, (2.4)

where

τ̄ =
∑L−1
l=0 τlΩl∑L−1
l=0 Ωl

=
L−1∑
l=0

τlΩl (2.5)

is the mean excess delay, and

τ̄ 2 =
∑L−1
l=0 τ

2
l Ωl∑L−1

l=0 Ωl

=
L−1∑
l=0

τ 2
l (l)Ωl. (2.6)

The channel impulse response and channel frequency response determine the behavior
of the slowly-fading frequency-selective channel for the given transmitted signal. On the
other hand, τRMS provides a rough indication of the maximum data rate that can be re-
liably transported over the channel, when no additional processing, such as equalization,
is performed. Figures 2.2 and 2.3 show the power delay profile and channel frequency
response, respectively, of the Extended Pedestrian A (EPA) channel model whose param-
eters are given in Table A.1.
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Figure 2.2.: Power delay profile of the EPA channel given in Table A.1.

The variations of H(f) with respect to f is characterized by the channel coherence
bandwidth Bc, which can be also considered as the frequency-domain dual of the τRMS.
Therefore, Bc gives a rough measure for the range of frequencies over which the channel
frequency response is correlated. For two frequencies, f1 and f2, it holds [27]

|f1 − f2| ≤ Bc ⇒ H(f1, t) ≈ H(f2, t)
|f1 − f2| > Bc ⇒ H(f1, t) and H(f2, t) are uncorrelated.

The exact expression for the Bc depends inversely on the τRMS and on a constant K
that determines the level of correlation. That is

Bc =
1

KτRMS

, (2.7)

where K ranges from 5 to 50 for the bandwidths over which channel correlation exceeds
from 0.5 to 0.9 [28].

Therefore, wireless communication channels can be classified as flat fading and
frequency-selective fading according to the relation between the Bc and the signal band-
width B. Flat fading refers to the case when the signal bandwidth B is much smaller
than Bc, i.e., B << Bc, thus, resulting in highly correlated fading across the entire signal
bandwidth. On the other hand, the frequency-selective fading corresponds to the scenario
when the signal bandwidth B is larger than the Bc, i.e., B > Bc. This results in a large
variation of the frequency components separated by more than the coherence bandwidth
Bc, thus introducing performance degradation to the signal detector.
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Figure 2.3.: Frequency response of the EPA channel given in Table A.1.

Since in linearly modulated systems the signal bandwidth B is inversely proportional to
the symbol time Ts, i.e., Ts = 1/B, the frequency-flat and frequency-selective fading can
be also classified according to the relation between the Ts and the τRMS. Having (2.7),
it yields that Ts >> τRMS corresponds to frequency-flat channels, while Ts < τRMS

characterizes frequency-selective channels. For the EPA channel, given in Table A.1, with
the power delay profile shown in Figure 2.2, it can be found that τRMS = 41.65 ns, while
Bc = 480.23 kHz for K = 50. The corresponding scenarios for signals that undergoes flat
and selective fading are shown in Figure 2.3.

2.1.2. Time-Invariant Flat Fading Channels

For frequency-flat channels, the path delays are much smaller than the symbol duration,
i.e., τl ≈ 0. The channel impulse response in (2.1) and channel frequency response in (2.2)
can be written as

h(τ) ≈ α̃δ(τ) (2.8)

and
H(f) ≈ α̃, (2.9)

respectively, where

α̃ = αejθ =
L−1∑
l=0

αle
jθl . (2.10)

As it can be seen from (2.9) and (2.10), the magnitude of the channel frequency response
|H(f)| is constant over the whole signal bandwidth, while the value of α̃ presents the
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sum of L statistically independent multipath elements. Thus, according to the central
limit theorem [27], the real and the imaginary component of α̃ can be considered as two
statistically independent Gaussian random variables with the same variance σ2 and mean
values μR and μI , respectively.

For some types of wireless environments, such as isotropic scattering, there is an ab-
sence of a direct or line-of-sight (LOS) path between the transmitter and receiver, thus
giving μR = μI = 0. In this case, the magnitude α has a Rayleigh distribution with the
probability density distribution (pdf)

fα(α) =
2α
Ωα

exp
(

− α2

Ωα

)
, α ≥ 0, (2.11)

where Ωα = 2σ2 = ∑L−1
l=0 |αl|2 is the total average multipath channel power. Total power

of frequency-flat channel, α2 = |α̃|2, has the Exponential distribution, given by

fα2(x) =
1

Ωα

exp
(

− x

Ωα

)
, α ≥ 0. (2.12)

However, in some applications, such as satellite or mobile radio systems, the strong LOS
path is present jointly with scattered paths. In this case, the amplitude α follows a Rice
distribution with the pdf given by

fα(α) =
2α(K + 1)

Ωα

exp −
(
K +

(K + 1)α2

Ωα

)
I0

⎛⎝2α
√
K(K + 1)

Ωα

⎞⎠ , α ≥ 0, (2.13)

where μ2
R + μ2

I = α0 is the average power of the LOS component, 2σ2 = ∑L−1
l=1 |αl|2 is the

average power of the scattered components, and Ωα = 2σ2 + μ2
R + μ2

I is the total average
power of the LOS multipath channel. Moreover, K = (μ2

R+μ2
I)/(2σ2) is the Ricean factor,

which defines the ratio between the power of the LOS and scattered component, while
I0(u) presents the modified Bessel function of the first kind of the order 0 [29], defined as

I0(u) =
1

2π

∫ 2π

0
eu cos θdθ. (2.14)

The corresponding total power of the LOS multipath channel, α2 = |α̃|2 = 2, follows a
Noncentral Chi-square distribution with two degrees of freedom, given by

fα2(x) =
(K + 1)

Ωα

exp −
(
K +

(K + 1)x
Ωα

)
I0

⎛⎝2
√
K(K + 1)x

Ωα

⎞⎠ , α ≥ 0. (2.15)

2.1.3. Time-Variant Fading Channels

Without the loss of generality, the time-variant fading channel introduces the time-variant
component into the flat channel model in (2.8). This is extended to the frequency-selective
multipath channel, given by

h(τ, t) ≈ α̃(t)δ(τ), (2.16)
where

α̃(t) = α(t)ejθ(t) =
L−1∑
l=0

αl(t)ejθl(t) (2.17)



10 Chapter 2. OFDM Basics

is defined. The corresponding channel frequency response H(f, t) becomes

H(f, t) ≈ α̃(t), (2.18)

where time-variant phase shift θl(t) is given by

θl(t) = 2πfD,lt+ ϕl. (2.19)

Here, ϕl is an arbitrary random phase uniformly distributed on the interval [−π, π]
while fD,l presents a frequency domain dispersion of the lth path caused by the Doppler
effect. Moreover,

fD,l = fD cos (ψl) (2.20)

is also known as the Doppler frequency at the lth propagation path associated with the
angle of arrival ψl. The maximum Doppler frequency fD occurs for the angle of arrival
equal to zero, i.e., ψl = 0, and is given by

fD = fc
ν

c
, (2.21)

which depends on the velocity ν of the terminal station, the speed of light c, and the
carrier frequency fc.

As shown in (2.17) and (2.18), the time-varying channel can be considered as a su-
perposition of many distinct scatterers, each with an unpredictable frequency shift due
to random nature of the angle ψl. This effect induces a spectral broadening of the re-
ceived spectrum, known as Doppler spread, and physically presents frequency interval
[fc−fD, fc+fD], known as Doppler spectrum. Jakes [30] proposed a statistical character-
ization of time-varying channel as a superposition of zero-mean Gaussian processes α̃(t)
with power σ2 and autocorrelation function

R(Δt) = σ2J0(1πfDΔt), (2.22)

where J0(u) is the Bessel function of the first kind of the order 0. In this case, α(t) follows
a Rayleigh distribution, while the corresponding Doppler spectrum, defined as the Fourier
transform of 2R(Δt), is given by

SD(f) =

⎧⎨⎩
2σ2

π
√
f2

d
−f2 , |f | ≤ fD

0, otherwise.
. (2.23)

Similar to frequency-selective channels, for which coherence bandwidth Bc characterizes
the channel variations with respect to the frequency, coherence time Tc characterizes
the time variation of the channel. It presents a time interval during which the channel
impulse response and channel frequency response are highly correlated or R(Δt) stays
above a certain threshold. For a correlation threshold of 0.5, Tc is approximated as

Tc =
9

16πfD
. (2.24)

Consequently, depending on the relation between symbol time Ts and coherence time
Tc, the channel is classified as slow and fast fading. The slow fading refers to case when
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Figure 2.4.: (a) Conventional non-overlapping multicarrier modulation; (b) OFDM mod-
ulation.

Ts << Tc, for which the channel impulse response remains unchanged during the symbol
time. On the other hand, if Ts > Tc, the signal undergoes fast fading with varying channel
during symbol time. The real wireless communication systems, such as mobile cellular
networks, however, may be affected by both frequency-selective and time-variant fading,
known as double-selective fading.

Furthermore, the increased need for higher data rates requires short symbol duration.
For linearly modulated systems this leads to increased bandwidth, often larger than co-
herence bandwidth, i.e., B > Bc. The resulting frequency-selective fading introduces
inter-symbol interference (ISI) that affects the system performance. In conventional single-
carrier systems, a standard method to combat frequency-selective fading uses a properly
designed complex linear filter, called channel equalizer, which, ideally, has a frequency
response that is the exact inverse of the channel frequency response H(f). The number
of channel paths defines the number of equalizer taps, which can be very large for highly
selective channels. Moreover, in the presence of deep fades, equalizer introduces noise
enhancement.

One effective method to combat frequency-selective channel, avoiding complex equaliz-
ers, is to parallelize data transmission by transferring data chunks at a lower rate. Each of
those chunks, thus, occupies smaller bandwidth, known as subchannel, that are narrower
than the coherence bandwidth Bc. Early parallel transmission systems [31] consist of
non-overlaping subchannels that share the whole frequency band as shown in Figure 2.4a,
where independent data is frequency multiplexed. The potential interference among ad-
jacent subchannels, also known as inter-channel interference (ICI), is eliminated by the
guard bands introduced between non-overlaping bands. To overcome the problem of wast-
ing the spectrum, the concept of Orthogonal frequency division multiplexing (OFDM) is
proposed in [32] by involving overlapped subchannels, realized by the Discrete Fourier
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Ĉi(N − 1), Ĉi+1(0), . . .
��� �����	
��

�
�	�����

��
��
��

Ts

Ci(N − 1) ci(N − 1)

Ci(0) ci(0)

����

. . . , Ci−1(N − 1), Ci(0), . . . ,

Ci(N − 1), Ci+1(0), . . .
������
�

��
��
����������\���	��\

���	��\

�������� ���	��

�������� ���	��

ci(k)

ri(k)

��������\

Tt = Tsym + Tg

cRF (t)

rRF (t)

Tsym = NTs

Figure 2.5.: Block diagram of a typical OFDM system.

Transform (DFT) and a cyclic prefix. In such a way, bandwidth is saved, as shown in
Figure 2.4b.

Due to its robustness to multipath propagation at high data rates, OFDM has been
successfully used as the PHY layer technology in numerous wireless standards, such as Eu-
ropean terrestrial digital audio and video broadcasting (DAB and DVB-T), IEEE 802.11
series of standards for wireless local area network (WLAN), and IEEE 802.16 series of
standards (WiMAX) for wireless metropolitan area network (WMAN). Moreover, OFDM
is incorporated in the Long Term Evolution (LTE) standard for 4G cellular mobile net-
works, as well as in the recently ratified cognitive radio based IEEE 802.22 standard for
wireless regional area networks (WRAN). The basic principles of OFDM are given in the
following section.

2.2. OFDM Technology

OFDM is a multicarrier modulation scheme that is widely adopted in many recently
standardized broadband communication systems due to its ability to cope with frequency-
selective fading [25]. The block diagram of a typical OFDM system is shown in Figure 2.5.
The main idea behind OFDM is to divide a high-rate encoded data stream, with symbol
time Ts and bandwidth B, into N parallel substreams, each with symbol time Tsym = NTs
and bandwidth Δf = 1/Tsym = 1/(NTs), which are modulated onto N orthogonal car-
riers, fn = n/Tsym = 1/(NTs), also referred as subcarriers. This operation is easily
implemented in the discrete-time domain through an N -point Inverse Discrete Fourier
Transform (IDFT) unit. It provides orthogonality among subchannels under ideal propa-
gating conditions. The number of subchannels is chosen to ensure that each of them has a
bandwidth less than the coherence bandwidth of the channel, thus undergoing relatively
flat fading. OFDM systems accomplish the data transmission in a symbolwise fashion,
for which each OFDM symbol conveys N complex data symbols. At the receiver, the
information is recovered by performing a DFT on the received block of signal samples.

Due to the time-limited nature of each symbol, i.e., due to the finite duration Tsym
of all subcarriers, the spectrum of the OFDM signal can be considered as the sum of
the frequency shifted sinc functions in the frequency domain. The subcarriers are spaced
directly proportional to the symbol rate Tsym, such that the peak of each subcarrier



2.2. OFDM Technology 13

−6 −4 −2 0 2 4 6

0

0.5

1

f/Tsym

A
m

pl
itu

de
C

(f
)

(a) The amplitude of the OFDM signal (linear scale).

(b) Power spectrum of the OFDM signal [dB].

−6 −4 −2 0 2 4 6
−30

−20

−10

0

f/Tsym

Po
w

er
|C

(f
)|2

[d
B

]

Figure 2.6.: Spectral characteristic of OFDM signal with five subcarriers.

coincides with the nulls of other subcarriers, thus avoiding the mutual interference, as
illustrated in Figure 2.6.

Moreover, OFDM signal may incur out-of-band radiation, which causes non-negligible
adjacent-channel interference (ACI). Figure 2.6b shows that the first sidelobe is not so
small as compared to the main lobe in the spectra. Therefore, OFDM scheme places a
guard band at outer subcarriers, called virtual carriers (VC), to prevent transmitted power
from leaking into neighboring channels. In such a way, the spectrum shaping requirements
at the transmitter are simplified, although, at the cost of decreased spectral efficiency. The
virtual carriers are also used because of the non-ideal characteristics of low-pass filters
required for the analog-to-digital (ADC) and digital-to-analog (DAC) conversion of the
baseband signals, thus suppressing the use of all N subcarriers, if an N -point IDFT is
applied for modulation. The subcarriers close to the Nyquist frequency fs/2 = 1/(2Ts) are
attenuated by these filters and, thus, cannot be used for data transmission. The direct
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current (DC) subcarrier is usually avoided for transmission, because DC offsets at the
ADC and DAC may introduce heavy distortion by carrier feedthrough. A more detailed
discussion on the implementation issues is given in Chapter 7.

Furthermore, due to the time dispersion associated with the frequency-selective channel,
adjacent OFDM symbols may partially overlap in the time domain. This effect introduces
ISI that limits the system performance, as shown in Figure 2.7a. The common approach
to mitigate the ISI is to introduce a guard interval (GI) among adjacent symbols, as shown
in Figure 2.7b,c. By extending the total symbol duration to Nt = N + Ng samples, the
length of the guard interval is made to be longer than the delay spread of the wireless
channel. It also contains an additionally reserved part for synchronization margins, due
to timing estimation issues and sampling frequency offsets between the transmitter and
receiver. As a result, the maximum delay spread and hardware specification requirements
must be considered during the design of an OFDM system. One way to realize GI is a
zero padding (ZP) transmission where a null waveform is sent during GI, as shown in
Figure 2.7b.
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This approach, however, introduces inter-carrier interference (ICI), because the super-
position of multiple copies of the transmitted signal destroys the orthogonality among
subcarriers. Therefore, in practice, the guard interval is obtained by replicating the last
Ng samples of each IDFT output from back to the front, thus forming the cyclic prefix
(CP). As illustrated in Figure 2.7, the CP is appended to the front of the corresponding
IDFT output. As guard interval carries no information and actually reduces bandwidth
efficiency, the ratio of the GI length to the effective OFDM symbol is usually kept below
one quarter. Nevertheless, it is shown that the redundancy and cyclic correlation fea-
tures introduced by CP can be efficiently exploited for the synchronization [33] and signal
identification [34] purposes.

As shown in Figure 2.5, after prepending the CP, an OFDM symbol, consisting of Nt

complex (in-phase/quadrature) samples, is feed to the DAC and then filtered to remove
baseband replicas. Finally, the analog signal is upconverted to be transmitted over an
radio frequency (RF) carrier. The reverse steps are performed by the receiver. Therefore,
after the downconversion, filtering, and ADC, the CP is removed from the received com-
plex symbols by discarding the first Ng samples of the considered symbol. The remaining
N samples are fed to a DFT and the corresponding output is subsequently passed to
the channel equalizer. Assuming that the synchronization has already been established
and that the CP is sufficiently long to eliminate the ISI, only a one-tap complex-valued
multiplier is required to compensate for the channel distortion over each subcarrier. The
equalization is further described in Subsection 2.6. However, to better understand this
fundamental property and related implementation issues of an OFDM system, in the
following section we introduce the mathematical model of the OFDM communication
scheme, depicted in Figure 2.5.

2.3. Discrete-Time OFDM System Model

Because OFDM is a block-based communication model, a serial data stream is converted
into parallel blocks of size N1 while the IDFT is applied to obtain the time domain
OFDM symbols. Complex data symbols within the ith OFDM symbol, denoted as Ci(n),
for n = −N

2 , . . . ,
N
2 −1, are taken either from a PSK or from a QAM constellation, having

the average power E{|Ci(n)|2} = σ2
S. The time domain representation of the ith OFDM

symbol after the IDFT and CP insertion is then given by

ci(t) =

⎧⎪⎨⎪⎩
1√
N

∑N
2 −1
n=− N

2
Ci(n)ej2πfnt, −Tg ≤ t ≤ Tsym

0, otherwise
. (2.25)

As described earlier, due to the digital implementation of an OFDM system, having
Ts as a sampling interval, and k as a time sampling index, the sampled version of the
continuous-time t can be written as t = kTs. The subcarrier frequency fn becomes

1Usually, N takes a value of a power of two, which allows for the efficient implementation of the (I)FFT,
having complexity of O(N log2 N) [35].
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fn = nΔf = n/(NTs), thus giving the discrete-time model of the transmitted OFDM
signal

ci(k) � ci(kTs) =

⎧⎪⎨⎪⎩
1√
N

∑N
2 −1
n=− N

2
Ci(n)ej2πkn/N , −Ng ≤ k ≤ N − 1

0, otherwise
. (2.26)

By concatenating OFDM symbols in the time domain, the transmitted signal becomes

c(k) =
∑
i

ci(k − iNt). (2.27)

As mentioned in Section 2.1, the multipath propagation in wireless channels introduces
time dispersion of the transmitted signal. To model this effects, we assume that the
channel is quasi-static during the transmission of the ith OFDM symbol. The discrete-
time model for the channel impulse response at the time instant k, sampled at the rate
Ts, can be written as

h(k) =
L−1∑
l=0

αle
jθlδ(k − l). (2.28)

We further assume that the channel is sample-spaced, i.e., the channel impulse
response paths are integer multiples of the system sampling rate Ts, thus giving
h(l) � h(lTs) = h(τl), for l = 0, . . . , L − 1. The received signal y(k) presents
the linear convolution of the channel impulse response h(k) and the transmitted signal
c(k), given by

y(k) = h(k) ∗ c(k) = c(k) ∗ h(k) =
L−1∑
l=0

h(l)c(k − l). (2.29)

A CP consisting of Ng ≥ L samples is appended to each OFDM symbol to remove the ISI
between two successive OFDM symbols. Because this operation inserts periodicity into
the transmitted signal, the linear convolution in (2.29) becomes the circular convolution
within the N -point time window, thus yielding

y(k) = h(k) � c(k) = c(k) � h(k) =
L−1∑
l=0

h(l)c(k − l)N , (2.30)

where (k− l)N denotes (k− l) mod N , i.e., c(k− l)N is a periodic version of c(k− l) with
the period N . Consequently, y(k) becomes periodic with the period N .

Besides the multipath effect, additive noise is introduced to the transmitted signal. The
main sources of additive noise are thermal background noise, electrical noise in the receiver
equipment (such as flicker and shot noise), and interference [36]. The total effective noise
at the receiver of an OFDM system can be modeled as additive white Gaussian noise
(AWGN) having a uniform spectral density and zero-mean circularly symmetric complex
Gaussian probability distribution with variance σ2

W , i.e., the time domain noise samples
are given by w(k) ∼ SCN(0, σ2

W ). Therefore, the discrete-time model of the received
OFDM signal can be written as

y(k) =
L−1∑
l=0

h(l)c(k − l)N + w(k). (2.31)
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Multipath propagation and additive noise may significantly corrupt the signal and often
place limitations on the system performance.

At the receiver, the DFT output for the ith OFDM symbol is computed as

Yi(n) =
1√
N

N−1∑
k=0

y(k + iNt)e−j2πkn/N , −N

2
≤ n ≤ N

2
− 1. (2.32)

By substituting (2.31) into (2.32), it yields

Yi(n) =
1√
N

N−1∑
k=0

[
L−1∑
l=0

h(l)ci(k − l)N + wi(k)
]
e−j2πkn/N

=
1
N

N−1∑
k=0

L−1∑
l=0

h(l)
N
2 −1∑

m=− N
2

Ci(m)ej2π(k−l)m/Ne−j2πkn/N +Wi(n)

=
1
N

N
2 −1∑

m=− N
2

[
L−1∑
l=0

h(l)e−j2πlm/N
]
Ci(m)

[
N−1∑
k=0

e−j2πk(m−n)/N
]

+Wi(n)

=
N
2 −1∑

m=− N
2

H(m)Ci(m)δ(m− n) +Wi(n),

(2.33)

where Wi(n) ∼ SCN(0, σ2
W ) is given by

Wi(n) =
1
N

N−1∑
k=0

w(k)e−j2πkn/N , −N

2
≤ n ≤ N

2
− 1, (2.34)

and H(m) presents the complex channel frequency response, defined as the DFT of the
channel impulse response, such that

H(m) =
L−1∑
l=0

h(l)e−j2πlm/N , −N

2
≤ n ≤ N

2
− 1. (2.35)

Because δ(m− n) presents the Kronecker delta, defined as

δ(m− n) =
1
N

N−1∑
k=0

e−j2πk(m−n)/N =

⎧⎨⎩1, m = n

0, m �= n
, (2.36)

the received OFDM symbol in (2.33) becomes

Yi(n) = H(n)Ci(n) +Wi(n). (2.37)

From (2.37), it follows that an ideal (perfectly synchronized) OFDM system can be con-
sidered as a set of parallel Gaussian channels, each with different complex-valued at-
tenuations/amplifications H(n), as shown in Figure 2.8. This is the direct consequence
of the DFT operation, which transforms the circular convolution in time from (2.30)
to the multiplication in the frequency domain, i.e., DFT [c(k) � h(k)] = C(n)H(n), for
n = −N/2, . . . , N/2 − 1.
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Figure 2.8.: An ideal OFDM transmission model considered as a set ofN parallel Gaussian
channels.

In order to recover the transmitted symbols correctly, an appropriate channel estimation
is required. Having different attenuations, each distinct subcarrier is characterized with
its individual signal-to-noise ratio (SNR), further referred as the SNR per subcarrier.
It represents a standard measure of signal quality for communications systems, and is
defined as

ρ(n) =
E{|Ci(n)H(n)|2}

E{|Wi(n)|2}
=

E{|Ci(n)|2}|H(n)|2
E{|Wi(n)|2}

=
σ2
S|H(n)|2
σ2
W

= ρav · |H(n)|2,

(2.38)

where ρav is the average SNR given by

ρav =
E{∑N−1

n=0 |Ci(n)H(n)|2}
E{∑N−1

n=0 |Wi(n)|2}
=

σ2
S

σ2
W

.

(2.39)

as derived in [7]. Here, | · |2 denotes the squared magnitude of the complex data and E{·}
denotes the expectation over the time index i.

2.4. Digital Modulations Used in OFDM Systems

We consider some digital information that is represented by a finite bit sequence. To
transmit this information over a physical analog channel, we need a mapping rule between
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the set of bit sequences and the set of possible signals or constellation points in the complex
plane, as shown in Figure 2.9. Such mapping rule is called a digital modulation scheme.
A linear digital modulation scheme is characterized by the complex baseband signal [37],
given by

C(t) =
∑
i

Cig(t− kT ), (2.40)

where Ci is a given constellation point and g(t) is a pulse shape used for transmission.
Because the mapping is usually performed in the digital domain we further consider
the discrete domain representation of modulated complex symbols. In the following, we
resume some of the coherent modulation schemes, typically used in OFDM systems within
the current standards.

2.4.1. Phase Shift Keying (PSK)

Phase Shift Keying (PSK) modulation or Multiple PSK modulation (M-PSK) modulation,
where M denotes the number of constellation points, puts all signal information into the
phase of the transmitted signal, thus preserving constant envelope property. The M-PSK
complex symbol Ci can be written as

Ci = σS · ej( 2πm
M

+θ0), m = 0, 1, . . . ,M − 1, (2.41)

where σ2
S is the average signal power and θ0 is an arbitrary constant phase. Figure 2.9

shows the constellation diagrams for M = 2, 4, and 8, i.e., Binary Phase Shift Keying
(BPSK), Quadrature Phase Shift Keying (QPSK or 4-PSK), and 8-PSK, for θ0 = 0.

The simplest PSK modulation format is BPSK, for which a logical „1“ is encoded as a
zero phase, while a logical „0“ is coded as a phase of π. The modulated symbol, defined
in (2.41), is given by

Ci = ±σS, (2.42)
having the constellation diagram shown in Figure 2.9a. The M-PSK constellation dia-
grams for 4-PSK constellation (2 bits mapped into 4 = 22 phases) and 8-PSK constellation
(3 bits mapped into 8 = 23 phases), are shown in Figure 2.9b and Figure 2.9c, respectively.
They are optimized to minimize the bit error rate (BER), resulting in the Gray-coded M-
PSK constellation, i.e., the adjacent constellation points differ in one bit as in Figure 2.9.

The BER is defined as the ratio between the number of erroneous bits to the number
of total transmitted bits. It is usually taken as a measure of modulation quality in
the presence of the noise. Due to statistical nature of the additive noise, the BER is
approximated with its expectation, named bit error probability pb. This estimate is
accurate for a long time interval and a high number of bit errors. In this thesis, during
the performance analysis, we denote the bit error probability pb as the BER.

The BER of BPSK modulation in an AWGN channel can be expressed as [38]

BERBPSK = Q
(√

2ρ
)
, (2.43)

where ρ is the average SNR per symbol, defined in (2.39), and Q(x) is given by

Q(x) =
1
2

erfc
(
x√
2

)
, (2.44)
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Figure 2.9.: Gray-coded M-PSK constellation diagrams.

where

erfc(x) =
2√
π

∫ ∞

x
e−y2

dy (2.45)

is the complementary error function (erfc). For higher order M-PSK modulations, where
M > 4, the symbol error rate SER can be expressed as

SERM−PSK = 2Q
(√

2ρ sin
(
π

M

))
. (2.46)

For Gray-coded modulations, the BER in the high SNR regime is given approximately as

BERM−PSK ≈ SERM−PSK
log2 M

.
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(a) 4-QAM constellation diagram (b) 16-QAM constellation diagram

(c) 64-QAM constellation diagram (d) 256-QAM constellation diagram

Figure 2.10.: QAM constellation diagrams.

2.4.2. Quadrature Amplitude Modulation (QAM)

Quadrature Amplitude Modulation (QAM) is a bandwidth efficient signaling scheme that,
unlike M-PSK, is characterized with the non-constant envelope. This property enables
more bits per second (bps) to be transmitted in a given frequency bandwidth [39]. QAM
modulated symbols with M constellation points can be written as

Ci = σS ·K · (Ci,Re + jCi,Im),

where Ci,Re, Ci,Im ∈
{
±1,±3, . . . ,

√
M − 1

}
while K is a scaling factor that normalizes

the average power to σ2
S. Table 2.1 shows the values of K for different QAM constellations.

The corresponding QAM constellation diagrams for 4-QAM (2 bits mapped into 4 = 22

points), 16-QAM (4 bits mapped into 16 = 24 points), 64-QAM (6 bits mapped into
64 = 26 points), and 256-QAM (8 bits mapped into 16 = 28 points), are shown in
Figure 2.10. It can be noticed that 4-QAM corresponds to QPSK with the constant
phase shift θ0 = π/4. The SER of QAM modulation is given by

SERM−QAM = 1 −
(

1 − 2
(

1 − 1√
M

)
Q

(√
3
Eb log2 M

(M − 1)N0

))2

,
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Table 2.1.: Modulation dependent parameters.

Modulation Number of bits m K

4-QAM 2 1/
√

2

16-QAM 4 1/
√

10

64-QAM 6 1/
√

42

256-QAM 8 1/
√

170

where Q(x) is defined in (2.44). For Gray-coded QAM constellations, the BER in the
high SNR regime is, similar to M-PSK, given approximately by

BERM−QAM ≈ SERM−QAM
log2 M

. (2.47)

QAM modulation schemes, such as 4-QAM (QPSK), 16-QAM, and 64-QAM, are used in
current digital wireless communications standards, such as Wireless Local Area Network
(WLAN), Worldwide Interoperability for Microwave Access (WiMAX), and Long Term
Evolution (LTE) [40].

2.5. OFDM System Impairments

As previously mentioned, OFDM transmission is based on the orthogonality among sub-
carriers. This allows for parallel transmission that mitigates the ISI distortion caused by
the multipath fading channel. However, due to hardware imperfections and multipath
channel effects, required orthogonality can not be warranted. This introduces the ISI and
ICI that result in a large performance degradation. Therefore, synchronization inevitably
plays an important role in the design of OFDM systems. The basic task of synchroniza-
tion is to recover some reference parameters from the received signal that are further
required for reliable data detection. The basic impairments that affect the orthogonality
of subcarriers in an OFDM system can be classified in the following way [25]:

• symbol timing offset (STO): In order to correctly perform the N -point DFT at the
receiver, the exact samples of the transmitted signal during the OFDM symbol du-
ration must be ”caught“ inside the DFT window. However, as shown in Figure 2.14,
the starting point of the DFT window may be estimated correctly, a little earlier, too
early, or a little later than the exact timing instance. The goal of timing estimation
is to identify the starting point of each received OFDM symbol to find the correct
position of the DFT window. It is also used to locate the start of the frame (a
sequence of OFDM symbols) in the burst-mode transmissions. This refers to frame
synchronization. STO causes a linear phase rotation of the subcarriers, which can
be easily corrected during channel estimation. The timing synchronization errors
should be kept small compared to the GI, with respect to the available margin, as
described in Subsection 2.5.1.
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Figure 2.11.: Block diagram of a basic OFDM receiver.

• carrier frequency offset (CFO): There are two main sources that cause this phe-
nomenon: the frequency error between the local oscillators at the transmitter and
receiver; and common Doppler shift due to movement of the transmitter and re-
ceiver, as discussed in Section 2.1. As shown in Figure 2.12, CFO causes attenuation
and phase shift of the particular subcarrier while introducing the ICI. In standard
communication systems, such as IEEE 802.11 WLAN, the oscillator precision toler-
ance is specified to be less than ±20. This results into the CFO range of −40ppm
to +40ppm, e.g., at the carrier frequency fc = 5 GHz, the resulting CFO is up to
±200 kHz. This causes 2π phase rotation of the received baseband signal every 5μs,
resulting in the complete loss of information unless appropriate synchronization is
performed. Additionally, the Doppler spread, originated from the movement of the
transmitter and/or receiver, introduces some additional hundreds of hertz, which
is relatively minor to the CFO caused by the mismatch of local oscillators, as dis-
cussed in [41]. The orthogonality of subcarriers is restored by performing frequency
synchronization and compensating for any frequency offset.

• sampling frequency offset (SFO): Similar to CFO, in practical systems, there is a
frequency mismatch between the oscillator used to drive sampling clock of the DAC
at the transmitter and the sampling clock frequency of the ADC at the receiver. As
shown in Figure 2.13, this effect causes the received waveform to be sampled at the
time-varying time instants. This introduces the subcarrier dependent attenuation
and phase shift, as well as the ICI at the output of the receiver Discrete Fourier
Transform (DFT). Moreover, SFO causes a periodic insertion or loss of one sample,
thus introducing additional degradation of the system performance. The sampling
clock synchronization limits those impairments to a tolerable level.

We further introduce the individual and joint effects of each of the abovementioned
system impairments in the discrete-time model. Figure 2.11 depicts the block diagram
of the receiver. In the analog frontend, the incoming waveform rRF (t) is filtered and
down-converted to the baseband using the two quadrature sinusoids generated by a local
oscillator (LO). The baseband signal is then passed to the ADC, where it is sampled with
the frequency f ′

s = 1/T ′
s. Due to the presence of the SFO between the sampling oscillators,

the sampling time at the receiver ADC, T ′
s, is different from the sampling time Ts used

at the transmitter [42], as shown in Figure 2.13. This impairment can be expressed as
T ′
s = Ts(1 + εs), thus defining the normalized SFO εs as

εs =
T ′
s − Ts
Ts

. (2.48)

The received baseband signal, sampled at T ′
s, can be further written as

r(k) � r(kT ′
s) = y(k(1 + εs)Ts). (2.49)
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The presence of Doppler shifts and/or RF oscillator instabilities, additionally causes the
difference between the receiver frequency fLO and the transmitter carrier frequency fc, as
shown in Figure 2.12. The difference fd = fc − fLO is referred to as the CFO, or shorter,
frequency offset. Therefore, the received baseband signal, sampled at T ′

s in the presence
of the CFO, can be expressed as

r(k) = y(k(1 + εs))ejθ(k) + w(k), (2.50)

where phase shift (rotation) influenced by the CFO and SFO is given by

θ(k) = 2πkfdT ′
s. (2.51)

The frequency offset fd normalized to the subcarrier spacing Δf = 1/(NTs) is defined as

εc =
fd
Δf

= NfdTs. (2.52)

By substituting (2.48) and (2.52) in (2.50), the received signal in the presence of hardware
impairments is given by

r(k) = y(k(1 + εs))ej2πkfdT
′
s = y(k(1 + εs))ej2πεc(1+εs)k/N . (2.53)

When the signal reception starts, the beginning of the OFDM symbols is unknown to
the receiver, because the time scales at the transmitter and receiver are misaligned, as
shown in Figure 2.14. Let Δk denote the number of samples by which the receive time
scale is shifted from its ideal setting. The samples from the ADC are thus expressed by

r(k) = ej2πεc(1+εs)k/Ny ((k − Δk)(1 + εs)) + w(k). (2.54)

By replacing (2.27) and (2.31) in (2.54), it becomes

r(k) = ej2πεc(1+εs)k/N∑
i

L−1∑
l=0

h(l)ci ((k − Δk)(1 + εs) − l − iNt)N + w(k). (2.55)
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The individual effects of the abovementioned system impairments to the received signal
in the frequency domain can be derived by taking the DFT of the time domain received
samples (2.55), i.e., the received signal in frequency domain becomes

Ri(n) =
1
N

N−1∑
k=0

r(k + iNt)e−j2πkn/N , −N

2
≤ n ≤ N

2
− 1. (2.56)

The frequency and timing synchronization units shown in Figure 2.11 employ the re-
ceived samples r(k) to compute the estimates of εc and Δk, denoted as ε̂c and Δk̂,
respectively. The former is used to counter-rotate r(k) at an angular speed 2πε̂ck/N (fre-
quency correction) using a numerically controlled oscillator (NCO). On the other hand,
the timing estimate, Δk̂, is exploited to achieve the correct position of the received signal
within the DFT window (timing correction). More specifically, the samples r(k) with the
indices iNt + Δk ≤ k ≤ iNt + Δk+N − 1 are fed to the DFT device. The corresponding
output of the DFT is used to detect the data symbols conveyed by the ith OFDM block.
The specific implementation of the synchronization stages within the TIGR framework is
discussed in Section 8.

2.5.1. Effects of Timing Offset

To assess the performance of the OFDM system in the presence of a small STO, let assume
the absence of SFO and CFO, i.e., εs, εc = 0, respectively. As shown in Figure 2.14, there
are four different cases of the STO: the DFT window position is exact, a little earlier,
too early, or a little later than the DFT window of the received OFDM signal. For the
first case, the estimated starting point of OFDM symbol coincides with the exact timing,
thus preserving the orthogonality among subcarrier frequency components. Therefore,
the OFDM symbol can be perfectly recovered without any type of interference.

The second case refers to the situation when the estimated starting point of the OFDM
symbol is located before the exact point, but after the uncorrupted part of the CP, i.e.,
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Figure 2.14.: Different cases of the DFT window location.

−Ng + L − 1 ≤ Δk ≤ 0. There is no ISI because two adjacent symbols do not overlap.
The effects of STO on the received signal can be derived from (2.56) as

Ri(n) =
1
N

N−1∑
k=0

[
L−1∑
l=0

h(l)ci(k − l − Δk)N + wi(k)
]
e−j2πkn/N

=
1
N

N−1∑
k=0

L−1∑
l=0

h(l)
N
2 −1∑

m=− N
2

Ci(m)ej2π(k−l−Δk)m/Ne−j2πkn/N +Wi(n)

=
1
N

N
2 −1∑

m=− N
2

[
L−1∑
l=0

h(l)e−j2πlm/N
]
Ci(m)

[
N−1∑
k=0

e−j2πk(m−n)/N
]
e−j2πΔkm/N +Wi(n)

=
N
2 −1∑

m=− N
2

H(m)Ci(m)δ(m− n)e−j2πΔkm/N +Wi(n)

= H(n)Ci(n)e−j2πΔkn/N +Wi(n),
(2.57)

where Wi(n) andH(m) are defined in (2.34) and (2.35), respectively, and δ(m−n) presents
the Kronecker delta defined in (2.36).

From (2.57) it can be seen that the orthogonality among subcarriers is preserved and
that the small STO causes only a linear phase offset proportional to Δk and subcarrier
index n. This offset can be compensated by the channel equalizer, which treats STO-
induced phase shifts as a phase rotation caused by the channel effects.

The last two cases refer to the scenario for which the STO is outside the time segment
[−Ng + L − 1, 0], thus causing the ith symbol to introduce interference to the (i − 1)th
or (i + 1)th symbol, depending on whether Δk < −Ng + L − 1 or Δk > 0, respectively.
Additionally, the orthogonality among the subcarriers within the symbol is destroyed
causing the ICI. During the evaluation of the system performance, only the first two
cases are considered because timing synchronization in TIGR utilizes the robust S&C
method [43] based on the sufficiently long CP. This assures the timing point to belong
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to the safe region. The more detailed study on STO-induced system degradation can be
found in [44].

2.5.2. Joint Effect of Frequency and Sampling Offset

Because both the CFO and SFO introduce attenuation, phase shift, and ICI into the
received signal, we jointly consider their influence on the system performance. The pre-
sented discrete-time characterization is based on the model given in [45], where the general
case of MIMO OFDM receiver is considered. Let assume an ideal STO compensation, i.e,
Δk = 0. By substituting (2.55) in (2.56), the received signal at the DFT output is given
by

Ri(n) =
1
N

N−1∑
k=0

[
ej2πεc(1+εs)(k+iNt)/N

L−1∑
l=0

h(l)ci ((k + iNt)(1 + εs) − l − iNt)N + w(k)
]
e−j2πkn/N

=
1
N
ejϕi

N−1∑
k=0

ej2πk(εc(1+εs)−n)/N
L−1∑
l=0

h(l)
N
2 −1∑

m=− N
2

Ci(m)ej2π(k(1+εs)−l+iεsNt)m/N +Wi(n)

=
1
N
ejϕi

N
2 −1∑

m=− N
2

{
L−1∑
l=0

h(l)e−j2πlm/N
}
Ci(m)ej2πimεsNt/N

N−1∑
k=0

ej2πk((m+εc)(1+εs)−n)/N +Wi(n)

=
1
N
ejϕi

N
2 −1∑

m=− N
2

H(m)Ci(m)ej2πimεsNt/N
N−1∑
k=0

ej2πk((m+εc)(1+εs)−n)/N +Wi(n),

(2.58)

where ϕi = 2πiεc(1 + εs)Nt/N is the (symbol) time dependent phase shift, while Wi(n)
and H(m) are zero mean AWGN with the variance σ2

W and channel frequency response,
defined in (2.34) and (2.35), respectively.

Let’s define fN(x) as

fN(x) =
1
N

N−1∑
k=0

e
j2πkx
N

=
sin(πx)

N sin(πx/N)
e

jπ(N−1)x
N .

(2.59)

Then, replacing (2.59) in (2.58), it yields

Ri(n) = ejϕi

N
2 −1∑

m=− N
2

H(m)Ci(m)ej2πimεsNt/NfN((εc +m)(1 + εs) − n) +Wi(n), (2.60)

which can be rewritten as

Ri(n) = ej2πiNtφn/NH(n)Ci(n)fN(φn) + Ii(n, εc, εs) +Wi(n). (2.61)

Here, Ii(n, εc, εs) accounts for the ICI on the nth subcarrier, given by

Ii(n, εc, εs) = ejϕi

N
2 −1∑

m=− N
2 ,m�=n

H(m)Ci(m)ej2πimεsNt/NfN(φm +m− n), (2.62)
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where φm is used to denote the joint contribution of the CFO and SFO on the mth
subcarrier, and is defined as

φm � φm(εc, εs) = εc(1 + εs) +mεs

≈ εc +mεs, −N

2
≤ m ≤ N

2
− 1.

(2.63)

It follows from (2.61) that the joint effect of frequency offset εc and sampling offset
εs influences the received signal on the nth subcarrier twofold. First, the subcarriers are
attenuated by |fN(φn)|2 and the symbol constellation on each subcarrier is phase rotated
by (πφn(2iNt +N − 1)/N). Secondly, (2.62) gives the interference contributed from other
subcarriers (ICI). The subcarrier symbol rotation consists of two components that both
depend on the subcarrier position, given by φn. The first component e

jπ(N−1)φn
N is con-

tained in fn(φn) and is time independent. Therefore, it is the same in all symbols within
the frame for the particular subcarrier, similar to the effect of the STO in (2.57). The
second component e

j2πiNtφn
N depends on the time index i. This effect requires continuous

tracking and compensation of the rotated phase during the time. More on this is given
in Section 7.2.

The discussion about the joint and individual impacts of the CFO εc and SFO εc on
the system performance is given in Chapter 7. Those degradations are quantified through
the concept of SNR loss.

2.6. Equalization

Channel equalization is the process through which a coherent receiver compensates for
any distortion induced by frequency-selective fading. Let us consider the ideal timing and
frequency synchronization throughout this subsection, i.e, εc = 0, εs = 0, and Δk = 0.
The channel is assumed to be static over each OFDM symbol, but can vary from symbol
to symbol. The output of the receiver DFT during the ith symbol can be written as

Yi(n) = Ri(n) = Hi(n)Ci(n) +Wi(n), −N

2
≤ n ≤ N

2
− 1, (2.64)

where Ci(n) is the complex data symbol, while Wi(n) and Hi(m) are defined in (2.34)
and (2.35), respectively. An important feature of OFDM is that channel equalization can
be independently performed over each subcarrier using of a bank of one-tap multipliers.
As shown in Figure 2.15, the nth DFT output Yi(n) is weighted by a complex-valued
coefficient Pi(n) to compensate for the channel-induced attenuation and phase rotation.
The equalized sample Y ′

i (n) = Pi(n)Yi(n) is subsequently passed to the detection unit,
which delivers the final decisions Ĉi(n) on the transmitted data.

Intuitively, the simplest method for the design of the equalizer coefficients is to perform
a pure channel inversion, know as zero forcing (ZF) criterion. The equalizer coefficients
are then given by

Pi(n) =
1

Hi(n)
, (2.65)
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Figure 2.16.: The frame structure.

while the DFT output takes the form

Y ′
i (n) =

Yi(n)
Hi(n)

= Ci(n) +
Wi(n)
Hi(n)

, −N

2
≤ n ≤ N

2
− 1. (2.66)

Observing (2.66), it can be noticed that ZF equalization totally compensates for any
distortion induced by the wireless channel. However, the resulting noise power, given by
σ2
W/|Hi(n)|2, may be excessively large over the subcarriers with low channel gains.
An inherent system requirement for the ZF equalizer is the knowledge of the channel

frequency response Hi(n). Therefore, in many wireless OFDM systems, the sequence of
data symbols is preceded by several reference OFDM symbols (preambles) known to the
receiver, forming the OFDM frame. Figure 2.16 shows a typical frame structure for which
preambles are typically used for synchronization and/or channel estimation. Some of the
fixed wireless standards, such as WLAN, assume that the channel remains static over the
frame duration, i.e., Hi(n) = H(n), for i = 1, . . . , I, where I is the total number of OFDM
symbols within one frame. Consequently, channel estimates obtained from the preambles
can be used to coherently detect the entire data payload.

Assuming that the OFDM frame has one preamble with the index i = p = 1, the output
of the DFT block (2.64) can be written as

Yp(n) = H(n)Cp(n) +Wp(n), −N

2
≤ n ≤ N

2
− 1, (2.67)

where Cp(n) is the complex data symbol known to the receiver. The estimates of the
channel frequency response Ĥ(n) are then obtained as

Ĥ(n) =
Yp(n)
Cp(n)

= H(n) +
Wp(n)
Cp(n)

, −N

2
≤ n ≤ N

2
− 1. (2.68)
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Figure 2.17.: BER performance of an OFDM system in an AWGN channel.

However, in applications characterized by relatively high mobility, such as those provided
by the LTE standard, the channel response undergoes significant variations over one frame.
It must be therefore continuously tracked to maintain the reliable data detection. In this
case, in addition to initial reference blocks, known symbols called pilots are inserted into
the payload section of the frame at some convenient positions. These pilots are scattered
both in time and frequency directions, i.e., they are positioned over different blocks and
different subcarriers, such that they are used as reference values for channel estimation
and tracking.

2.7. Performance of OFDM systems

The performance of an ideal OFDM system in the presence of an AWGN channel is shown
in Figure 2.17. It is shown that simulation results match the analytical curves derived
in Section 2.4. Furthermore, Figure 2.18 shows the performance of an OFDM system
applying the LS channel estimation. For a particular BER, channel estimation introduces
certain SNR loss, i.e., compared to the ideal transceiver, higher SNR is required to achieve
the same BER. Table 2.2 shows the required SNR values and corresponding SNR losses
of considered modulations for target BER = 10−4 and BER = 10−3.

More advanced schemes for channel estimation in OFDM system, such as Minimum
Mean Square Error (MMSE) and DFT methods [46, 47, 48], assume the known statistical
properties of the channel and noise variance. They can improve the mean square error
(MSE) performance of the channel estimation up to 15 dB ([49]). However, the reasons
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Table 2.2.: Required SNR, SNR gap, and SNR margin of an OFDM system with the LS
channel estimation in an AWGN channel for BER = 10−3.

Modulation
bits rn

Req. SNR [dB]
BER = 10−3

Req. SNR [dB]
BER = 10−4

ΔSNR [dB] (LS)
BER = 10−3

ΔSNR [dB] (LS)
BER = 10−4

1 6.79 8.4 1.1 1.19
2 9.8 11.44 2.36 2.36
3 14.42 16.1 2.94 3.27
4 16.54 18.24 2.91 3.25
5 19.56 21.26 3.05 3.15
6 22.55 24.32 3.32 3.49
7 25.41 27.19 3.23 3.5
8 28.41 30.22 3.38 3.75

for choosing an LS estimator in the following discussion and implementation within the
TIGR framework are twofold. First, the simplicity and low computational requirement
favor the LS channel estimator compared to other advanced methods, because it is easy
implementable in an SDR testbed, such that additional processing load at the receiver is
avoided. Secondly, the influence of the LS channel estimator on the system performance
can be considered as a ”higher bound“ of how the channel estimation can affect the per-
formance of a particular resource allocation algorithm. The utilization of other advanced
channel estimation methods can bring the performance curve closer to the ”ideal“ curve.
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Figure 2.18.: BER performance of an OFDM system with the LS channel estimation in
an AWGN channel.





3. Resource Allocation Basics

In time-dispersive environments, the performance of standard OFDM systems, which ap-
ply the same modulation over all subcarriers, is characterized by different BER values over
subcarriers. While severely faded subcarriers contribute to the most of the errors, the rest
of the OFDM signal spectrum may experience no bit errors. A significant performance im-
provement of OFDM systems can be achieved by properly adjusting allocated power and
data rate over subcarriers such that the frequency diversity offered by multipath channels
is exploited. This kind of spectrally efficient transmission, named adaptive modulation
or resource allocation1, aims at optimizing the transmission parameters (bandwidth, cod-
ing/data rate, power) to provide power and bandwidth efficiency.
For given Quality of Service (QoS) demands, usually determined by the target BER,
this can be formulated as an optimization problem to be solved by an efficient resource
allocation algorithm. There are basically two approaches of objectives, as stated in [1]:

• Rate adaptive (RA) optimization, which maximizes the overall rate given a fixed
total power,

• Margin adaptive (MA) optimization, for which the total transmitted power is min-
imized maintaining certain service rate demands.

In both cases, a resource allocation algorithm favorizes subcarriers with better quality,
i.e., with the higher SNR. This is achieved by allocating more information bits to them,
whereas severely faded channels are either loaded by low order modulation or even left
idle (nulled) due to the very poor SNR. Subcarrier adaptive modulation is an adaptive
transmission that assigns the most efficient modulation supported by the subchannel at
a given BER.
In the following sections, the basic concepts of adaptive modulation for single-user OFDM
systems are given. The focus is given on a rate adaptive scenario characterized for data
communication. We first introduce an optimal solution, named water-filling [50]. How-
ever, water-filling assumes infinite granularity in constellation size, which is not imple-
mentable in real systems. Therefore, the Levin-Campello (LC) algorithm [3] is recalled
from the literature as an optimal method for discrete bit loading.

The initial work on resource allocation (adaptive modulation) in OFDM systems was
related to digital subscriber line (DSL) systems, a technology that provides broadband
wireline communication over existing public switched telephone network (PSTN) [2, 3].
In wireless channels, the signal dispersion in time is caused by multipath propagation.
In DSL systems, the crosstalk among adjacent copper twisted pairs produces frequency-
selective interference. Because the fading rate in DSL systems is slow, the signaling of

1Likewise the common practice in previous works on this topic, both terms will be used interchangeable
even though resource allocation is a more general term that also comprises the bandwidth adaptive
transmission and scheduling.
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channel states is not an issue and dynamic resource allocation was implementable. How-
ever, in wireless channels, the dynamic adaptation of the estimated SNR per subcarrier
reduces bandwidth efficiency through the increased feedback information. Therefore, we
present two suboptimal methods that reduce the signaling overhead. The first method as-
sumes uniform power allocation across subcarriers, which offers a negligible performance
loss compared to the Levin-Campello algorithm, but reduces the dimensionality of the
optimization problem. Only bit loading is performed, while the allocated power is kept
constant over subcarriers. The second method is subband adaptation for which adjacent
subcarriers are grouped in blocks, named subbands, using the same modulation and power
over all subcarrier in the same subband. The signaling is therefore simplified at the price
of performance loss. These two suboptimal methods can be further combined such that
uniform power allocation is performed over subbands.

In the following sections, rather than focusing on optimizing the computational com-
plexity of abovementioned algorithms, we compare their performance assuming an ideal
transceiver by means of the Monte-Carlo simulation.

3.1. Water-Filling Optimization

The theoretical capacity of multicarrier systems offered by frequency-selective channels
can be achieved by introducing the water-filling principle. In information theory, capacity
is defined as the largest transmission rate at which reliable communication can take place
and represents the maximum mutual information between the transmitted data symbols
and the received signal, where maximization is performed over the probability density
function (pdf) of the transmitted data [51]. However, in practical systems, capacity is
given by the maximum data rate that can be supported by the channel with an arbitrarily
low BER [25]. In the following, we apply these concepts to an OFDM communication
system.

3.1.1. SNR Gap Analysis

To further proceed with resource allocation algorithms, the SNR gap analysis is briefly
presented as a convenient approach for the analysis of real implementable systems.
According to Shannon theory [52], the spectral efficiency, defined as a capacity normalized
by channel bandwidth B, of an AWGN channel is given by

c =
C

B
= log2(1 + ρav)

bits
s · Hz

, (3.1)

where C presents the channel capacity and ρav is the average SNR. In real transmission
systems, however, the achieved spectral efficiency (further referred as data rate2 r) is
always r < c, while achieving a certain BER. Therefore, for any given modulation scheme
(data rate) r and a given target BER, the SNR gap Γr is defined as [36]

Γr =
2c − 1
2r − 1

=
ρav

2r − 1
(3.2)

2The term data rate is interchangeably used with the terms modulation scheme and constellation size,
because we assume that in the uncoded systems the data rate is equal to the number of transmitted
bits per transmission unit.
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and presents the measure of SNR distortion that arises due to the practical implemen-
tation. The physical interpretation for Γr is the amount of additional SNR that an
implementable transmission system requires in order to achieve capacity at the target
BER. Using (3.2), the data rate r of the real system can be written as

r = log2

(
1 +

ρav
Γr

)
. (3.3)

The SNR gap for each modulation can be derived from the BER dependency on the
SNR, or, inversely defined, the SNR dependency requisite for achieving a certain BER.
This dependency, named rate-power function f(r, pe), can be written as

ρav = f (r, BER) . (3.4)

The concept of rate-power function can be explained by observing the BER curves in
Figure 2.18. The interception of the line that corresponds to a constant BER with the
modulation curve on SNR axis presents the required SNR for achieving a particular BER.
The corresponding inverse rate-power function for the system with an ideal receiver, that
uses constellation sizes r = 1, . . . , 8, is shown in Figure 3.13. It can be seen that rate-
power function is actually a step function. The steps are localized at SNR values required
to achieve a particular rate at the given BER. Due to the finite granularity (in this case
equal to one bit), SNR values between two steps do not increase the data rate because
the required BER would be violated.

From the rate-power function, the corresponding SNR gap can be derived as

Γr =
ρav

2r − 1
=
f(r, BER)

2r − 1
. (3.5)

The values of the required SNR and corresponding Γr for considered modulation set at
BER = 10−3 and BER = 10−4 are shown in Table 3.1.

It can be seen from (3.5) that SNR gap presents a function of the target BER and
applied modulation scheme r. However, for the large constellations, the SNR gap can
be assumed to be constant. This allows for applying different rates over subchannels
characterized with the constant gap Γ, which is utilized in water-filling solution.

3.1.2. Water-Filling Optimization in OFDM Systems

The classical analysis of water-filling [1] assumes a constant SNR gap for all constellations,
i.e., Γr = Γ for r = 1, . . . , 8. As discussed in Section 2.3, according to (2.37), an OFDM
transmission system can be considered as a set of N parallel AWGN subchannels for which
the overall data rate r is the sum of individual data rates rn, i.e.,

r =
∑
n

rn, n = 1 . . . , N. (3.6)

3In order to represent the concept of SNR gap and corresponding rate-power function, Figure 3.1 shows
its inverse because it visualizes the “distance” between the capacity of communication system with
finite granularity and theoretically achievable capacity (the solid curve).
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Table 3.1.: Rate-power function, SNR gap, and LS SNR margin in an AWGN channel for
BER = 10−3 and BER = 10−4.

BER = 10−3 BER = 10−4

Modulation
bits r

Required
SNR [dB] Γr [dB] ΔSNRLS

[dB]
Required
SNR [dB] Γr [dB] ΔSNRLS

[dB]
1 6.79 6.79 1.1 8.4 8.4 1.19
2 9.8 5.02 2.36 11.44 6.72 2.36
3 14.42 5.93 2.94 16.1 7.58 3.27
4 16.54 4.75 2.91 18.24 6.5 3.25
5 19.56 4.61 3.05 21.26 6.22 3.15
6 22.55 4.53 3.32 24.32 6.29 3.49
7 25.41 4.36 3.23 27.19 6.14 3.5
8 28.41 4.31 3.39 30.22 6.15 3.75

According to (3.3), the data rate on the nth subchannel is given by

rn = log2

(
1 +

ρ(n)
Γ

)
= log2

(
1 +

P (n)G(n)
Γ

)
, (3.7)

where P (n) is the power allocated to the nth subcarrier and G(n) is the received channel-
to-noise ratio (CNR) of the nth subcarrier, defined as

G(n) =
|H(n)|2
σ2
W

. (3.8)
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Figure 3.1.: Rate-power function for BER = 10−3 and BER = 10−4.
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Given the CNR on the nth subcarrier, G(n), and SNR gap Γ, determined by the BER
requirement, the goal of rate adaptive (RA) resource allocation is to optimally distribute
available power among the subchannels such that the overall data rate r is maximized sub-
ject to a total transmit power constraint Ptot. Therefore, the RA maximization problem
can be stated as

max
P (n)

N∑
n=1

rn (3.9)

subject to
N∑
n=1

P (n) ≤ Ptot. (3.10)

The optimal solution to this problem leads to a non-integer bit allocation. Due to the
strict monotonicity of log(1 + x), the optimum solution can be found with the help of
Lagrange multipliers [53, pp. 215–223] by forming the cost function L(λL), defined as

L(λL) =
∑
n

log2

(
1 +

P (n)G(n)
Γ

)
+ λL

(
Ptot −

N∑
n=1

P (n)
)
. (3.11)

Differentiating (3.11) with respect to P (n) yields

∂

∂P (n)
L(λL) =

1
ln2

G(n)
G(n)P (n) + Γ

− λL, n = 0, . . . , N − 1. (3.12)

The optimal power allocation P ∗(n) is derived by setting (3.12) to zero, i.e.,

∂

∂P (n)
L(λL) = 0,

thus giving

P ∗(n) =
(
K − Γ

G(n)

)+

, (3.13)

where K is the constant chosen such that (3.10) holds with equality, i.e.,

N∑
n=1

P ∗(n) =
N∑
n=1

(
K − Γ

G(n)

)+

= Ptot. (3.14)

The expression (3.14) is the water-filling solution as illustrated in Figure 3.2. The colored
region presents the total power Ptot that is allocated to a multicarrier transmission system
over the subchannels. It resembles the amount of water that fills the “bowl” whose bottom
is determined by the inverse CNR, i.e., by Γ/G(n). The available amount of water Ptot
is filled up to a constant level that is defined by the constant K in (3.13). The form
of water-filling remains the same as long as Γ is constant over all subchannels. It can
be also noticed that some subchannels, characterized with the low SNR, are excluded
from resource allocation if the normalized inverse CNR, denoted as Γ/G(n), exceeds the
constant K. The basic idea is that water-filling takes advantage of frequency selectivity by
allocating more power on better subchannels while either avoiding or putting less power
on the bad subchannels. In this way, the sum of the allocated individual powers P (n)
and normalized inverse CNR, given by Γ/G(n), is constant over all subcarriers (3.13).
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P ∗(n)

Γ/G(n)
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Figure 3.2.: Water-filling power allocation.

Because the rate function being maximized (3.6) is a concave, the water-filling solution
is optimal. Therefore, there is a unique optimum power distribution and a corresponding
rate distribution among the subchannels. Observing (3.14), it can be concluded that
water-filling can not be computed in closed form due to the presence of nonlinear operator
(·)+. This requires an iterative procedure with the complexity O(N). Algorithm 1,
from [1], summarizes the iterative procedure for the RA resource allocation algorithm.

3.2. Discrete Rate Optimization

3.2.1. Loading with Discrete Information Units

The water-filling solution assumes infinite granularity of information units (data rates),
which is given in the Step 11 of the Algorithm 1. However, because implementable OFDM
systems are constrained to integer (or to multiples of finite granularity) bit assignments,
specified for a finite set of allowable PSK or QAM modulations4, the water-filling solution
has to be properly modified. There are two basic approaches to perform discrete rate
loading. The first approach, named Chow’s Algorithm, computes the bit distribution
by rounding the water-filling results. The second approach is based on greedy methods
in mathematics that utilize an iterative procedure of power increment/decrement. The
most known algorithm based on the second approach is the Levin-Campello (LC) algo-
rithm. The basic concept is that the each increment of information unit (additional bit
loading) is performed on the subchannel that requires the least incremental power for the
transmission. Such algorithms are optimal for loading when the information granularity
β is equal for all subchannels, which is usually the case.

4Applying modulations without the coding provides the granularity of 1, i.e., rn ∈ N0. However, an
additional coding technique decreases granularity for the given code rate.
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Algorithm 1 The rate adaptive water-filling algorithm.
Input: The CNR per subchannel G(n) and the total available transmit power Ptot.
Output: The optimal power allocation P (n) and rate allocation rn for all N subchannels.

1: Sort G(n) in a descending order, such that G(1) = max{G(n)} and G(N) =
min{G(n)}.

2: Set the number of used subchannels N∗ = N .
3: G = ∑N

n=1
1

G(n)

4: K = 1
N

(Ptot + ΓG)
5: while P (N∗) = K − Γ

G(N∗) < 0 do
6: G ← G − 1

G(N∗)
7: N∗ ← N∗ − 1
8: K = 1

N∗ (Ptot + ΓG)
9: end while

10: P (n) =

⎧⎨⎩K − Γ
G(n) n = 1, . . . , N∗

0 n = N∗ + 1, . . . , N

11: rn =

⎧⎨⎩log2

(
KG(n)

Γ

)
= log2

(
1 + P (n)G(n)

Γ

)
n = 1, . . . , N∗

0 n = N∗ + 1, . . . , N
12: return P (n), rn

Here, the granularity β of a multicarrier transmission system is defined as the smallest
incremental unit of information that can be transmitted. Therefore, the rate distribution
over N subchannels can be written as

rn = βRn, Rn ∈ N0. (3.15)

For the simplicity of notation, we introduce a bit distribution vector r, which represents
the rate distribution over N subcarriers, and is defined as

r = [r1 r2 . . . rN ]. (3.16)

The required power for transmitting the bit distribution vector r over the channel char-
acterized by the CNR G(n), according to (3.7), is given by

Prn(n) =
Γrn

G(n)
(2rn − 1) , n = 0, . . . , N − 1, (3.17)

where the SNR gap Γrn for the subchannel n is determined by the rate-power function
in (3.5), such as

Γrn =
ρ(n)

2rn − 1
=
f(rn, pe)
2rn − 1

. (3.18)

Because discrete loading algorithms are based on the monotonically increasing relation
between the transmit symbol power and the number of bits transmitted on any sub-
channel, we introduce the concept of incremental power ΔPrn(n), which is defined as
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the amount of additional power required to increase the number of information bits in
subchannel n for the given β. It is defined as

ΔPrn(n) =

⎧⎨⎩Prn(n), rn = β

Prn(n) − Prn−β(n), rn > β
. (3.19)

After replacing (3.17) in (3.19), it yields

ΔPrn(n) =

⎧⎨⎩
Γrn

G(n) , rn = β
Γrn

G(n) (2rn − 1) − Γrn−β

G(n)

(
2rn−β − 1

)
, rn > β

. (3.20)

However, it is likely that there are many different bit distributions that achieve the max-
imum rate, but only one is the optimum in the sense that it requires the minimum total
power. This property, named efficiency, is satisfied for

max
n

ΔPrn(n) ≤ min
m

ΔPrm+β(m), n,m = 1, . . . , N. (3.21)

The efficiency means that there is no available swapping of an information unit from one
subchannel to another that reduces the total power.

3.2.2. Levin-Campello Algorithm (LC)

In practical scenarios, the Levin-Campello algorithm (LC) [3] determines the optimal
power and rate distribution for a transmission system with discrete rate distribution. It
can be summarized in the following steps:

1. Start with the arbitrary bit/rate distribution r.
2. Calculate the efficient bit/rate distribution r∗ using (3.21) ( Algorithm 2 (EF)).
3. The efficient bit/rate distribution r∗ becomes the optimal bit/rate distribution ropt

such that power constraint (3.10) is satisfied (Algorithm 3 (ET)).
4. Power Prn(n) of the nth subchannel is calculated using (3.17).
The Energy Efficientizing (EF) Algorithm 2 produces the efficient bit distribution satis-

fying (3.21), given the input bit distribution. First, the subchannel index m that gives the
minimum incremental power for additional information unit β is determined. Then, the
subchannel index n that gives the maximum incremental power required for the present
bit distribution is determined. The β rate is swapped between the subchannels m and
n such that current bit allocation is efficient as long as the incremental energy function
monotonically increases with the number of information bits, which is always the case
in practical systems. However, an additional property of E-tightness is necessary for the
optimum solution to the discrete RA loading problem.

E-tightness, given in Algorithm 3, implies that no additional unit of information can
be carried without violation of the total power constraint in (3.10), allowing the use of
all total power. When algorithm starts with initial bit distribution, it is not clear if this
distribution requires less or more power than given power constraint. The algorithm runs
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Algorithm 2 Levin-Campello Efficientizing (EF) algorithm.
Input: r, β und ΔPrn(n), for n ∈ {1, ..., N}.
Output: The efficient bit distribution r∗.

1: m ← arg min
1≤i≤N

ΔPri+β(i)

2: n ← arg max
1≤j≤N

ΔPrj
(j)

3: while (ΔPrm+β(m) < ΔPrn(n)) do
4: rm ← rm + β

5: rn ← rn − β

6: m ← arg min
1≤i≤N

ΔPri+β(i)

7: n ← arg max
1≤j≤N

ΔPrj
(j)

8: end while
9: return r∗

Algorithm 3 Levin-Campello E-tightening (ET) algorithm.
Input: The efficient bit distribution r∗, β and ΔPrn(n), for n ∈ {1, ..., N}.
Output: The optimal bit distribution ropt.

1: PSUM = ∑N
n=1 Prn(n)

2: while (Ptot − PSUM ≥ min
1≤i≤N

ΔPri+β(i) or (Ptot − PSUM < 0)) do

3: if (Ptot − PSUM < 0) then
4: n ← arg max

1≤i≤N
ΔPri

(i)

5: Ptot ← Ptot − ΔPrn(n)
6: rn ← rn − β

7: else
8: m ← arg min

1≤i≤N
ΔPri+β(i)

9: Ptot ← Ptot + ΔPrm+β(m)
10: rm ← rm + β

11: end if
12: end while
13: return ropt

while the power constraint is violated or while the loading of additional information unit
β satisfies the power constraint, thus giving the optimal bit distribution in both cases. In
the first case, in each iteration, the bits are dealocated from the subchannel that requires
the highest incremental power, until the power constraint is satisfied. If the power con-
straints are not violated, the information unit β is loaded to the subchannel that requires
the least incremental power. The computational load depends on the achieved data rate r.



42 Chapter 3. Resource Allocation Basics

Algorithm 4 The suboptimal uniform power allocation algorithm.
Input: The SNR per subchannel G(n) and the total available transmit power Ptot.
Output: The optimal power allocation P (n) and rate allocation rn for all N subchannels.

1: Sort G(n) in a descending order, such that G(1) = max{G(n)} and
G(N) = min{G(n)}.

2: Set the number of used subchannels N∗ = N .
3: P (n) = Ptot/N

∗, for n = 1, . . . , N∗

4: r′
n = log2

(
1 + P (n)G(n)

Γrn

)
, for n = 1, . . . , N∗

5: rn = min{rmax, int(r′
n)}, for n = 1, . . . , N∗

6: while rN∗ ≤ 0 do
7: N∗ ← N∗ − 1
8: P (n) = Ptot/N

∗, for n = 1, . . . , N∗

9: r′
n = log2

(
1 + P (n)G(n)

Γrn

)
, for n = 1, . . . , N∗

10: rn = min{rmax, int(r′
n)}, for n = 1, . . . , N∗

11: end while

12: P (n) =

⎧⎨⎩Ptot/N
∗ n = 1, . . . , N∗

0 n = N∗ + 1, . . . , N

13: rn =

⎧⎨⎩rn n = 1, . . . , N∗

0 n = N∗ + 1, . . . , N
14: return P (n), rn

3.2.3. Uniform Power Allocation (UP)

The Levin-Campello algorithm, based on the iterative procedure for the bit load-
ing/removing, allocates more power to subchannels with higher SNR, such that the sum
of data rates in all subchannels is maximized given the total power constraint. In general,
allocated powers are different, while no power is loaded to the subchannel on which the
noise power exceeds a certain threshold determined by the water level. However, due to
the logarithmic dependence on power, the resulting data rate becomes insensitive to the
exact power allocation in the high SNR region. Therefore, several suboptimal schemes
based on uniform power-variable rate allocation are proposed in the literature together
with the theoretical bounds [54, 55]. Additionally, the concept of the uniform power
allocation (UP) simplifies the transceiver design complexity.

The corresponding scheme for which the total available signal power is shared equally
among all non-nulled subchannels [25] is given in Algorithm 4. First, the CNR values are
sorted in descending order while the power is allocated uniformly to all subcarriers, i.e.,
P (n) = Ptot/N

∗, where N∗ is the index of the worst (weakest) subchannel. Using (3.7), the
corresponding discrete rate distribution is calculated in the Step 5, given the maximum
modulation scheme rmax. If rN∗ ≤ 0, the worst subchannel is removed and iterative
procedure continues until this is satisfied, while the total power and rate are reallocated
among the remaining subchannels.
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3.2.4. Subband Resource Allocation (SB, SB-UP)

Previously presented allocation schemes assume power and/or bit allocation per subcar-
rier. However, the complexity of given algorithms increases with the number of subcarri-
ers. In fast varying channels, resource allocation needs to be performed more frequently
such that it introduces additional energy consumption and increased signaling overhead.
To overcome these effects at the cost of reduced data rate, the subchannels can be clus-
tered into blocks, named subbands such that each subband presents one allocation unit.
This approach is used in WiMAX where each subband may either contain adjacent or
distributed subcarriers (more on this is given in Appendix B.2). The Levin-Campelo algo-
rithm and UP allocation may be performed as indicated in Algorithm 2 and Algorithm 4,
respectively, by taking an individual subband as an allocation unit.

We consider the scenario of N subchannels divided into M subbands, each carrying
NSB = N/M adjacent subchannels, where nSB denote the subband index such that
nSB = 1, . . . ,M . The corresponding versions of the LC and UP algorithms for the sub-
band scenario can be derived by replacing the subcarrier index n with nSB (n → nSB)
and the number of subcarriers N with the number of subbands M (N → M) in Al-
gorithm 2, 3 and 4. Accordingly, P (nSB) presents the allocated power at the subband
nSB giving the allocated power at the individual subchannels of the subband as nSB is
P (nSB)/NSB.

Furthermore, the CNR of the subband nSB, denoted as G(nSB), can be derived in
several ways. We consider two ways that differ in the margin level they impose on the BER
requirement. In the conservative way, G(nSB) is determined with the worst subcarrier
from the subband nSB, i.e.,

G(nSB) = min
(nSB−1)·NSB+1≤n≤nSB ·NSB

{G(n)}. (3.22)

The requested BER is never violated because the subband subchannels with the SNR
higher than G(nSB) are allocated with the ”lower“ modulation scheme which results in
reduced data rate. The second way is based on the concept of the geometric CNR, a
reliable single performance measure that characterizes a multicarrier transmission sys-
tem [36]. The CNR of the subband nSB is given by

G(nSB) =

⎛⎝ nSB ·NSB∏
(nSB−1)·NSB+1

G(n)

⎞⎠ 1
NSB

. (3.23)

In this case, the variation of the CNRs within the subband determines performance degra-
dation, depending on the channel selectivity.

3.2.5. Band Resource Allocation (BA)

Band resource allocation (BA) assumes the uniform rate and power allocation over all
subchannels, which are considered as one allocation unit. The modulation scheme is
chosen according to the band CNR. It can be determined either as an minimum CNR
within the band or as geometric CNR, similarly to the subband allocation, with only
difference in the number of considered subcarriers. Providing the simplified signaling and
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scheduling at the cost of decreased performance, BA is currently used in WLAN. More
on this is given in Appendix B.1.

3.3. Simulation Results

In this section, we compare the performance of considered algorithms for the discrete
resource allocation by means of computer simulations. The simulation environment is
compatible with the WiMAX PHY standard specification, given in Appendix B.2. The
system parameters used in the simulation are taken from WiMAX 5 MHz mode hav-
ing the total of N = 512 subcarriers, where Nu = 384 subcarriers are used for data
transmission. Furthermore, the CP length is 64 samples with the sampling frequency of
7.68 MHz (5 MHz bandwidth mode). We evaluate the performance for moderately selec-
tive Extended Vehicular A (EVA) and highly selective Extended Typical Urban (ETU)
channels, given in Appendix A. During the simulation, the required BER is chosen to be
BER= 10−3 and the maximum transmit power is limited to Ptot = 0 dBm, while the noise
power is varied from 0 dBm to −30 dBm. The x-axis denotes the ratio of the average
transmit power Pav = E{P (n)} to average noise power σ2

W , which is referred to as SNR
hereafter.

Figure 3.3 shows the rate performance of discussed RA algorithms in the EVA chan-
nel. The performance of LC algorithm is close to the water-filling while other allocation
strategies exhibit worse performance. To quantify the performance loss of discrete rate
allocation schemes, the decrement of data rate introduced by the given strategy compared
to the water-filling solution is defined as

rWF − r

rWF
× 100%, (3.24)

where rWF is the data rate achieved by the water-filling algorithm, while r is the rate of
the considered allocation.

The rate decrements and achieved BER of the discussed algorithms in the EVA channel
are shown in Figure 3.4 and Figure 3.5, respectively. The LC allocation offers the best
performance while sustaining the required BER. As it is expected, due to the logarithmic
dependence of data rate to the received SNR, the performance loss of the LC algorithm is
higher in the low SNR region and drops to zero at the average SNR of 20 dB. The UP and
SB allocation with minimum SNR selection, denoted as UP-min and SB-min, respectively,
have worse performance compared to the LC algorithm, but with the reduced BER. Other
resource allocation solutions experiences worse performance than the LC algorithm but
with the considerable BER violations.

The performance of discussed solutions in highly selective ETU channel is shown in
Figure 3.6 and Figure 3.7. Furthermore, it is shown that LC and UP performance is robust
against channel selectivity, while other solutions experience decreased performance due to
the subband clustering. In the presence of the additional noise caused by the LS channel
estimation, rate decrement compared to water-filling solution increases while achieved
BER stays the same, as shown in Figure 3.8 and Figure 3.9. While the LC algorithm
for an ideal transceiver approaches the water-filling solution as SNR increases, the rate
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Figure 3.3.: Number of bits per subcarrier vs. SNR for an ideal transceiver in the EVA
channel for BER= 10−3.

decrement of the LC algorithm for an transceiver with the LS channel estimation goes
down to 17% for the average SNR of 30 dB. As discussed in Section 2.6, the influence
of the LS channel estimator on the system performance presents a ”higher bound“ of
how the channel estimation can affect the performance of a particular resource allocation
algorithm. By applying an advanced channel estimation methods, the performance curve
can approach the ”ideal“ curve, thus reducing the gap shown in Figure 3.8.

The analysis presented in this chapter assumes the perfect information about the CNR
or SNR, which is required for calculating the incremental power ΔPrn(n) in 3.20. How-
ever, in practical systems only the estimated SNR values are available. The accuracy of
an SNR estimation method determines the performance of a particular resource alloca-
tion algorithm. In the following chapter, we propose an computationally efficient SNR
estimation algorithm that shows robust performance in frequency-selective channels.
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Figure 3.4.: Rate decrement compared to water-filling vs. SNR of an ideal transceiver in
the EVA channel for BER = 10−3.
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Figure 3.5.: BER vs. SNR of an ideal transceiver in the EVA channel for BER = 10−3.
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Figure 3.6.: Rate decrement compared to water-filling vs. SNR of an ideal transceiver in
the ETU channel for BER = 10−3.
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Figure 3.7.: BER vs. SNR of an ideal transceiver in the ETU channel for BER = 10−3.



48 Chapter 3. Resource Allocation Basics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

20

40

60

80

100

Pav/σ
2
W [dB]

R
at

e
de

cr
em

en
t

to
w

at
er

-fi
lli

ng
[%

]
LC
SB-min
UP-min
LC (LS ch. est.)
SB-min (LS ch. est.)
UP-min (LS ch. est.)

Figure 3.8.: Rate decrement compared to water-filling vs. SNR in the ETU channel for
BER = 10−3.
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4. SNR Estimation in OFDM Systems

An important task in the design of future OFDM system is to exploit frequency-selective
channels. The power and bandwidth efficiency can be preserved by adapting transmis-
sion parameters (bandwidth, coding/data rate, power) to the channel conditions at the
receiver. In order to achieve such improvements, an efficient and exact SNR estimation
algorithm is needed. As defined in (2.39), the SNR presents the ratio of the desired signal
power to the noise power and is widely used as a standard measure of signal quality for
communication systems. SNR estimators derive an estimate by averaging the observable
properties of the received signal over a number of symbols.

There are two general categories of average SNR estimators. Data-aided (DA) es-
timators are based on either perfect or estimated knowledge of the transmitted data.
However, a certain portion of data is needed for estimation purposes, which reduces the
bandwidth efficiency. Blind or in-service estimators derive SNR estimate from an un-
known information-bearing portion of the received signal. They preserve efficiency at the
cost of decreased performance. For packet based communications, a block of information
data is usually preceded by several training symbols (preambles) of known data used for
synchronization and equalization purposes as shown in Figure 2.16. Therefore, DA SNR
estimators can utilize preambles without additional throughput reduction.

Most of the SNR estimators from the literature so far are related to single carrier trans-
mission. In [56], a detailed comparison of various algorithms is presented, together with
the derivation of the Cramer-Rao Bound (CRB). Most of these algorithms can be directly
applied to OFDM systems in AWGN [6], while the SNR estimation in frequency-selective
channels additionally requires efficient estimation of the channel frequency response.

In this chapter, we propose an efficient algorithm for the average SNR estimation in
wireless OFDM systems, named periodic sequence (PS) estimator. Based on second-
order moments of received samples in the frequency domain, the PS estimator utilizes
preamble structure proposed by Morelli and Mengali in [57]. Compared to the preamble
proposed by Schmidl and Cox in [43], this preamble structure allows synchronization over
a wider frequency offset range with only one preamble, hence reducing the training symbol
overhead. The SNR per subcarrier is estimated using the average noise power estimate
and channel estimates obtained by Discrete Fourier Transform (DFT) interpolation, which
is based on the fact that the channel power is concentrated on relatively small number of
time domain samples [46]. Since the proposed estimation algorithm relies on the signal
samples at the output of the DFT, its performance depends strongly on the preamble
structure.

However, we show that PS estimator has bad performance for SNR per subcarrier esti-
mates at low SNR values. This requires some more sophisticated mechanisms for channel
estimation. In [58], the authors propose a method for adaptive selection of significant
channel impulse response (CIR) paths. The rest of CIR paths, whose average power is

49
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below the threshold determined by noise power estimates, are nulled, thus improving the
performance of the channel estimation. Therefore, we further propose a modification of
the PS estimator, which utilizes the method of significant CIR path selection from [58].
Average noise power estimates from the PS estimator are used to determine an appropri-
ate threshold for significant path selection. The modified PS estimator, named improved
PS (IPS) estimator, performs better when estimating the average SNR in low SNR re-
gion. Furthermore, it significantly improves the performance of the SNR per subcarrier
estimation.

The performance evaluation of the proposed SNR estimators is based on the statis-
tical characterization and calculation of the normalized mean square error (NMSE) of
the average SNR and SNR per subcarrier as a function of the received SNR. Moreover,
the performance comparison with existing estimation methods, such as Minimum Mean
Square Error (MMSE) [6], Boumard’s [8], and Ren’s [7, 59] algorithms, indicates the
advantage of the PS and IPS estimators in frequency-selective channels.

Parts of the following results have been presented in [9] and [11].

4.1. SNR Estimators

In the following subsections, several DA SNR estimators for OFDM systems from the
literature are briefly discussed and their performance is further compared to the proposed
PS and IPS estimators. The estimates are calculated based on the preambles used for
synchronization and equalization. We consider general model of frame structure composed
of I preambles where each preamble contains N modulated subcarriers, as shown in
Figure 2.16. Let Ci(n) denote the complex data symbol on the nth subcarrier in the ith
preamble, where i = 0, . . . , I − 1 and n = 0, . . . , N − 1. It is assumed that modulated
subcarriers within the preamble have constant magnitude E{|Ci(n)|} = 1 with equal
allocated power σ2

S. This is a regular assumption because current OFDM standards
usually contain preambles composed of QPSK and/or BPSK modulated subcarriers. At
the receiver, perfect timing and frequency synchronization is assumed, i.e., Δk, εs, εc =
0. Therefore, according to (2.64), at the DFT output, the received signal on the nth
subcarrier in the ith preamble can be expressed as

Yi(n) = Ri(n) = σSCi(n)Hi(n) + σWWi(n), (4.1)

where Wi(n) is sampled complex zero-mean AWGN of unit variance, while σ2
W denotes

the corresponding noise power.

4.1.1. MMSE Estimator

MMSE algorithm [6] for SNR estimation in OFDM system is based on the orthogonality
between the estimation error and the channel frequency response estimate, given by

(Y (n) − Ĥ(n)C(n))(Ĥ(n)C(n))∗ = 0, n = 0, . . . , N − 1,
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where Ĥ(n) denotes the estimate of H(n) and (·)∗ denotes the conjugate value. Here we
assume that the MMSE estimator is based on one preamble and therefore we omit the
time index i. The MMSE average SNR estimate is given by [6]

ρ̂av,MMSE =
σ̂2
S,MMSE

σ̂2
W,MMSE

, (4.2)

where

σ̂2
S,MMSE =

∣∣∣∣∣ 1
N

N−1∑
n=0

Y (n)C(n)∗
∣∣∣∣∣
2

and

σ̂2
W,MMSE =

1
N

N−1∑
n=0

|Y (n)|2 − σ̂2
S,MMSE

are the MMSE estimates of σ2
S and σ2

W , respectively.

4.1.2. Boumard’s Estimator

In [8], Boumard proposed a second-order moment-based SNR estimator for 2 × 2 MIMO
OFDM system in slow varying channel in both time and frequency domain. In [7], Ren
et al. derived its corresponding SISO version keeping the presumption that the channel
is time-invariant and that two identical preambles are used for SNR estimation, i.e.,
i = 0, 1 are the time indexes for two preamble symbols and C0(n) = C1(n) = C(n), for
n = 0, . . . , N − 1. The average SNR estimate can be expressed as

ρ̂av,Bou =
σ̂2
S,Bou

σ̂2
W,Bou

, (4.3)

where

σ̂2
S,Bou =

1
N

N−1∑
n=0

∣∣∣Ĥ(n)
∣∣∣2

and

σ̂2
W,Bou =

1
4(N − 1)

N−1∑
n=1

|C(n− 1)(Y0(n) + Y1(n))

− C(n)(Y0(n− 1) + Y1(n− 1))|2

are the estimates of σ2
S and σ2

W , respectively, while

Ĥ(n) =
σSC

∗(n)
2

(Y0(n) + Y1(n)) (4.4)

is the least squares (LS) estimate of H(n) averaged over two preamble symbols. Using
Ĥ(n), the SNR on the nth subcarrier is estimated as

ρ̂(n) =
|Ĥ(n)|2
σ̂2
W,Bou

. (4.5)
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Boumard’s estimator assumes that the channel frequency responses of adjacent subchan-
nels are the same or similar. As shown in [7], when SNR approaches infinity, the estimated
average SNR (4.3) approaches

lim
ρav→∞ ρ̂av,Bou =

N − 1∑N−1
n=1 |H(n) −H(n− 1)|2 , (4.6)

while for low SNR values the corresponding estimate approaches

lim
ρav→0

ρ̂av,Bou =
1
2
. (4.7)

Therefore, since Boumard’s estimator is initially proposed for wireless channels char-
acterized with slow frequency selectivity, an increasing of number of CIR paths causes
decreased performance.

4.1.3. Ren’s Estimators

Ren’s I Estimator

The main disadvantage of the Boumard’s estimator is its high sensitivity to frequency
selectivity. In [7], employing the presumed preamble arrangement from Boumard’s esti-
mator, Ren et al. proposed a more accurate second-order moment-based SNR estimator,
which is robust to the frequency selectivity. Derived average SNR estimate can be ex-
pressed as

ρ̂av,Ren I =
σ̂2
S,Ren I

σ̂2
W,Ren I

, (4.8)

where

σ̂2
W,Ren I =

4
N

N−1∑
n=0

{
Im
[
Y0(n)C∗

0(n)Ĥ∗(n)/|Ĥ∗(n)|
]}2

(4.9)

and

σ̂2
S,Ren I =

1
N

N−1∑
n=0

|Y0(n)|2 − σ̂2
W,RenI

are the estimates of σ2
W and σ2

S , respectively, while Ĥ(n) is defined in (4.4). It is shown
that the performance is independent of the channel frequency response estimation al-
though the estimated channel states are used for the average SNR estimation. Addition-
ally, the SNR on the nth subcarrier is estimated as in (4.5) using the noise power estimate
from (4.9).

Ren’s II Estimator

Furthermore, Ren et al. proposed in [59] a new moment-based estimator based on two
identical preambles or one preamble with two identical parts in frequency domain. As-
suming the quasi-static channel condition (channel frequency response is constant over
two adjacent symbols), the two identical parts (preambles) will differ only in different
AWGN parts that after subtraction provide the estimate of the noise power.
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From (4.1), having C0(n) = C1(n) and H0(n) = H1(n), the noise power can be written
as the scaled expectation of the square of the difference over the received preamble’s
samples [59], i.e.,

σ2
W,Ren II =

1
2N

E
{
|Y0(n) − Y1(n)|2

}
. (4.10)

The noise estimate is then given by

σ̂2
W,Ren II =

1
2N

N−1∑
n=0

|Y0(n) − Y1(n)|2, (4.11)

where Yi(n), i = 0, 1 is given by (4.1). The estimate of the signal power is derived similarly
as for the Ren’s I Estimator, i.e.,

σ̂2
S,Ren II =

1
N

N−1∑
n=0

|Y0(n)|2 + |Y1(n)|2 − σ̂2
W,RenII . (4.12)

For one preamble having two identical parts in the time domain, the N/2-point DFT of
each part can be taken giving the received data Y ′

0(n) and Y ′
1(n), for n = 0, . . . , N/2 − 1

in the frequency domain. Therefore, the estimate of noise power is given by

σ̂2
W ′,Ren II =

1
2

N/2−1∑
n=0

|Y ′
0(n) − Y ′

1(n)|2, (4.13)

while the estimate of the signal power can be written as

σ̂2
S′,Ren II =

1
N

N−1∑
n=0

|Y0(n)|2 − σ̂2
W ′,RenII . (4.14)

Finally, the average SNR estimate is given by

ρ̂av,Ren II =
σ̂2
S,Ren II

σ̂2
W,Ren II

. (4.15)

It is shown in [59] that the performance is independent of the channel frequency re-
sponse estimation although the estimated channel states are used for the average SNR
estimation. Similar to the Ren’s I estimator, the SNR on the nth subcarrier is estimated
as in (4.5) using the noise power estimate from (4.11) or (4.13), depending on the number
of preambles.

4.2. Periodic Sequence (PS) Estimator

The block diagram of the PS estimator is shown in Figure 4.2. The key idea of the
estimator rests upon the time domain periodic preamble structure utilized for time and
frequency synchronization [60]. In order to cover a wider frequency range, a preamble of
Q identical parts, each containing N/Q samples, as depicted in Figure 4.1a, is proposed
in [57]. The corresponding frequency domain representation is shown in Figure 4.1b.



54 Chapter 4. SNR Estimation in OFDM Systems

Figure 4.1.: Preamble structure in the (a) time and (b) frequency domain.

In the sequel we assume that Q divides N , such that the number of loaded subcarriers
Np = N/Q is integer.

Starting from the 0th, each Qth subcarrier is modulated with a QPSK signal Cp(m),
m = 0, 1, . . . , Np − 1 with |Cp(m)| = 1 and loaded with power σ2

S. The remainder of
Nz = N − Np = (Q−1)

Q
N subcarriers is not used (nulled). In order to maintain the

total energy level over all symbols within the preamble, the power is scaled by factor Q
yielding a total transmit power of Qσ2

S on the loaded subcarriers. Therefore, the time
domain representation of the preamble with Q identical parts can be written as

cp(k) = cp(k + q
N

Q
), k = 0, . . . ,

N

Q
− 1, q = 1, . . . , Q− 1,

while its representation in the frequency domain is given by

C(n) = C(mQ+ q) =

⎧⎨⎩
√
QσSCp(m), q = 0

0, q = 1, . . . , Q− 1
, (4.16)

for n = mQ+ q, m = 0, . . . , Np − 1, q = 0, . . . , Q− 1. From (4.1), the received symbol on
the nth subcarrier is given by

Y (n) = Y (mQ+ q) =

⎧⎨⎩Yp(m), q = 0
Yz(mQ+ q), q = 1, . . . , Q− 1

, (4.17)

where
Yp(m) =

√
QσS Cp(m)Hp(m) + σWW (m) (4.18)

denotes the received signal on the loaded subcarriers, and

Yz(mQ+ q) = σWW (mQ+ q) (4.19)

is the received signal on the nulled subcarriers containing only noise.
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Figure 4.2.: Block diagram of the PS estimator.

The empirical second-order moment of the received signal on the loaded subcarriers can
be written as

M̂2,p =
1
Np

Np−1∑
m=0

|Yp(m)|2, (4.20)

while its expected value is given by

E
{
M̂2,p

}
=

1
Np

E

⎧⎨⎩
Np−1∑
m=0

|Yp(m)|2
⎫⎬⎭

=
1
Np

Np−1∑
m=0

E
{
|Yp(m)|2

}

=
Qσ2

S

Np

Np−1∑
m=0

E
{
|H(m)|2

}
+
σ2
W

Np

Np−1∑
m=0

E
{
|W (m)|2

}
= Qσ2

S + σ2
W .

(4.21)

Similarly, the empirical second moment of the received signal on the nulled subcarriers,

M̂2,z =
1

Np(Q− 1)

Np−1∑
m=0

Q−1∑
q=1

|Yz(mQ+ q)|2, (4.22)

has expectation

E
{
M̂2,z

}
=

1
Np(Q− 1)

E

⎧⎨⎩
Np−1∑
m=0

Q−1∑
q=1

|Yz(mQ+ q)|2
⎫⎬⎭

=
1

Np(Q− 1)

Np−1∑
m=0

Q−1∑
q=1

E
{
|Yz(mQ+ q)|2

}

=
σ2
W

Np(Q− 1)

Np−1∑
m=0

Q−1∑
q=1

E
{
|W (mQ+ q)|2

}
= σ2

W .
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In summary, the average SNR ρav can be estimated by forming

ρ̂av =
1
Q

M̂2,p − M̂2,z

M̂2,z

=
1
Q

(
M̂2,p

M̂2,z
− 1

)
,

(4.23)

where, by the strong law of large numbers, M̂2,p and M̂2,z are strongly consistent unbiased
estimators of Qσ2

S + σ2
W and average noise power σ2

W , respectively.
The estimate of the average SNR, ρ̂av, is obtained by inserting (4.20) and (4.22) in

(4.23), thus giving

ρ̂av =
1
Q

(
(Q− 1)

∑Np−1
m=0 |Yp(m)|2∑Np−1

m=0
∑Q−1
q=1 |Yz(mQ+ q)|2 − 1

)
. (4.24)

Note that ρ̂av requires no knowledge of the transmitted symbols on the loaded subcarriers.
Only the arrangement of the loaded and nulled subcarriers must be known to the receiver.
However, channel estimates Ĥ(n) are requisite for the estimation of the SNR per subcarrier
from (2.38). They are available only for the loaded subcarriers by the means of least square
(LS) estimation such that

Ĥp(m) =
1√
Q
C∗
p(m)Yp(m)

= σSHp(m) +
σW√
Q
W̃ (m),

(4.25)

where W̃ (m) = C∗
p(m)W (m).

As shown in Figure 4.2, channel estimates for nulled subcarriers Ĥ(mQ + q),
m = 0, . . . , Np − 1, q = 1, . . . , Q− 1, are obtained by the DFT interpolation. Therefore,
the CIR estimates after the IDFT can be written as

ĥp(k) = IDFTNp

[
Ĥp(m)

]
, 0 ≤ k ≤ Np − 1

= σSh(k) +
σW√
Q
w̃(k),

(4.26)

where IDFTNp [·] presents the Np-point IDFT and w̃(k) = IDFTNp

[
W̃ (m)

]
. To obtain

channel estimates, the rest of Nz = N−Np samples are padded with zeros giving the CIR
prior to the N -point DFT as

ĥ(k) =

⎧⎨⎩ĥp(k), 0 ≤ k ≤ Np − 1
0, Np ≤ k ≤ N − 1.

(4.27)

Channel estimates after the N -point DFT are obtained as

Ĥ(n) = DFTN

[
ĥ(k)

]
= σSH(n) +

σW√
Q

(n)W̃ (n), 0 ≤ n ≤ N − 1.
(4.28)
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It can be easily noticed that in order to preserve CIR information, the number of the
loaded subcarriers has to be larger or equal to the CIR length, i.e., Np ≥ L. Hence,
Q ≤ N/L must be satisfied, which puts a constraint to the preamble design.

Similarly to (4.21), the expectation of the empirical second order moment of Ĥ(n)
in (4.28), M̂2,p(n) = |Ĥ(n)|2, is given by

E
{
M̂2,p(n)

}
= E

{
|Ĥ(n)|2

}
= σ2

SE
{
|H(n)|2

}
+

1
Q

E
{
|W̃ (n)|2

}
= σ2

SE
{
|H(n)|2

}
+
σ2
W

Q
.

(4.29)

Finally, using (2.38) with the noise power estimate obtained in (4.22), the SNR estimate
on the nth subcarrier can be written as

ρ̂(n) =
M̂2,p(n)
M̂2,z

− 1
Q
. (4.30)

4.2.1. Computational Complexity Analysis

From an implementation point of view, the PS estimator has lower complexity than the
Boumard’s and both Rens’ estimator. For the average SNR estimation Boumard’s estima-
tor requires 5N and 2N complex multiplications and complex additions per estimation,
respectively, as indicated in (4.3). Ren’s estimator I from (4.8)and (4.9) needs 4N and 3N
complex multiplications and additions, respectively. Implementing the Ren’s estimator II
with two preambles as indicated in (4.11) and (4.12) requires 3N and 2N complex mul-
tiplications and complex additions per estimation, respectively, while Ren’s estimator II
with one preamble from (4.13) and (4.14) requires 1.5N and 1.5N complex multiplications
and complex additions per estimation, respectively. The PS algorithm (4.23) requires only
N multiplications and N additions per estimate. Moreover, the PS estimator is of higher
bandwidth efficiency since only one preamble is needed unlike the Ren’s and Boumard’s
estimators.

4.2.2. Statistical Properties

In order to evaluate and include the impact of SNR estimation on the BER performance
and spectral efficiency of adaptive modulation, the statistical properties of the average
SNR and SNR per subcarrier estimation are derived in the following.

The Average SNR Estimation

To derive the statistical properties of the average SNR ρ̂av and SNR per subcarrier ρ̂(n)
estimator, it can be shown that 2Np

M̂2,p

σ2
W

and 2Nz
M̂2,z

σ2
W

are noncentral chi-squared (see
Proposition 4.2) and central chi-squared (see Proposition 4.1) random variables, respec-
tively.
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Proposition 4.1. Let Yz(mQ + q), for m = 0, 1, . . . , Np − 1 and q = 1, . . . , Q − 1,
denote independent circular symmetric complex Gaussian random variables with
zero means and identical variances σ2

W , i.e., Yz(mQ + q) ∼ SCN(0, σ2
W ). Then,

Z = 2
σ2

W

∑Np−1
m=0

∑Q−1
q=1 |Yp(mQ+ q)|2 = 2Nz

M̂2,z

σ2
W

has a central chi-squared distribu-
tion, χ2

νz
, with νz = 2Nz degrees of freedom. Therefore, Z ∼ χ2

νz
, with the pdf given by

fZ(z) =
1

2 νz
2 Γ
(
νz

2

)z νz
2 −1e− z

2 , z ≥ 0, (4.31)

where Γ(u) is the Gamma function [29], defined by

Γ(u) =
∫ ∞

0
tu−1e−t dt. (4.32)

As it is shown in [61], the mean and the variance of Z are given by

E(Z) = νz = 2Nz, (4.33)

and
Var(Z) = 2νz = 4Nz, (4.34)

respectively.

Proposition 4.2. Let Yp(m), for m = 0, 1, . . . , Np − 1, denote independent
circular symmetric complex Gaussian random variables with expected values√
QσSHp(m) and identical variances σ2

W , i.e., Yp(m) ∼ SCN(
√
QσSHp(m), σ2

W ).
Then, P = 2

σ2
W

∑Np−1
m=0 |Yp(m)|2 = 2Np

M̂2,p

σ2
W

has a noncentral chi-squared dis-
tribution, χ2

νp,λ, with νp = 2Np degrees of freedom and noncentrality parameter
λ = 2Q σ2

S

σ2
W

∑Np−1
m=0 |Hp(m)|2 = 2QρavNp. Therefore, P ∼ χ2

νp,λ, with the pdf given
by

fP (p) =
1
2

(
p

λ

) νp−2
4
e

p+λ
2 I νp

2 −1(
√
pλ), p ≥ 0, (4.35)

where Ia(u) is the modified Bessel function of the first kind of the order a [29] defined as

Ia(u) =

(
1
2u
)a

√
πΓ(a+ 1

2)

∫ π

0
eu cos θsin2aθ dθ. (4.36)

As shown in [61], the mean and the variance of P are given by

E(P ) = νp + λ = 2Np(1 +Qρav), (4.37)

and
Var(P ) = 2νp + 4λ = 4Np(1 + 2Qρav), (4.38)

respectively.

Lemma 4.3. Given Z = 2Nz
M̂2,z

σ2
W

as a central chi-squared random variable with νz = 2Nz

degrees of freedom and P = 2Np
M̂2,p

σ2
W

as a noncentral chi-squared random variable with
νp = 2Np degrees of freedom and noncentrality parameter λ = 2QρavNp, the random
variable V = M̂2,p

M̂2,z
is noncentral F -distributed, i.e., V ∼ Fνp,νz(λ).
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Proof. From the empirical second order moments M̂2,p and M̂2,z in (4.20) and (4.22),
respectively, it can be noticed that the different data (samples originating from different
subcarriers Y (n)) are used for performing estimation. Therefore, M̂2,p and M̂2,z can be
considered as independent random variables, thus giving random variables P and Z also as
independent, respectively. According to [61], having P and Z stochastically independent,
a noncentral F -distributed random variable V is obtained when dividing a noncentral
chi-squared random variable P ∼ χ2

νp,λ by a central chi-squared random variable Z ∼ χ2
νz

,

V =
P/νp
Z/νz

. (4.39)

Replacing P,Z, νp, and νz in (4.39) directly yields

V =

(
2NpM̂2,p

σ2
W

)
/(2Np)(

2NzM̂2,z

σ2
W

)
/(2Nz)

=
M̂2,p

M̂2,z
.

(4.40)

The F -distributed random variable V in (4.39), has a pdf given by

fV (v) = e− λ
2

∞∑
k=0

(λ2 )k

k!
(νp

νz
) 1

2νp+k

B
(
νp+2k

2 , νz

2

)v νp
2 +k−1

(
1 +

νp
νz
v
)− 1

2 (νp+νz)−k
, (4.41)

where B(u, v) is the Beta function, which can be represented by Gamma functions [29]
as

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

. (4.42)

The mean and the variance of the F -distributed random variable V , defined in (4.39), are
given by

E(V ) =
νz(νp + λ)
νp(νz − 2)

, νz > 2, (4.43)

and

Var(V ) = 2 ·
(
νz
νp

)2 (νp + λ)2 + (νz − 2)(νp + 2λ)
(νz − 2)2(νz − 4)

, νz > 4, (4.44)

respectively [61]. Replacing νp and νz in (4.43) and (4.44) yields

E(V ) =
2Nz · 2Np(1 +Qρav)

2Np · 2(Nz − 1)

=
1 +Qρav
(1 − 1

Nz
)
, Nz > 1,

(4.45)

and

Var(V ) = 2 ·
(

2Nz

2Np

)2 4N2
p (1 +Qρav)2 + 4Np(Nz − 1)(1 + 2Qρav)

4(Nz − 1)2 · 2(Nz − 2)
,

=
1
Nz

(1 +Qρav)2 + 1
Np

(Nz − 1)(1 + 2Qρav)
(1 − 1

Nz
)2(1 − 2

Nz
)

, Nz > 2,
(4.46)
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respectively.

Comparing (4.23) with (4.40), the estimated average SNR ρ̂av can be obtained by
transforming the random variable V

ρ̂av =
1
Q

((
M̂2,p

M̂2,z

)
− 1

)

=
1
Q

(V − 1) .
(4.47)

Its expectation E(ρ̂av) is given by

E(ρ̂av) =
1
Q

(
E
(
M̂2,p

M̂2,z

)
− 1

)

=
1
Q

(E (V ) − 1)

=
1
Q

(
1 +Qρav
1 − 1

Nz

− 1
)

=
1
Q

(
Qρav +

1 +Qρav
Nz − 1

)

= ρav +
1
Q

+ ρav

Nz − 1
.

(4.48)

Because Nz represents the number of the nulled subcarriers, i.e., Nz = Q−1
Q
N , (4.48)

can be written as

E(ρ̂av) = ρav +
1
Q

+ ρav

N
(
1 − 1

Q

)
− 1

≈ ρav,

(4.49)

for N >> 1, which is a regular case in real OFDM systems.

Similarly, according to the transformation (4.47), the mean square error (MSE) of the
estimated average SNR is given by

MSE(ρ̂av) = E
(
(ρ̂av − ρav)2

)
≈ Var(ρ̂av)

=
1
Q2 Var(V ).

(4.50)

Inserting (4.46) into (4.50), for Nz = Q−1
Q
N and Nz = N

Q
yields

MSE(ρ̂av) ≈ 1
NQ(Q− 1)

(1 +Qρav)2 + (Q− 1 − Q
N

)(1 + 2Qρav)
(1 − Q

(Q−1)N )2(1 − 2Q
(Q−1)N )

. (4.51)
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By using the transformation of the F -distributed random variable V in (4.47), the pdf
of the estimated average SNR ρ̂av can be derived as

fρ̂av(ρ̂av) = Q · fV (1 +Qρ̂av)

= Q · e− λn
2

∞∑
k=0

(λn

2 )k

k!
(νp

νz
) 1

2νp+k

B
(
νp+2k

2 , νz

2

)(1 +Qρ̂av)
νp
2 +k−1

(
1 +

νp
νz

(1 +Qρ̂av)
)− 1

2 (νp+νz)−k
.

(4.52)

Replacing λ, νp, and νz in (4.52) and having Nz = Q−1
Q
N , this yields

fρ̂av(ρ̂av) = Q · e−Nρav

∞∑
k=0

(Nρav)k

k!

(
1

Q−1

)k+ N
Q

B
(
k + N

Q
, Q−1

Q
N
)(1 +Qρ̂av)k−1+ N

Q

⎛⎝ 1
1 + Q(1+ρ̂av)

(Q−1)

⎞⎠k+N

=
e−Nρav · (Q− 1)N(1− 1

Q
)

QN−1 · (1 +Qρ̂av)
N
Q

−1

(1 + ρ̂av)N
·

∞∑
k=0

ρkav ·
(
N
Q

)k
k! ·B

(
k + N

Q
, Q−1

Q
N
) (1 +Qρ̂av

1 + ρ̂av

)k
.

(4.53)

Figure 4.3 shows the pdf of the estimated average SNR in (4.53) for true SNR = 10 dB. It
can be seen that the simulation results agree with the derived analytical model. Moreover,
increasing the number of periodic parts Q improves the accuracy of the SNR estimation,
i.e., the pdf curve becomes more concentrated around the true SNR value for the higher
Q values.

The SNR per Subcarrier Estimation

To derive the statistical properties of the SNR per subcarrier estimate (4.30), we obtain
the statistical property of M̂2,p(n) in the following. As M̂2,p(n) = |Ĥ(n)|2, we rewrite the
channel estimate after the N -point DFT (4.28) as

Ĥ(n) = σSH(n) +
1√
Q
H(n)W̃ (n), 0 ≤ n ≤ N − 1. (4.54)

Proposition 4.4. Let Ĥ(n), for n = 0, 1, . . . , N − 1, denote independent circular sym-
metric complex Gaussian random variables with expected values σSH(n) and identical
variances σ2

W

Q
, i.e., Ĥ(n) ∼ SCN(σSH(n), σ

2
W

Q
). Then, Pn = 2Q |Ĥ(n)|2

σ2
W

= 2QM̂2,p(n)
σ2

W
has a

noncentral chi-squared distribution, χ2
νn,λ, with νn = 2 degrees of freedom and noncen-

trality parameter λn = 2Q σ2
S

σ2
W

|H(n)|2 = 2Qρ(n). Therefore, Pn ∼ χ2
νn,λn

, with the pdf
given by

fPn(pn) =
1
2

(
pn
λ

) νn−2
4
e

pn+λ
2 I νn

2 −1(
√
pnλn), pn ≥ 0, (4.55)

where Ia(u) is the modified Bessel function of the first kind of the order a [29] given in
(4.36).

Lemma 4.5. Given Z = 2Nz
M̂2,z

σ2
W

as central chi-squared random variable with νz = 2Nz

degrees of freedom and Pn = 2QM̂2,p(n)
σ2

W
as a noncentral chi-squared random variable with
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Figure 4.3.: Pdf of the average SNR estimation for true SNR = 10 dB, N = 256, and the
number of periodic parts Q = 2, 4, 8.

νn = 2 degrees of freedom and a noncentrality parameter λn = 2Qρ(n), the random
variable Vn = QM̂2,p(n)

M̂2,z
is noncentral F -distributed, i.e., Vn ∼ Fνn,νz(λn).

Proof. From the empirical second order moments M̂2,p(n) and M̂2,z in (4.29) and (4.22),
respectively, it can be seen that the different data (samples originating from different
subcarriers Y (n)) are used for performing estimation. Therefore, M̂2,p(n) and M̂2,z can
be considered as independent random variables, thus giving random variables Pn and
Z also as independent, respectively. According to [61], having Pn and Z stochastically
independent, the noncentral F -distributed random variable Vn is obtained as the ratio of
a noncentral chi-squared random variable Pn ∼ χ2

νn,λ and a central chi-squared random
variable Z ∼ χ2

νz
,

Vn =
Pn/νn
Z/νz

. (4.56)

Replacing Pn, Z, νp, and νz in (4.56) directly yields

Vn =

(
2QM̂2,p

σ2
W

)
/2(

2NzM̂2,z

σ2
W

)
/(2Nz)

= Q
M̂2,p(n)
M̂2,z

.

(4.57)
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Following the approach in (4.41)-(4.44), the mean and variance of the F -distributed
random variables Vn in (4.56) can be written as

E(Vn) =
2Nz(1 +Qρ(n))

2(Nz − 1)

=
1 +Qρ(n)
(1 − 1

Nz
)
, Nz > 1,

(4.58)

and

Var(Vn) = 2 ·
(2Nz

2

)2 4(1 +Qρ(n))2 + 4(Nz − 1)(1 + 2Qρ(n))
4(Nz − 1)2 · 2(Nz − 2)

=
1
Nz

(1 +Qρ(n))2 + (Nz − 1)(1 + 2Qρ(n))
(1 − 1

Nz
)2(1 − 2

Nz
)

, Nz > 2,
(4.59)

respectively.
Comparing (4.30) with (4.57), the estimated average SNR per subcarrier ρ̂n can be

written as a transformation of random variable Vn

ρ̂(n) =
M̂2,p

M̂2,z
− 1
Q

=
1
Q

((
Q
M̂2,p(n)
M̂2,z

)
− 1

)

=
1
Q

(Vn − 1) .

(4.60)

Its expectation E(ρ̂(n)) is given by

E(ρ̂(n)) =
1
Q

(E (Vn) − 1)

=
1
Q

(
1 +Qρ(n)

1 − 1
Nz

− 1
)

=
1
Q

(
Qρ(n) +

1 +Qρ(n)
Nz − 1

)

= ρ(n) +
1
Q

+ ρ(n)
Nz − 1

.

(4.61)

Because Nz represents the number of the nulled subcarriers, i.e., Nz = Q−1
Q
N , (4.61)

can be written as

E(ρ̂(n)) = ρ(n) +
1
Q

+ ρ(n)

N
(
1 − 1

Q

)
− 1

≈ ρ(n),
(4.62)

for N >> 1, which is a regular case in real OFDM systems.
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Similarly, according to the transformation (4.60), the MSE of the estimated average
SNR is given by

MSE(ρ̂(n)) = E
(
(ρ̂(n) − ρ(n))2

)
≈ Var(ρ̂(n))

=
1
Q2 Var(Vn).

(4.63)

Inserting (4.59) into (4.63), for Nz = Q−1
Q
N and Nz = N

Q
, it yields

MSE(ρ̂(n)) ≈ 1
NQ(Q− 1)

(1 +Qρ(n))2 + (N − 1 − N
Q

)(1 + 2Qρ(n))
(1 − Q

(Q−1)N )2(1 − 2Q
(Q−1)N )

. (4.64)

Similarly to (4.41), the pdf of the F -distributed random variable Vn is given by

fVn(vn) = e− λn
2

∞∑
k=0

(λn

2 )k

k!
(νn

νz
) 1

2νn+k

B
(
νn+2k

2 , νz

2

)v νn
2 +k−1
n

(
1 +

νn
νz
vn

)− 1
2 (νn+νz)−k

, (4.65)

where B(u, v) is the Beta function given in (4.42).
Having a transformation of random variable Vn (4.60), the pdf of estimated SNR per

subcarrier is given by
fρ̂(n)(ρ̂(n)) = Q · fVn(1 +Qρ̂(n))

= Q · e− λn
2

∞∑
k=0

(λn

2 )k

k!
(νn

νz
) 1

2νn+k

B
(
νn+2k

2 , νz

2

)(1 +Qρ̂(n))
νn
2 +k−1

(
1 +

νn
νz

(1 +Qρ̂(n))
)− 1

2 (νn+νz)−k
.

(4.66)

Replacing λ, νn, and νz in (4.66) and having Nz = Q−1
Q
N , it yields

fρ̂(n)(ρ̂(n)) = Q · e−Qρ(n)
∞∑
k=0

(Qρ(n))k
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Q
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⎞⎠N(1− 1
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·
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k=0

ρk(n) ·Q2(k+1)

k! ·B
(
k + 1, Q−1

Q
N
)
⎛⎝ 1
Q+ (Q−1)N

1+Qρ̂(n)

⎞⎠k+1

.

(4.67)

The pdf of the estimated SNR per subcarrier in (4.67) for true SNR = 10 dB, is
shown in Figure 4.4. It can be seen that the simulation results agree with the derived
analytical model. Similarly to the average SNR case, increasing the number of periodic
parts Q improves the accuracy of SNR estimation, i.e., the pdf curve becomes more
concentrated around the true SNR value for the higher Q values. Moreover, comparing
with the corresponding curves related to the average SNR, shown in Figure 4.3, it can be
noticed that the average SNR per subcarrier is characterized with the higher statistical
uncertainty. The effect of the SNR estimation variance on adaptive modulation is further
discussed in Chapter 7.
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Figure 4.4.: Pdf of the SNR per subcarrier estimation for true SNR = 10 dB, N = 256,
and the number of periodic parts Q = 2, 4, 8.

4.2.3. Numerical Results

First, we evaluate the performance of the PS estimator. We compare the simulation
results obtained from the Monte-Carlo simulation with the analytical expressions derived
from the statistical properties investigated in Subsection 4.2.2. Afterwards, we discuss the
performance results of the PS estimator for a different number of preamble identical parts,
i.e., Q = 2, 4, and 8 and compare them with the performance of the MMSE, Boumard’s,
and Rens’ estimators. The system parameters used in the simulation are taken from
the WiMAX specifications, namely N = 512 subcarriers, CP length of 64 samples and
sampling frequency of 7.68 MHz (5 MHz bandwidth mode), see Appendix B.2. The
performance is evaluated for four different channels: AWGN channel and three extended
ITU channels described in Appendix A. The number of independent trials is set to
Nt = 100000 assuring narrow confidence interval for the estimators. The performance
evaluation is done in the terms of the normalized MSE (NMSE) of the estimated average
SNR values following

NMSEav =
1
Nt

Nt∑
i=i

(
ρ̂av,i − ρav

ρav

)2

, (4.68)

where ρ̂av,i is the estimate of the average SNR in the ith trial, while ρav is the true
value. The second considered performance measure is the NMSE of the estimated SNR
per subcarrier, given by

NMSEsc =
1

NNt

Nt∑
i=i

N∑
n=0

(
ρ̂i(n) − ρ(n)

ρ(n)

)2

, (4.69)
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Figure 4.5.: NMSE of the average SNR estimation by PS in an AWGN channel.
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Figure 4.6.: NMSE of the SNR per subcarrier estimation by PS in an AWGN channel.
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where ρ̂i(n) is the estimate of the ρ(n) in the ith trial.
Figure 4.5 shows the simulation results for NMSEav of the PS estimator as a function of

the SNR for a different number of identical parts Q in AWGN together with the analytical
results derived from (4.50). It can be seen that the derived analytical model agrees with
the simulation results. Similarly, it is shown in Figure 4.6 that simulation results for
NMSEsc correspond to analytical curves derived from (4.51). Thus, given mathematical
model can be utilized for parameter selection during the design of the estimation unit at
the receiver.

Furthermore, the performance of the PS estimator is compared with the performance
of the existing abovementioned SNR estimators in extended ITU channels. During the
comparison, the Ren’s II estimator is implemented with either one or two preambles: one
preamble is used for the MMSE and PS estimator, while two preambles are considered
for the Boumard’s and Ren’s I estimator.

Figure 4.7 shows the NMSEav of the considered estimators as a function of the SNR in
the Extended Pedestrian A (EPA) channel with a low delay spread. To assess the absolute
performance of the estimators, they are compared with the Cramer-Rao bound (CRB),
which is a lower bound for the variance of any unbiased estimator [62]. The normalized
CRB (NCRB) for an OFDM signal with N QPSK modulated subcarriers in an AWGN
channel can be expressed as [63]

NCRB =
1
N

(
2
ρav

+ 1
)
. (4.70)

The MMSE estimator shows the best performance with the NMSEav curve indistinguish-
able from the NCRB defined in (4.70). The Ren’s II estimator with two preambles for
SNR values greater than 0 dB shows no degradation with respect to the NCRB. The Ren’s
II estimator with one preamble performs similarly as the PS estimator for Q = 2. The
Boumard’s estimator for average SNR values smaller than 10 dB performs worse than the
Ren’s I and PS estimators. For average SNR values greater than 10 dB it outperforms
both the Ren’s I and PS estimator for Q = 2. Note that increasing the number of the
nulled subcarriers in the preamble (Q = 4, 8) brings its performance closer to the NCRB.
It can be explained with the notion that more subcarriers are used for the average noise
power estimation (4.22) while the transmitted signals on the loaded subcarriers get more
power due to the scaling by Q, thus giving the more accurate estimation in (4.20).

Figure 4.8 and Figure 4.9 compare the NMSEav as a function of the SNR of the con-
sidered estimators in time-invariant Extended Vehicular A (EVA) and Extended Typical
Urban (ETU) channels characterized with the medium and high delay spread, respectively.
It is shown that the performance of the PS estimator and both of the Ren’s estimators
are robust against frequency selectivity, while the Boumard’s estimator performs highly
sensitive to channel selectivity.

The NMSEsc performance of the considered estimators in the EPA, EVA, and ETU
channels are shown in Figure 4.10, Figure 4.11, and Figure 4.12, respectively. Because all
considered estimators depend on channel estimations, bad performance in the low SNR
region is expected. The performance can be further improved by combining estimated
average noise power with more sophisticated channel estimation algorithms using pilot
subcarriers distributed within the data symbols. It can be noticed that in the high SNR
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Figure 4.7.: NMSE of the average SNR estimation in the EPA channel.
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Figure 4.8.: NMSE of the average SNR estimation in the EVA channel.
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Figure 4.9.: NMSE of the average SNR estimation in the ETU channel.
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Figure 4.10.: NMSE of the SNR per subcarrier estimation in the EPA channel.
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Figure 4.11.: NMSE of the SNR per subcarrier estimation in the EVA channel.
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Figure 4.12.: NMSE of the SNR per subcarrier estimation in the ETU channel.
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region, channel estimations stop to act as the deteriorating factor and NMSEsc approaches
the NMSEav. The performance of the PS estimator depends on the channel selectivity,
which is expected due to the performed interpolation during the channel estimation.
Furthermore, it can be seen that the PS estimator for Q = 2 performs similarly to the
Ren’s II estimator with two preambles, while it outperforms the Boumard’s and other
Ren’s estimators.

The Performance in Time-Variant Channel

Figure 4.13 and Figure 4.14 show the performance of the PS estimator in time-variant
ETU channel by means of NMSEav as a function of the data symbols per frame for the
real SNR = 10 dB and SNR = 25 dB, respectively. The data frame is considered to consist
of 50 data symbols and that the NMSEav of the average SNR estimation is determined
for each OFDM symbol within the frame. It is shown that the accuracy of all considered
estimators is getting worse as the symbol index increases. The performance decay rate
increases with the average SNR value.
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Figure 4.13.: NMSE of the average SNR estimation per OFDM symbol for SNR = 10 dB
in the ETU channel, ν = 5 km/h.
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Figure 4.15.: Block diagram of the IPS estimator.

4.3. Improved PS (IPS) Estimator

As simulation results presented in Subsection 4.2.3 indicate, the PS estimator performs
poorly in the low SNR regime. Therefore, we propose a modification to the PS estimator,
as shown in Figure 4.15. By comparing the average power estimates of the individual CIR
paths |ĥp(k)|2 with the certain threshold λ, only the significant CIR paths are selected as
inputs to the N -point DFT. The value of the threshold λ is determined by the average
noise power estimate M̂2,z obtained in the frequency domain. The rest of CIR paths,
whose average power estimates are below the threshold, are nulled assuming that they
contain only noise samples. Figure 4.16 shows one channel realization from the simula-
tions together with the appropriate threshold value used for significant path selection.
Therefore, the CIR prior to the N -point DFT can be written as

ĥ(k) =

⎧⎨⎩ĥp(k), |ĥp(k)|2 > λ

0, otherwise
. (4.71)

The selection of the threshold λ is based on the reduction of the MSE of the individual
channel estimates. It is shown in [58] that the MSE is reduced when

σ2
h(k) >

1
ρav

, k = 0, . . . , N − 1, (4.72)

holds. Here, σ2
h(k) = E {|h(k)|2} denote the average power of the kth CIR path. According

to (4.26), because only CIR estimates ĥp(k) are available, σ2
ĥp

(k) can be written as

σ2
ĥp

(k) = σ2
Sσ

2
h(k) +

σ2
W

Q
. (4.73)

By replacing (4.73) in (4.72), it can be derived that the MSE is reduced when

σ2
ĥp

(k) >
(

1 +
1
Q

)
σ2
W (4.74)
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Figure 4.16.: Significant path selection for the EVA channel with Q = 4 and SNR = -6 dB.

holds.
The average power of the kth path σ2

ĥp
(k) and average noise power σ2

W in (4.74) can
be replaced with available unbiased estimates, |ĥp(k)|2 and M̂2,z, respectively. Therefore,
the appropriate threshold can be derived as

|ĥp(k)|2 >
(

1 +
1
Q

)
M̂2,z = λ. (4.75)

After the significant path selection and DFT, channel estimates Ĥ(n) are obtained
using (4.28), while SNR per subcarrier estimates ρ̂(n) are derived from (4.30). Because
performed CIR filtering significantly reduces the amount of noise present in channel esti-
mates, the average power estimate can be written as

M̂ ′2,p =
1
N

N−1∑
n=0

|Ĥ(n)|2, (4.76)

which gives the average SNR estimate

ρ̂′
av =

M̂ ′2,p
M̂2,z

− 1
Q
. (4.77)

4.3.1. Numerical Results

The NMSEav as a function of the SNR for the PS and IPS estimators is shown in Fig-
ure 4.17. The increasing number of identical parts Q in the preamble brings the per-
formance of both estimators closer to the NCRB because more subcarriers are used for
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the average noise power estimation (4.22) while the loaded subcarriers get more power
due to the scaling by Q. Both estimators show robust performance in frequency-selective
channels, i.e., the corresponding accuracy is not affected by the level of channel selectiv-
ity. It can be also noticed that the IPS estimator outperforms the PS estimator in the
low SNR regime because the selection of significant CIR paths filters the noise. However,
the performance improvement for Q = 8 is slightly worse in the ETU channel compared
to the corresponding improvement in an AWGN channel. For Q = 8, the IPS estimator
reaches the NCRB at low SNR values. In the frequency-selective ETU channel, there is no
improvement compared to the PS estimator while performance is slightly worse compared
to Q = 4 at SNR values less than −7 dB.

The NMSEsc performance of the IPS and PS estimators in the EPA, EVA, and ETU
channels are shown in Figure 4.18, Figure 4.19, and Figure 4.20, respectively. It can
be seen that the IPS outperforms the PS estimator in all considered channels for each
particular value of Q. Moreover, the increasing number of periodic parts Q improves the
performance of the PS estimator independently of channel selectivity. However, the IPS
estimator for Q = 8 stops to benefit from the increase of Q and shows worse performance
compared to Q = 4 case for SNR values less than 0 dB in the frequency-selective ETU
channel.
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Figure 4.17.: NMSE of the average SNR estimation.
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Figure 4.18.: NMSE of the SNR per subcarrier estimation in the EPA channel.
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Figure 4.19.: NMSE of the SNR per subcarrier estimation in the EVA channel.
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Figure 4.20.: NMSE of the SNR per subcarrier estimation in the ETU channel.





5. SNR Estimation in MIMO OFDM
Systems

The transmission rate can be further increased without the need for larger signal band-
width. By using multiple antennas, so called multiple-input multiple-output (MIMO)
systems have additional parallel channels in the spatial domain. They provide improved
link reliability and increased data rate through the multiplexing technique. Hence, MIMO
OFDM systems offer a promising combination for the high data requirement of the present
(WiMAX, WLAN, LTE) and future wireless systems. Most preamble-based SNR estima-
tors from the literature so far are related to a single carrier single-input single-output
(SISO) transmission. To the best of our knowledge only Boumard in [8] proposed a
preamble-based SNR estimator for 2 × 2 MIMO OFDM systems.

In this chapter, we extend our work on SNR estimation for single-input single-output
(SISO) systems by proposing a modification of the PS estimator for NT × NR MIMO
OFDM systems, named MIMO-PS estimator. The proposed estimator uses one preamble
and allows better bandwidth efficiency than Boumard’s estimator, which inherently uses
two preambles. Low complexity and robustness to frequency selectivity combined with
bandwidth efficiency favors the proposed estimator over the existing preamble-based es-
timators available from the literature. Parts of the following results have been presented
in [10] where we proposed the MIMO-PS estimator for 2 × 2 MIMO OFDM systems. In
this chapter, we extend the existing estimator for arbitrary MIMO dimensions and give
insight into implementation issues.

5.1. MIMO System Model

Similarly to the SISO OFDM systems in Section 4.2, we assume a general model for the
frame structure composed of I preambles where each preamble contains N modulated
subcarriers. Furthermore, we consider NT × NR MIMO OFDM system, where NT and
NR denote the number of transmit and receive antennas, respectively. To illustrate the
scenario, the simplified block diagram of 2 × 2 MIMO OFDM system in the acquisition
mode is shown in Figure 5.1. Because we consider SNR estimation performed in the
frequency domain, the model contains only frequency domain characterization of the
received signal in frequency-selective AWGN channels. Let Ct(i, n) denote the complex
data symbol on the nth subcarrier in the ith preamble at the tth transmit antenna, where
i = 0, . . . , I − 1, n = 0, . . . , N − 1, and t = 1, . . . , NT .

We assume that the modulated subcarriers within the preambles have constant mag-
nitude E{|Ct(i, n)|} = 1 with the same allocated power σ2

S,t = σ2
S. Similarly to the SISO

case in Section 4.2, this is a regular assumption because current OFDM standards usu-
ally contain preambles composed of QPSK and/or BPSK modulated subcarriers. At the

79
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Figure 5.1.: Simplified block diagram of 2 × 2 MIMO OFDM system.

receiver, perfect timing and frequency synchronization is assumed, hence after the DFT,
the received signal on the nth subcarrier in the ith preamble at the rth receive antenna
can be expressed as

Yr(i, n) =
σS√
NT

NT∑
i=t

Ct(i, n)Htr(i, n) + σW,rgmaW,rWr(i, n), r = 1, . . . , NR. (5.1)

Furthermore, σ2
S/NT is the transmitted signal power at the single antenna (giving the total

transmit power of σ2
S), Wr(i, n) are complex zero-mean AWGN samples of unit variance,

and σ2
W,r is the corresponding noise power at the rth receiving antenna. The channel

frequency response between the tth and rth antenna, Htr(i, n), is given by

Htr(i, n) =
L∑
l=1

hl,tr(iTs) · e−j2π nτl,tr
NTs . (5.2)

Here, hl,tr(iTs) and τl,tr denote the lth path gain and delay between the tth and rth antenna
during the ith preamble, respectively, Ts is the duration of the OFDM preamble,gg and L is
the memory length of the channel. The channel path gains hl,tr(iTs) are uncorrelated and
normalized for each pair of Tx/Rx antennas, such that their expected total power is unity,
i.e., ∑L

l=1 |hl,tr(iTs)|2 = 1 is satisfied for ∀ t, r. We assume that channel is constant during
the whole frame, because we consider the SNR estimators for adaptive transmission.
Therefore, the time index i is omitted during the estimation procedure, i.e., Htr(i, n)
is replaced by Htr(n). We also assume that the average SNR and SNR per subcarrier
estimates are valid for all information data bearing OFDM symbols within the frame.

Generalizing the result presented in [8], the received signal average SNR for an NT ×NR

MIMO OFDM system can be written as

ρav =
1
NR

NR∑
r=1

∑NT
t=1 E{∑N−1

n=0 | σS√
NT
Ct(i, n)Htr(n)|2}

E{∑N−1
n=0 |σW,rWr(i, n)|2}

=
σ2
S

NTNR

NR∑
r=1

∑NT
t=1
∑N−1
n=0 |Htr(n)|2
σ2
W,r

=
σ2
S

NR

NR∑
r=1

1
σ2
W,r

=
1
NR

NR∑
j=1

ρav,r,

(5.3)

where ρav,r = σ2
S/σ

2
W,r is the average SNR at the rth antenna and ∑N−1

n=0 |Htr(n)|2 = N is
satisfied. For equal noise powers at the antennas, i.e., σ2

W,r = σ2
W for r = 1, . . . , NR, the

average SNR (5.3) can be expressed as ρav = σ2
S/σ

2
W .
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Furthermore, the average SNR on the nth subcarrier is given by

ρ(n) =
1
NR

NR∑
r=1

∑NT
t=1 E{| σS√

NR
Ct(i, n)Htr(n)|2}

E{|σW,rWr(i, n)|2}

=
σ2
S

NTNR

NR∑
r=1

∑NT
t=1 {|Htr(n)|2}

σ2
W,r

=
1

NTNR

NR∑
r=1

ρav,r

NT∑
t=1

E
{
|Htr(n)|2

}
.

(5.4)

From (5.4), it is clear that the SNR per subcarrier estimate depends on the average SNR
(or the average noise power) estimate at each antenna and appropriate channel estimates.

5.2. MIMO-PS Estimator

The preamble structure for a 2×2 MIMO OFDM systems is shown in Figure 5.2. Different
indexes for loaded subcarriers at each antenna must be introduced. The nulled subcarriers
are used to estimate the noise power. Proposed estimator can be further extended for
arbitrary MIMO systems. The required design condition is that the number of subcarriers
which are nulled on each receive antenna must be larger or equal to N/2, i.e., Q ≥ 2NT .
Figure 5.2 shows the corresponding time and frequency domain representations of the
preamble structure used for the SNR estimation in MIMO systems.

At the tth antenna, starting from the 2(t − 1)th subcarrier, each Qth subcarrier is
modulated with a QPSK signal Ctp(mt) with |Ctp(mt)| = 1 and loaded with the power
σ2
S, where t = 1, . . . , Nt. For m = 0, 1, . . . , Np − 1, the indexes of loaded subcarriers at

the tth antenna are given by mt = (t− 1)mQ. The remainder of Nz = N −Np = (Q−1)
Q

N

subcarriers at each antenna is not used (nulled), thus giving (Q−NT )
Q

N subcarriers which
are nulled on both antennas. In order to maintain the total energy level over all symbols
within the preamble, the transmit power is additionally scaled by factor Q. This yields a
total transmit power of σ2

SQ/NT on loaded subcarriers.
Write n = mQ + q, m = 0, . . . , Np − 1, mt = (t − 1)mQ, q = 0, . . . , Q − 1. The

transmitted signal on the nth subcarrier at the tth antenna is described as

Ct(n) = Ct(mQ+ q) =

⎧⎨⎩
√

Q
NT
σSCtp(mt), q = 2(t− 1)

0, q �= 2(t− 1), t = 1, . . . , NT

. (5.5)

From (5.1), the received signal on the nth subcarrier at the rth antenna is given by

Yr(n) = Y (mQ+ q) =

⎧⎨⎩Ytrp(mt), q = 2(t− 1)
Yrz(mQ+ q), q �= 2(t− 1), t = 1, . . . , NT

,

where
Ytrp(mt) =

√
Q

NT

σSCtp(mt)Htrp(mt) + σW,rWrp(mt) (5.6)

denote the received signal on the loaded subcarriers, and

Yrz(mQ+ q) = σW,rWrz(mQ+ q) (5.7)

is the received signal on the nulled subcarriers containing only noise.
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Figure 5.2.: Preamble structure in the a), c) time and b), d) frequency domain.

The empirical second-order moment of the received signal on the loaded subcarriers is

M̂2,trp =
1
Np

∑
mt

|Ytrp(mt)|2. (5.8)

Its expected value is given by

E
{
M̂2,trp

}
=

1
Np

∑
mt

E
{
|Ytrp(mt)|2

}

=
Qσ2

S

NTNp

∑
mt

E
{
|Htrp(mt)|2

}
+
σ2
W,r

Np

∑
mt

E
{
|Wrp(mt)|2

}
=
Qσ2

S

NT

+ σ2
W,r.

Similarly, the empirical second moment of the received signal on the nulled subcarriers
can be written as

M̂2,rz =
1

Np(Q−NT )

Np−1∑
m=0

Q−1∑
q=1,

q �=2(t−1),
t=1,...,NT

|Yrz(mQ+ q)|2, (5.9)

and has expectation

E
{
M̂2,rz

}
=

1
Np(Q−NT )

Np−1∑
m=0

Q−1∑
q=1,

q �=2(t−1),
t=1,...,NT

E
{
|Yrz(mQ+ q)|2

}

=
σ2
W,r

Np(Q−NT )

Np−1∑
m=0

Q−1∑
q=1,

q �=2(t−1),
t=1,...,NT

E
{
|Wrz(mQ+ q)|2

}

= σ2
W,r.

(5.10)
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In summary, the average SNR at the rth antenna ρav,r can be estimated as

ρ̂av,r =
1
Q

(∑NT
t=1 M̂2,trp −NTM̂2,rz

)
M̂2,rz

=
1
Q

(
(Q−NT )

∑NT
t=1
∑
mt

|Ytrp(mt)|2∑Np−1
m=0

∑Q−1
q=1,

q �=2(t−1),
t=1,...,NT

|Yrz(mQ+ q)|2 −NT

)
,

(5.11)

where, by the strong law of large numbers, M̂2,trp and M̂2,rz are strongly consistent unbi-
ased estimators of Qσ2

S

NT
+ σ2

W,r and average noise power σ2
W,r at the rth antenna, respec-

tively. In the case of equal noise power on antennas, i.e., σ2
W,r = σ2

W , for r = 1, . . . , NR,
the average SNR estimate can be expressed as

ρ̂av =
1
Q

(∑NR
r=1
∑NT
t=1 M̂2,trp −NT

∑NR
r=1 M̂2,rz

)
∑NR
r=1 M̂2,rz

=
1
Q

(
(Q−NT )

∑NR
r=1
∑NT
t=1
∑
mt

|Ytrp(mt)|2∑NR
r=1
∑Np−1
m=0

∑Q−1
q=1,

q �=2(t−1),
t=1,...,NT

|Yrz(mQ+ q)|2 −NT

)
.

(5.12)

The PS estimator does not need any knowledge of the transmitted symbols or channel
estimates on the loaded subcarriers for the average SNR estimation. Only the arrangement
of the loaded and nulled subcarriers must be known to the receiver. However, channel
estimates are requisite for the estimation of the average SNR per subcarrier (5.4). They are
available only for the loaded subcarriers by the means of the least squares (LS) estimation
as

Ĥtrp(mt) =
1√
Q
C∗
tp(mt)Ytrp(mt)

=
σS√
NT

Htrp(mt) +
σW,r√
Q
W̃rp(mt),

(5.13)

where W̃ (mt) = C∗
tp(mt)W (mt). Similar to the SISO case (4.26), the channel estimates for

the rest of the subcarriers Ĥtr(mQ+q), m = 0, . . . , Np−1, q = 0, . . . , Q−1∧q �= 2(t−1),
are obtained by the DFT interpolation. Therefore, the channel impulse response (CIR)
estimates after the IDFT can be written as

ĥtrp(k) = IDFTNp

[
Ĥtrp(mt)

]
, 0 ≤ k ≤ Np − 1

=
σS√
NT

htr(k) +
σW,r√
Q
w̃rp(k),

(5.14)

where IFFTNp [·] presents the Np-point IDFT and w̃rp(k) = IDFTNp

[
W̃rp(mt)

]
. To obtain

channel estimates, the rest of Nz = N−Np samples are padded with zeros giving the CIR
prior to N -point DFT as

ĥtr(k) =

⎧⎨⎩ĥtrp(k), 0 ≤ k ≤ Np − 1
0, Np ≤ k ≤ N − 1.

(5.15)



84 Chapter 5. SNR Estimation in MIMO OFDM Systems

Channel estimates after the N -point FFT are obtained as

Ĥtr(n) = DFTN

[
ĥtr(k)

]
=

σS√
NT

Htr(n) +
σW,r√
Q
W̃r(n), 0 ≤ n ≤ N − 1.

(5.16)

Similarly to (4.29), the expectation of the empirical second order moment of (5.16),
M̂2,p,tr(n) = |Ĥtr(n)|2, is given by

E
{
M̂2,p,tr(n)

}
= E

{
|Ĥtr(n)|2

}
=

σ2
S

NT

E
{
|Htr(n)|2

}
+
σ2
W,r

Q
E
{
|W̃r(n)|2

}
=

σ2
S

NT

E
{
|Htr(n)|2

}
+
σ2
W,r

Q
.

(5.17)

Furthermore, the SNR estimate on the nth subcarrier can be written as (5.4)

ρ̂(n) =
1
NR

NR∑
r=1

∑NT
t=1 M̂2,p,tr(n)
M̂2,rz

− 1
NTNRQ

. (5.18)

5.3. Improved MIMO-PS (MIMO-IPS) Estimator

It can be expected that the MIMO-PS estimator performs poorly in the low SNR regime.
Similarly to the SISO case, to filter the noise, the estimation of the average noise power
can be used to determine an appropriate threshold for the selection of the significant CIR
paths. By comparing the average power estimates of the individual CIR paths |ĥtrp(k)|2
with the threshold λr determined by the average noise power estimate M̂2,rz obtained in
frequency domain, only the significant CIR paths are selected as inputs to the N -point
DFT. The rest of the CIR paths, whose average power estimates are below the threshold,
are nulled assuming that they contain only noise samples. Therefore, the CIR for each
path prior to the N -point DFT can be written as

ĥtr(k) =

⎧⎨⎩ĥtrp(k), |ĥtrp(k)|2 > λr

0, otherwise
. (5.19)

The selection of the threshold λr is based on the reduction of the mean square error
(MSE) of the individual channel estimates. It is shown in [58] that the MSE is reduced
when

σ2
htr

(k) >
1

ρav,r
, k = 0, . . . , N − 1, (5.20)

holds, where σ2
htr

(k) = E {|htr(k)|2} denote the average power of the kth CIR path.
Because only CIR estimates ĥtrp(k) (5.14) are available, σ2

ĥtrp
(k) can be written as

σ2
ĥtrp

(k) =
σ2
S

NT

σ2
htr

(k) +
σ2
W,r

Q
. (5.21)
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By replacing (5.21) in (5.20), it can be derived that MSE is reduced when

σ2
ĥtrp

(k) >
(

1
NT

+
1
Q

)
σ2
W,r (5.22)

holds. The average power of the kth subcarrier σ2
ĥtrp

(k) and the average noise power

σ2
W,r in (5.22) can be replaced with the available unbiased estimates, |ĥtrp(k)|2 and M̂2,rz ,

respectively. Therefore, the appropriate threshold can be derived as

|ĥtrp(k)|2 >
(

1
NT

+
1
Q

)
M̂2,rz = λr. (5.23)

After significant path selection and DFT, channel estimates Ĥtr(n) are obtained using
(5.16), while SNR per subcarrier estimates ρ̂(n) are derived from (5.18). Since performed
CIR filtering significantly reduces the amount of noise present in channel estimates, the
average power estimate can be written as

M̂ ′2,trp =
1
N

N−1∑
n=0

|Ĥtr(n)|2. (5.24)

The average SNR estimation at the rth receive antenna is then given by

ρ̂′
av,r =

M̂ ′2,p
M̂2,z

− 1
Q
, (5.25)

while the estimation of the average SNR yields

ρ̂′
av =

1
NR

NR∑
r=1

ρ̂′
av,r. (5.26)

5.4. Simulation Results

The performance of the MIMO-PS and MIMO-IPS estimators is evaluated by means of
the Monte-Carlo simulations. The parameters of the OFDM system comply with the
WiMAX specifications: a 2 × 2 antenna array, N = 512 subcarriers, CP length of 64 sam-
ples, and sampling frequency of 7.68MHz (5MHz bandwidth mode), see Appendix B.2.
The performance of the estimators is evaluated for four different channel models: AWGN
channel and three extended ITU channels given in Appendix A. The number of indepen-
dent trials is set to Nt = 100000 assuring a high confidence level for the estimations. The
evaluation of the performance is done in the terms of the normalized MSE (NMSE) of the
estimated average SNR values as

NMSEav =
1
Nt

Nt∑
i=1

(
ρ̂av,i − ρav

ρav

)2

, (5.27)

where ρ̂av,i is the estimate of the average SNR in the ith trial and ρav is the true value.
Furthermore, the NMSE of the estimated SNRs per subcarrier is given by

NMSEsc =
1

NNt

Nt∑
i=1

N−1∑
n=0

(
ρ̂(n)i − ρ(n)

ρ(n)

)2

, (5.28)
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where ρ̂(n)i is the estimate of ρ(n) in the ith trial.
During the simulation, the MIMO-PS and MIMO-IPS estimators are evaluated for two

different numbers of time periodic parts, i.e., Q = 4 and 8. To compare its perfor-
mance with the Boumard’s estimator under the same spectral efficiency conditions, the
corresponding versions of the MIMO-PS and MIMO-IPS estimator based on two pream-
bles are also examined. The preamble structure shown in Figure 5.2 can be extended
by adding the second preamble at each antenna with an interchanged loaded subcarrier
arrangement present at the first preambles. Therefore, SNR estimation at each antenna
is achieved by averaging over two preambles such that the performance is improved as
shown in Figure 5.7 - Figure 5.10.

Figure 5.3 and Figure 5.4 show the NMSEav as a function of the average SNR for the
proposed estimators based on one preamble in AWGN and highly selective ETU channel,
respectively. The appropriate performance of the Minimum Mean Square Error (MMSE)
estimator, an optimal estimator in an AWGN channel, see [6], is shown as a reference. The
MIMO-PS estimator performs identically in both channels, i.e., it is robust to frequency
selectivity. Note that the increasing number of identical parts Q brings its performance
closer to the MMSE estimator. This behavior can be explained by the fact that more
subcarriers are used for the average noise power estimation (5.9) and the transmitted
power on the loaded subcarriers is scaled by the Q, thus giving a more accurate estimation
in (5.8). Moreover, the accuracy of the MIMO-IPS estimator is better than the one of the
MIMO-PS estimator for particular Q values, especially in the low SNR regime. However,
this performance improvement caused by the increase of the number of identical parts Q
is susceptible to frequency selectivity, i.e., both estimators perform almost identically for
Q = 8 in the ETU channel.

A similar behavior of the NMSEsc as a function of the SNR in the EPA and ETU
channel, is shown in Figure 5.5 and Figure 5.6, respectively. The SNR per subcarrier
MIMO-IPS estimator stops to benefit from the increase of Q in high frequency-selective
channels due to degrading influence of the interpolation over the nulled subcarriers.

Figure 5.7 and Figure 5.8 compare the NMSEav of the proposed estimators based on
two preambles with Boumard’s estimator proposed from [8]. The MIMO-PS and MIMO-
IPS estimators outperform the Boumard’s estimator whose performance is susceptible
to frequency selectivity. Furthermore, the performance improvement introduced by the
selection of significant CIR paths is particularly noticeable for the NMSEsc vs. SNR curves
as shown in Figure 5.9 and Figure 5.10.

The performance of the MIMO-PS and MIMO-IPS estimators can be further improved
by combining the average noise power estimation with more sophisticated channel esti-
mation algorithms that use pilot subcarriers within the data symbols.
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Figure 5.3.: NMSE of the average SNR estimation based on one preamble in AWGN
channel.
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Figure 5.4.: NMSE of the average SNR estimation based on one preamble in the ETU
channel.
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Figure 5.5.: NMSE of the SNR per subcarrier estimation based on one preamble in the
EPA channel.
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Figure 5.6.: NMSE of the SNR per subcarrier estimation based on one preamble in the
ETU channel.
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Figure 5.7.: NMSE of the average SNR estimation based on two preambles in the EVA
channel.
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Figure 5.8.: NMSE of the average SNR estimation based on two preambles in the ETU
channel.
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Figure 5.9.: NMSE of the SNR per subcarrier estimation based on two preambles in the
EVA channel.
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Figure 5.10.: NMSE of the SNR per subcarrier estimation based on two preambles in the
ETU channel.



6. Joint Synchronization and Spectrum
Characterization in OFDM-based
Cognitive Radio Systems

Spectrum efficiency of current wireless systems can be significantly improved by oppor-
tunistic sharing of the available frequency band between licensed primary users (PU) and
a group of unlicensed secondary users or cognitive radios (CRs) [64]. While monitoring
the spectrum of interest, CRs are able to detect the unused portions (spectrum holes) and
adapt waveform properties according to the dynamically changing environment without
introducing harmful interference to the PU. To regulate adaptive cooperative spectrum
utilization, the IEEE 802.22 working group initiated the standardization of wireless re-
gional area networks (WRAN) for allowing broadband access in UHF/VHF TV bands
between 54 and 862 MHz [65]. The standard, briefly presented in Appendix B.4, also
leaves the opportunity for extending spectrum utilization methods within any regulatory
regime. Furthermore, due to its flexibility in allocating resources among CRs, OFDM has
been shown as a promising candidate for the physical (PHY) layer within the WRAN
standard. OFDM is a multicarrier modulation scheme based on division of broadband
channel into many narrowband subchannels modulated on different subcarriers. By leav-
ing a set of subchannels unused, OFDM provides a flexible spectral shape that can fill
spectral gaps without interfering with the PU.

Standardization efforts for observation, decision, and action of CRs are widely discussed
in [65]. One of them is based on Fractional Bandwidth (FBW) usage where the total band
is divided into several subbands that can be activated (occupied by CRs) if spectrum
sensing indicates the absence of the PUs within them. During the initialization, the
OFDM CR receiver first needs to adjusts its timing, then to synchronize itself to some
appropriate carrier frequency, and, finally, to identify active subbands in order to further
process only the subcarriers that belong to them.

After an initial coarse timing estimation, the receiver has to estimate the carrier fre-
quency offset (CFO) that arises due to a potential mismatch between the transmitter
and receiver oscillators. In most cases, the CFO may exceed the subcarrier spacing Δf .
Therefore, it is customary to divide the CFO into an integer part (integer CFO - ICFO), a
multiple of Δf that produces a shift of subcarrier indices, plus a fractional part (fractional
CFO - FCFO) that results into interchannel interference (ICI) due to loss of orthogonality
among subcarriers. Conventional methods for estimating the fractional offset operate in
the time-domain and measure the phase shift between the repetitive parts of dedicated
preambles [57]. In contrast, the integer offset is typically estimated in the frequency-
domain by loading a known pseudo-noise (PN) sequence over certain subcarriers [66].
This can be extended to mode detection as proposed in [67].

91
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After the acquisition of the carrier frequency the active subbands in an FBW scenario
can be reliably identified via a dedicated out-of-band control channel [68]. However, this
approach can significantly reduce the bandwidth efficiency, particularly in heavy loaded
networks, by increasing the receiver complexity through the need of mutual synchroniza-
tion among CR receivers. One efficient way to avoid the usage of a control channel is to
embed the information of currently used subbands into the structure of data packets. The
authors in [67, 68] utilize the synchronization preamble for embedding the information of
spectrum usage patterns. Particularly, each CR identifies the FBW mode jointly with the
ICFO estimation. However, these methods do not provide any additional characterization
of the spectral content that quantifies CR signal quality in active subbands and/or the
level of interference in nonactive subbands. Such information can be further exploited for
adapting the transmission parameters (bandwidth, coding/data rate, power) to preserve
energy and bandwidth efficiency of CR systems. A widely used standard measure of the
received signal quality is the signal-to-noise ratio (SNR), as defined in (2.39). Under
the FBW scenario, the SNR in active subbands is defined as the ratio of the CR signal
power to the noise power. Similarly, the level of interference in nonactive subbands can
be characterized by the interference power from the PU signal.

In this chapter, we utilize the time periodic structure of the packet preamble proposed
by [57] that allows for the FCFO estimation over a wider CFO range with only one
preamble, hence reducing the training symbol overhead. After correcting the FCFO, we
modify the method from [67] to exploit the general frequency domain form of the same
preamble for joint ICFO estimation and current FBW mode detection. Moreover, we
have already shown in [9, 11] that the given preamble structure can be efficiently used
for the SNR estimation based on the second order moments of the received preamble
samples. The key contribution of this chapter consists in extending our previous work,
which leads to a robust and efficient SNR estimation in active subbands and interference
power estimation in nonactive subbands under the FBW scenario.

Furthermore, the PU interference is modeled as additive Gaussian noise over subcarriers
in nonactive subbands, as proposed in [69]. An additional assumption is that a PU
occupies all non active subbands with the same average power and that there is no mutual
out-of-band transmission between the PU and CR bands. The results can be easily
extended by introducing filtering effects and arbitrary PU occupancy of the deactivated
subbands.

Parts of the following results have been presented in [12, 13].

6.1. Fractional Bandwidth (FBW) Scenario

As shown in Figure 6.1, the FBW scenario assumes opportunistic usage of some common
bandwidth B where PU signals can appear on a preassigned portion of the band or dy-
namically change the position within it. After obtaining the information about spectrum
occupancy from spectrum sensing, the CR transmitter deactivates (nulls) the subcarriers
in the subbands occupied by the PU signals. Moreover, by sensing any change in spec-
trum occupancy, the proposed CR system can activate previously nulled subbands or null
the subbands that are active. As shown in Figure 6.1, the common frequency band B,
consisting of N subcarriers, is divided into M = 8 subbands, each carrying NBW = N/M
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Figure 6.1.: Frequency representation of the considered FBW model.

subcarriers. The total number of activated subbands can vary from 1 to M where only
contiguous subbands are allowed to be activated in order to reduce the power leakage in
the nulled subbands and mutual interference between PUs and CR [65]. Therefore, in
total there are MT = M(M+1)

2 FBW modes with MA = 1, 2, . . . ,M contiguous active sub-
bands. Moreover, pool allocation ρ = MA/M is defined as a parameter that indicates the
level of the spectrum utilization of a CR system [70]. In the example shown in Figure 6.1,
with M = 8 subbands, where a total of MT = 36 FBW modes are supported, currently
MA = 5 subbands are active, giving the pool allocation of ρ = 5

8 = 0.625.
The block diagram of a typical CR system with the FBW is shown in Figure 6.2. Given

the spectrum sensing results, the CR transmitter loads only the subcarriers of the active
subbands while the rest of subcarriers is nulled. Let Cm(n) denote the symbol carried on
the nth subcarrier in mode m, for n = 0, . . . , N − 1, while Sm is the set of subcarriers
belonging to active subbands in the mth mode. Therefore,

Cm(n) =

⎧⎨⎩S(n), n ∈ Sm
0, n /∈ Sm

, (6.1)

where σ2
S = E {|S(n)|2} is the average signal power. Without the loss of generality, we

assume that all subcarriers in nonactive subbands are occupied with the interference of
equal average power and that there is no interference power leakage to active subbands.
The interference on the subcarriers is modeled as a sampled complex zero-mean Gaussian
random variable with zero mean and variance σ2

I , i.e., I(n) ∼ N (0, σ2
I ) [69], thus giving

Im(n) =

⎧⎨⎩0, n ∈ Sm
I(n), n /∈ Sm

. (6.2)

Moreover, noise samples are modeled as a complex zero-mean AWGN, W (n), with vari-
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Figure 6.2.: The FBW system model.

ance σ2
W , i.e., W (n) ∼ N (0, σ2

W ). To simplify the ongoing analysis, without losing gen-
erality, we consider an AWGN channel, which is a regular assumption since timing syn-
chronization is performed with sufficiently large cyclic prefix [68]. The spectral content
on the subcarriers within the common band then can be written as

R(n) =

⎧⎨⎩S(n) +W (n), n ∈ Sm
I(n) +W (n), n /∈ Sm

. (6.3)

Therefore, we can define the frequency domain average SNR of the received signal in
active subbands as

SNR =
σ2
S

σ2
W

. (6.4)

Although the desired signal and interference are separated within the common band B,
as shown in Figure 6.1, we define the ratio between the average signal power and average
interference power as the average signal-to-interference ratio (SIR), denoted as

SIR =
σ2
S

σ2
I

. (6.5)

The visual representation of above defined quantities and their relations in the frequency
domain are shown in Figure 6.1.

To characterize the received signal in the time domain, we denote Ng as the num-
ber of samples in cyclic prefix. At the receiver, the incoming signal after the ADC is
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sampled at the rate fs = NΔf , where Δf is the subcarrier spacing. Due to the fre-
quency mismatch between the transmitter and receiver oscillator, the frequency fLO of
the local oscillator at the CR receiver differs from the received carrier frequency fc. Let
denote εc = (fc − fLO)/Δf the CFO normalized to the subcarrier spacing. Assum-
ing the perfect timing synchronization, the received signal in the time domain r(k), for
k = −Ng, . . . , N − 1, in the presence of the normalized CFO εc, is given by

r(k) =
e

j2πεk
N

N

N−1∑
n=0

R(n)e−j2π nk
N

=
e

j2πεk
N

N

(
(
∑
n∈Sm

S(n) +
∑
n/∈Sm

I(n))e−j2π nk
N

)
+

1
N

N−1∑
n=0

W (n)e−j2π nk
N

= e
j2πεck

N

(
s(k) + i(k)

)
+ w(k).

(6.6)

We now give the insight into the preamble design issues to facilitate its time and
frequency domain structure for the joint CFO synchronization and spectrum occupancy
characterization under the FBW scenario.

6.1.1. Preamble Design

In many wireless OFDM systems, transmission is normally organized in frames where a
sequence of data symbols is preceded by several preambles of known data used for the
synchronization and/or channel estimation purposes. Here, based on the approach taken
by the PS and IPS estimators for the average SNR estimation presented in Chapter 4, we
use only one preamble proposed by Morelli and Mengali [57]. We utilize the time periodic
preamble structure for the FCFO estimation, joint ICFO estimation and mode detection,
and, finally, for the SNR and interference power estimation. To cover a wider frequency
range, the preamble is divided into Q identical parts, each containing Np = N/Q samples,
as shown in Figure 4.1. It can be seen that such time periodic structure can be created
in the frequency domain by loading every Qth subcarrier.

The time domain representation of the preamble having the Q identical parts can be
written as

sp(k) = sp(k + q
N

Q
), k = 0, . . . ,

N

Q
− 1, q = 1, . . . , Q− 1.

The preamble can be formed in the frequency domain by transmitting a QPSK or PN
sequence on every Qth subcarrier in the active subbands, thus giving

Cp,m(n) =

⎧⎨⎩
√
QSp(n), n ∈ Sp,m

0, n /∈ Sp,m
, (6.7)

where Sp,m presents the set of loaded preamble subcarriers belonging to active subbands
of mode m, i.e., Sp,m ⊂ Sm while scaling factor

√
Q is used to ensure the constant average

signal energy.
To perform joint ICFO estimation and mode detection using one preamble, the authors

in [66, 67] proposed a differential coding structure of loaded subcarriers, which for a given
preamble with an arbitrary number of time periodic parts Q can be constructed as

Sp(n) = Sp(n−Q) · Pm(n), n ∈ Sp,m −Nst,m. (6.8)
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Here, Nst,m is the index of the first subcarrier of mode m and Pm is the PN sequence used
for embedding the information of particular mode m. Prior work in literature [68, 70]
emphasized the advantage of using Frank-Zadoff-Chu (FZC) sequences due to their prefer-
able autocorrelation properties and low PAPR behavior in the time domain. Therefore,
the FZC sequence used in (6.8) can be accommodated as [70]

Pm(n) = (−1)m·n/Qe
jπmn2
ρmNQ , n ∈ Sp,m, (6.9)

where ρm is the pool allocation for the given mode m.
Having this preamble structure, CFO can be decomposed into a fractional part ν that

belongs to the interval (−Q/2, Q/2], and an integer part that is a multiple of Q. The
normalized CFO is thus given by

εc = ν + ηQ. (6.10)

Clearly, the estimation of η is unnecessary if the maximum value of |εc| is guaranteed to
be less than Q/2, because, in this case, it yields η = 0.

6.2. Fractional CFO Estimation

We assume that the initial timing estimation is successfully performed utilizing the suf-
ficiently large cyclic prefix [68]. The next synchronization stage has to correct FCFO
utilizing the time domain structure of the received preamble. From (6.6), the received
preamble in the time domain in the presence of the normalized frequency offset εc can be
written as

rp(k) = e
j2πεck

N (sp(k) + ip(k)) + wp(k). (6.11)

The authors in [57] proposed the best linear unbiased estimator (BLUE) of FCFO that is
given by

ν̂ =
Q

2π

Q/2∑
j=1

w(j)ϕ(j), (6.12)

where
w(j) =

12(Q− j)(Q− j + 1) − 3Q2

2Q(Q2 − 1)
, (6.13)

and ϕ(j) is the angle

ϕ(j) =
[
arg

{
V (j)

V (j − 1)

}]
2π
. (6.14)

Here, [x]2π presents modulo 2π operation and V (j) denotes the correlation of time
periodic preamble parts separated by jN/Q samples given by

V (j) =
1

N − jN/Q

N−1∑
k=jN/Q

rp(k)r∗
p(k − j

N

Q
), 0 ≤ j ≤ Q/2.

After obtaining the FCFO estimate ν̂, the phase corrected preamble samples r′
p(k) can be

written as
r′
p(k) = rp(k)e− j2πν̂k

N . (6.15)
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6.3. Joint Integer CFO and FBW Mode Estimation

After the perfect FCFO compensation, i.e., ν̂ = ν, the frequency domain form of the
phase corrected preamble R′

p(n) = DFTN [r′
p(k)] are shifted due to the ICFO presence,

thus giving

R′
p(n) =

⎧⎪⎪⎨⎪⎪⎩
√
QSp(|n− ηQ|N)Pm(|n− ηQ|N) +W (n), n ∈ Sp,m,ηQ

W (n), n ∈ Sp,z,ηQ
I(|n− ηQ|N) +W (n), n ∈ Sp,i,ηQ

,

where |n−ηQ|N is the value n−ηQ reduced to the interval [0, N−1]. Here, Sp,m,ηQ is the
set of subcarriers where CR signal is present and that satisfy

(
(n ∈ Sp,m) ∧ (|n− ηQ|N ≤

ρN + Nst,m − n)
)

∨
(

(n /∈ Sm) ∧ (|n − ηQ|N > ρN + Nst,m − n) ∧ ([|n − Nst,m|]Q = 0)
)

.
Similarly, Sp,z,ηQ presents the set of subcarries with only noise samples for which holds(

(n ∈ Sz,m) ∧ (|n− ηQ|N ≤ ρN +Nst,m − n)
)

∨
(

(n /∈ Sm) ∧ (|n− ηQ|N > ρN +Nst,m −
n) ∧ ([|n − Nst,m|]Q �= 0)

)
, where Sz,m denote the set of nulled subcarriers that belong

to active subbands of mode m, thus Sz,m = Sm/Sp,m. Moreover, Sp,i,ηQ is the set of
subcarriers with the interfering PU signal and that satisfy

(
(n /∈ Sm) ∧ (|n − ηQ|N ≤

ρN +Nst,m − n)
)

∨
(

(n ∈ Sm) ∧ (|n− ηQ|N > ρN +Nst,m − n))
)

.

Utilizing the structure of the appropriately constructed preamble defined in (6.7), the
ICFO η and current mode m can be estimated by maximizing the following differential
correlation [67, 68]

Bm(η̂)=
|∑n∈Sp,m

R′
p(n+ ηQ)R′∗

p (n+ ηQ+Q)Pm(n+Q)|2
(∑n∈Sp,m

|R′
p(n+ ηQ)|2)2 , (6.16)

which gives estimates
(m̂, η̂) = arg max

(m,η)
|Bm(η̂)|2, (6.17)

for 1 ≤ m ≤ MT .

6.4. SNR and Interference Power Estimation

Given the ICFO estimation and mode detection obtained in (6.17), the spectral content
characterization can be performed by means of the SNR estimation in active subbands and
interference power estimation in nonactive subbands. After shifting the received signal
R′
p(n) with the estimated ICFO η̂, the corrected signal can be written as

Rp(n) = R′
p(n+ η̂Q). (6.18)
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Figure 6.3.: Block diagram of the SNR and interference power estimator.

Assuming the perfect FCFO and ICFO estimation and mode detection, i.e., ν̂ = ν, η̂ = η,
and m̂ = m, respectively, the received preamble can be written as

Rp(n) =

⎧⎪⎪⎨⎪⎪⎩
Rp,l(n), n ∈ Sp,m
Rp,z(n), n ∈ Sz,m
Rp,i(n), n /∈ Sm

, (6.19)

where
Rp,l(n) =

√
QSp(n)Pm(n) +W (n) (6.20)

denote the received signal on the loaded subcarriers of active mode m. Further,

Rp,z(n) = W (n) (6.21)

denote the received signal on the nulled subcarriers of active mode m, and

Rp,i(n) = I(n) +W (n) (6.22)

is the received signal in nonactive subband.
We extend the preamble-based method for the average SNR estimation from Chap-

ter 4 such that the empirical second order moment of the received signal on the loaded
subcarriers in active subbands can be expressed as

M̂2,l =
Q

ρN

∑
n∈Sp,m

|Rp,l(n)|2, (6.23)

with the expected value E{M̂2,l} = Qσ2
S + σ2

W . Similarly, the empirical second order
moment of the received signal on the nulled subcarriers in active subbands is given by

M̂2,z =
Q

ρN(Q− 1)
∑

n∈Sz,m

|Rp,z(n)|2 (6.24)

with the expectation E{M̂2,z} = σ2
W . Finally, the empirical second order moment of the

received signal on subcarriers in nonactive subbands can be written as

M̂2,i =
1

(1 − ρ)N
∑
n/∈Sm

|Rp,i(n)|2 (6.25)



6.5. Simulation Results 99

with the expected value E{M̂2,i} = σ2
I + σ2

W .
As shown in [9, 11], the average SNR can be estimated as

ˆSNR =
1
Q

M̂2,l − M̂2,z

M̂2,z

=
1
Q

(
(Q− 1)

∑
n∈Sp,m

|Rp,l(n)|2∑
n∈Sz,m

|Rp,z(n)|2 − 1
)
,

(6.26)

where, by the strong law of large numbers, M̂2,l and M̂2,z are strongly consistent unbi-
ased estimators of Qσ2

S + σ2
W and average noise power σ2

W , respectively. Similarly, the
interference power σ2

I can be estimated as

σ̂2
I = M̂2,i − M̂2,z

=
1
N

( 1
1 − ρ

∑
n/∈Sm

|Rp,i(n)|2 − Q

ρ(Q− 1)
∑

n∈Sz,m

|Rp,z(n)|2
)
.

(6.27)

The block diagram of the proposed estimators is shown in Figure 6.3

6.5. Simulation Results

The performance of the proposed preamble-based joint frequency estimation and spectrum
occupancy characterization method in cognitive radio systems under the FBW scenario
is evaluated using Monte-Carlo simulation. We assume that timing synchronization is
already performed while the CR channel is considered as AWGN, which is a regular
assumption because the cyclic prefix is sufficiently large. However, the straightforward
extension to other types of channels can be conducted. It is further assumed that the
total number of subcarriers is 1024 according to the WRAN (IEEE 802.22) standard [65],
see Appendix B.4.

The available band is divided into M = 8 subbands, where the lowest mode corresponds
to the pool allocation ρ = 0.125, while the highest mode ρ = 1 corresponds to the absence
of the PU when CR occupies the whole band. We consider a different number of time
periodic parts, i.e., Q = 2, 4, and 8. Furthermore, the normalized CFO is taken to be
εc = 8.5, which corresponds to ν = 0.5 and η = 4, 2, and 1 for Q = 2, 4, and 8, respectively.
The accuracy of the FCFO estimation is measured in the terms of the mean square error
(MSE), which is defined as E{|μ̂− μ|2}.

Figure 6.4 shows the performance of the MSE vs. ρ for Q = 2, 4, and 8. The SIR is
chosen to be -6 and -10 dB while the SNR is fixed to 6 dB. The MSE decreases with ρ
and there are slight variations of the MSE with respect to Q for both SIR values.

The ICFO and mode detection error probabilities, defined as Pr(η̂ �= η) and Pr(m̂ �=
m), respectively, are shown in Figure 6.5. Because they are obtained from the joint
maximization of differential correlation defined in (6.16), their performance overlap along
all considered values of the given parameters. For SIR = -6 dB, the cases when Q = 4, 8
perform almost the same and outperform the case whenQ = 2 while the error probabilities
drop below 10−3 even for the ρ = 0.375. Similarly, for SIR = -10 dB the error probabilities
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are smaller than 10−3, starting from ρ = 0.625 and ρ = 0.75 for Q = 4, 8 and Q = 2,
respectively.

The SNR estimation is evaluated in the terms of the normalized MSE, or NMSE(SNR),
defined as E{( ˆSNR−SNR

SNR
)2}, while NMSE(σ2

I ), defined as E{( σ̂
2
I −σ2

I

σ2
I

)2}, is used as the per-
formance measure for the interference power estimation. Figure 6.6 and Figure 6.7 show
the NMSE(SNR) vs. ρ for the fixed SNR = 6 dB and SIR = -6 dB and SIR = -10
dB, respectively. Two cases are analyzed here: the first case considers the perfect ICFO
estimation and mode detection, while the second case assumes that those estimates are
jointly obtained using (6.17). As expected, the increase of Q improves the performance.
For SIR = -6 dB the performance of both cases overlaps starting from ρ = 0.375, which
agrees to the detection error performance depicted in Figure 6.5. Similar behavior can be
noticed for SIR = -10 dB.

Figure 6.8 and Figure 6.9 show the NMSE(σ2
I ) vs. ρ performance for the same set

of parameters which are considered in the SNR estimation analysis. As it is expected,
increasing Q improves the performance due to the increased number of available noise
samples in active subbands, thus making (6.24) more accurate. Additionally, when ρ
increases, there are two opposite effects that influence the performance, because for both
SIR values there is a certain value of ρ up to which the NMSE(σ2

I ) decreases and continuing
to increase afterwards. This can be explained by the change of the number of available
samples, which determine the accuracy of the estimates M̂2,i and M̂2,z, defined in (6.24)
and (6.25), respectively. This value is additionally determined by the actual SIR value and,
in contrast to the SNR estimation, is shown to be very sensitive to previously performed
ICFO estimation and mode detection.
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7. Resource Allocation in the Presence
of Synchronization Errors

As addressed in Chapter 2, after the initial coarse timing estimation, the receiver has to
estimate the carrier frequency offset (CFO), which arises due to the mismatch between the
transmitter and receiver oscillators. Synchronization is commonly split into an acquisition
stage followed by a tracking phase [41]. Acquisition, also called coarse synchronization,
obtains the initial estimates of the synchronization parameters by exploiting the time-
domain repetitive structure of a training sequence (preamble) placed at the beginning of
the data frame [33, 43, 57, 71]. In this way, the initial CFO is obtained and compensated
in the time domain prior to the Discrete Fourier Transform (DFT), thus suppressing the
inter-carrier interference (ICI).

However, due to the estimation errors, the received signal may still be corrupted with
the residual CFO and sampling frequency offset (SFO) [72]. The residual CFO causes
the ICI and constant phase shift over all subcarriers [73, 74], as addressed in Chapter 2.
Moreover, the SFO is an additional source of the ICI and introduces the phase drift
proportional to the subcarrier index, thereby affecting each subcarrier differently.

The joint tracking of the residual CFO and SFO over OFDM data symbols is required
for the compensation of this effects. Most of the tracking algorithms available in the
literature utilize the dedicated pilot subcarriers to facilitate the synchronization tasks at
the receiver [80]-[81]. The phases of the received pilot subcarriers are first extracted and
then averaged over pilot subcarriers and/or over several OFDM symbols to obtain the
residual CFO and the phase slope introduced by the SFO.

In this chapter, we investigate a particular synchronization stage implemented within
the TIGR framework while focusing on its influence on the OFDM system performance.
We address the performance degradation caused by the CFO and SFO compensation
through the concept of the SNR loss. Since the final system performance is determined by
the variance of the considered estimators, we further derive the rate-power functions that
reflect those impairments. Based on this results, we compare the sensitivity of several
resource allocation algorithms addressed in Chapter 3 in an imperfectly synchronized
OFDM system by means of Monte-Carlo simulation.

Moreover, as discussed in [82, 83], for an imperfectly synchronized system the CFO
and SFO affect the accuracy of an SNR estimation method. In this chapter, we further
investigate the performance of the PS estimator in the presence of the CFO and SFO and
derive the appropriate analytical model. Finally, we analyze the performance of various
resource allocation algorithms discussed in Chapter 3 in the case of the imperfect SNR
estimation in an OFDM system with synchronization impairments.

105
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7.1. SNR Degradation

The impact of the CFO and SFO on the system performance has been extensively studied
in the literature through the introduction of the SNR loss [84, 85]. We present this analysis
and focus on the influence of the introduced SNR loss on the performance of the resource
allocation algorithms.

As derived in Subsection 2.5.2, according to (2.61), the received signal in the presence
of the CFO and SFO is given by

Ri(n) = ej2πiNtφn/NH(n)Ci(n)fN(φn) + Ii(n, εc, εs) +Wi(n), (7.1)

where the time index i = 0 stands for the estimation preamble and is omitted for simplifi-
cation purposes while Ii(n, εc, εs) in (2.62) accounts for the ICI. Depending on the values
for εs and εc, we consider four different cases that determine the quality of the received
signal.

a) The joint presence of the SFO and CFO, i.e., εs, εc, �= 0

To quantify the influence of the ICI on the received signal, we assume E {|H(n)|2} = 1
and E {|Ci(n)|2} = 1. For a large number of subcarriers, the interference term Ii(n, εc, εs)
can be reasonably modeled as a circularly symmetric complex zero-mean AWGN with the
variance given by

σ2
I (n, εc, εs) = E

{
|Ii(n, εc, εs)|2

}
= σ2

S

N
2 −1∑

m=− N
2

m�=n

|fN(φm +m− n)|2. (7.2)

Under the assumption that the identity

N
2 −1∑

m=− N
2

|fN(φm +m− n)|2 = 1 (7.3)

holds true for all subcarriers independently of εc, the interference power (7.2) can be then
written as

σ2
I (n, εc, εs) = σ2

S

(
1 − |fN(φn)|2

)
. (7.4)

From (2.38), the SNR on the nth subcarrier in the joint presence of the CFO and SFO
is defined as the ratio of the signal power attenuated with the factor |fN(φn)|2 to the
power of the joint contribution of the AWGN noise and ICI, which is given by

ρFO(n) =
E {|H(n)|2|C(n)|2|fN(φn)|2}
E {|I(n, εc, εs) +W (n)|2}

=
σ2
SE {|H(n)|2} |fN(φn)|2

E {|Ii(n, εc, εs)|2} + E {|W (n)|2}
=

ρ(n)|fN(φn)|2
1 + ρav(1 − |fN(φn)|2) ,

(7.5)
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where ρ(n) is the SNR on the nth subcarrier at the ideal transceiver. Using the Taylor
series expansion of |fN(φn)|2 around φn = 0, given by [29], it yields

|fN(φn)|2 ≈ 1 − 1
3
π2φ2

n

≈ 1 − 1
3
π2(εc + nεs)2.

(7.6)

The expression (7.5) can be then written as

ρFO(n) =
ρ(n)

(
1 − 1

3π
2(εc + nεs)2

)
1 + 1

3ρavπ
2(εc + nεs)2

≈ ρ(n)
1 + 1

3ρavπ
2(εc + nεs)2 .

(7.7)

The corresponding SNR loss on the nth subcarrier, denoted as γ(n), is defined as the
ratio of the ideal SNR per subcarrier ρ(n) and the SNR on the nth subcarrier in the
presence of the CFO and SFO, which yields

γFO(n) =
ρ(n)
ρFO(n)

≈ 1 +
1
3
ρavπ

2(εc + nεs)2.

(7.8)

From (7.8), it can be seen that the SNR loss on the nth subcarrier differs on each
subcarrier and is independent on the individual SNR on the nth subcarrier, but depends
on the average SNR and the CFO and SFO value. Moreover, the average SNR in the
presence of the CFO and SFO can be written as

ρFO,av =
1
N

N
2 −1∑

n=− N
2

ρFO(n)

=
1
N

N
2 −1∑

n=− N
2

ρ(n)
1 + 1

3ρavπ
2(εc + nεs)2 ,

(7.9)

while the average SNR loss γFO,av is given by

γFO,av =
ρav

ρFO,av

=
Nρav∑N

2 −1
n=− N

2

ρ(n)
1+ 1

3ρavπ2(εc+nεs)2

.
(7.10)

b) SFO is present, no CFO, i.e., εs �= 0, εc = 0

Figure 2.11 shows the block scheme of the basic OFDM receiver. It can bee seen that
the CFO is typically compensated prior to the DFT block assuming the sufficiently wide
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frequency range of the CFO estimator. We discuss in the following section that the residual
CFO depends on the true SNR and DFT length N . For the large value of N , the residual
CFO becomes much lower than the SFO so that it can be neglected in the performance
analysis. In the absence of the CFO, i.e., εc = 0, for a given SFO εs from (2.63), it yields
φn = nεs. The SNR on the nth subcarrier is then given by

ρSFO(n) =
ρ(n)

(
1 − 1

3π
2n2ε2

s

)
1 + 1

3ρavπ
2n2ε2

s

≈ ρ(n)
1 + 1

3ρavπ
2n2ε2

s

.

(7.11)

The corresponding SNR loss on the nth subcarrier, denoted as γSFO(n), can be written
as

γSFO(n) =
ρ(n)

ρFCFO(n)

≈ 1 +
1
3
ρavπ

2n2ε2
s.

(7.12)

Following the same approach as in (7.9), the average SNR in the presence of the SFO
is given by

ρSFO,av =
1
N

N
2 −1∑

n=− N
2

ρFO(n)

=
1
N

N
2 −1∑

n=− N
2

ρ(n)
1 + 1

3ρavπ
2n2ε2

s

,

(7.13)

while the average SNR loss γSFO,av can be written as

γSFO,av =
ρav

ρSFO,av

=
Nρav∑N

2 −1
n=− N

2

ρ(n)
1+ 1

3ρavπ2n2ε2
s

.
(7.14)

From (7.12), it can be seen that the SNR loss on the nth subcarrier is proportional to
the normalized SFO εs and to the square of the subcarrier index n. Figure 7.1 shows the
average SNR loss of the subcarrier n = 200 as a function of εs. Each curve represents a
particular modulation scheme and corresponds to the real SNR value required to achieve
BER = 10−3, given in Table 3.1. There are the two sets of curves: the first set without
the marks corresponds to an ideal transceiver with the SFO as the only impairment; the
second set with the marks corresponds to an transceiver with the LS channel estimation
in the presence of the SFO. Clearly, due to the higher SNR demands for achieving the
same BER (see Table 3.1), the impact of the SFO on the SNR loss is more critical for
a non-ideal transceiver, e.g., for εs = 10−4 (100 ppm), the SNR loss of 16-QAM at the
transceiver with the LS channel estimation is approximately 0.4 dB higher compared to
the SNR loss at an ideal transceiver, with the same value of the SFO.
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Figure 7.1.: SNR loss vs. normalized SFO εs for εc = 0 at the subcarrier n = 200 in an
AWGN channel for N = 512 and BER = 10−3.

c) No SFO, the presence of non-integer (fractional) CFO, i.e., εs = 0, εc /∈ Z

For the academic purposes we now neglect the presence of the SFO and assume that the
CFO takes a non-integer value, i.e, εc /∈ Z, where Z is the set of integer numbers. In
this case, the power from each individual subcarrier leaks over the adjacent subcarriers
resulting in a loss of their mutual orthogonality. In the absence of the SFO, for the given
CFO εc, from (2.63) it yields φn = εc. The SNR on the nth subcarrier can be written as

ρFCFO(n) =
ρ(n)

(
1 − 1

3π
2ε2
c

)
1 + 1

3ρavπ
2ε2
c

≈ ρ(n)
1 + 1

3ρavπ
2ε2
c

.

(7.15)

The corresponding SNR loss on the nth subcarrier, denoted as γFCFO(n), is given by

γFCFO(n) =
ρ(n)

ρFCFO(n)

≈ 1 +
1
3
ρavπ

2ε2
c .

(7.16)

The SNR loss is constant among subcarriers and approximately proportional to the square
of the normalized CFO εc.
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Figure 7.2.: SNR loss vs. normalized CFO εc for εs = 0 in an AWGN channel for N = 512
and BER = 10−3.

The average SNR in the presence of the fractional CFO can be written as

ρFCFO,av =
1
N

N
2 −1∑

n=− N
2

ρFCFO(n)

≈ ρav
1 + 1

3ρavπ
2ε2
c

,

(7.17)

while the average SNR loss γFCFO,av is given by

γFCFO,av =
ρav

ρFCFO.av

≈ 1 +
1
3
ρavπ

2ε2
c .

(7.18)

From (7.16) and (7.18), it can be seen that the SNR loss is constant over subcarriers
and is equal to the average SNR loss. Figure 7.2 shows the average SNR loss as a function
of εc. Similar to the previous case, the impact of the CFO on the SNR loss is more critical
for a non-ideal transceiver, e.g., for εc = 5 ·10−2, the SNR loss of 64-QAM and 16-QAM at
the transceiver with the LS estimation is approximately 2 dB and 1 dB higher compared
to the SNR loss at an ideal transceiver, respectively.
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d) No SFO, CFO is an integer multiple of Δf , i.e., εs = 0, εc ∈ Z

We now assume that the SFO is absent and that the CFO is am integer multiple of
subcarrier spacing Δf , i.e, εc ∈ Z. Here (2.58) reduces to

Ri(n) = ejψiH(|n− εc|N)Ci(|n− εc|N) +Wi(n), (7.19)

where |n− εc|N is the value of n − εc reduced to the interval [0, N − 1). This equation
indicates that an integer frequency offset preserves the orthogonality among subcarriers
and only results into a shift of the subcarrier indexes by the quantity εc. The DFT output
on the nth subcarrier presents an attenuated and phase-rotated version of Ci(|n− εc|N)
rather than of Ci(n), which results in BER of 0.5. Therefore, in the presence of an integer
CFO (ICFO), an appropriate ICFO estimation method has to be applied.

However, several CFO estimation methods from the literature provide a frequency
offset estimation range larger than one [57]. Assuming that the transmitter and receiver
oscillators operate within this range, the ICFO estimation may be avoided, thus reducing
the receiver complexity.

7.2. Estimation of Synchronization Impairments

During the design of TIGR, we assumed a sufficiently long time-periodic preamble such
that the robustness of the Schmidl and Cox estimator (SCE) [43] allows for neglecting the
residual effects of the symbol timing offset (STO) estimation. Moreover, to compensate
the effects of the CFO, we implemented the estimator proposed by Morelli and Mengali
in [57] as the best linear unbiased estimator (BLUE) [86, 62]. The advantages of utilizing
Morelli’s estimator within the TIGR framework are twofolds. At first, it is based on the
time periodic structure of preamble that allows for the extension of the estimation range
of the normalized CFO from [−1, 1], to [−Q

2 ,
Q
2 ], where Q is the number of identical parts.

The extended estimation range enables us to avoid the integer CFO (ICFO) estimation
and thus to reduce the computational complexity of the receiver. Secondly, as it was
discussed in Chapter 4, the time periodic preamble structure is also utilized for the design
of an effective SNR estimator. In this way, an additional data overhead is avoided while
preserving the good performance. We present the theoretical model of the Morelli’s CFO
estimator, and compare the corresponding analytical expressions with the simulation re-
sults regarding its performance. We show that the resulting residual CFO is sufficiently
small such that the performance of the PS SNR estimator is not affected.

Furthermore, the presence of the residual CFO and SFO requires joint phase tracking
and compensation over the OFDM data symbols. Most of the state-of-the-art meth-
ods [45, 72, 76, 87, 88] are based on the processing of the phase difference between the
transmitted and received symbols located at the predetermined subcarriers, known as
pilot subcarriers. Within the design of the TIGR we implement the linear least square
(LLS) estimator proposed by Hwang in [81]. According to the study on the residual CFO
and SFO estimators, given in [77], the LLS estimator offers satisfying performance for
a sufficiently large number of pilot subcarriers, while preserving the low computational
complexity. The implementation advantages are based on the fact that LLS estimator
exploits the pilot subcarriers from one OFDM symbol while other estimators are either
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based on grid-search methods or utilize the two or more adjacent OFDM symbols to derive
one estimate.

7.2.1. CFO Estimation

As given in (2.54), the received preamble in the time domain, in the presence of the CFO
εc can be written as

r(k) = e
j2πεk

N y(k) + w(k). (7.20)

Here, we assume that εs = 0 and an AWGN channel is applied since the performance of
the considered estimator is independent of the channel frequency response.

Authors in [57] proposed a BLUE of the CFO given by

ε̂c =
Q

2π

Q/2∑
j=1

ν(j)ψ(j) (7.21)

where

ν(j) =
12(Q− j)(Q− j + 1) − 3Q2

2Q(Q2 − 1)
(7.22)

and ψ(j) is the angle

ψ(j) =
[
arg

{
V (j)

V (j − 1)

}]
2π
. (7.23)

Here [x]2π presents the modulo 2π operation and V (j) is the correlation of time periodic
preamble parts separated by jN/Q samples given by

V (j) =
1

N − jN/Q

N−1∑
k=jN/Q

r(k)r∗(k − j
N

Q
), 0 ≤ j ≤ Q/2.

After obtaining the CFO estimate ε̂c, the phase corrected preamble samples r′(k) can be
written as

r′(k) = r(k)e− j2πε̂ck
N . (7.24)

However, due to the estimator variance, the residual CFO ε′
c = εc − ε̂c still remains and

is given by

Var(ε̂c) =
3

2π2N(1 − 1
Q2 )

1
ρav

. (7.25)

The estimation variance is independent of the estimated CFO and is determined by
the average SNR ρav and system parameters N and Q. The analytical expressions and
simulation results in Figure 7.3 show the variance of the estimated CFO for a different
number of identical parts Q. The analytical and simulation curves are overlapping for
SNR > 0 dB. The residual normalized CFO ε′

c has a Gaussian distribution with the
variance in (7.25), as shown in Figure 7.4. The simulation results match the theoretical
curves corresponding to the Gaussian distribution with the given variance.
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Figure 7.3.: MSE(ε̂c) vs. average SNR for εs = 0 and 10−4 with Q = 2, 4, and 8.
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7.2.2. Residual CFO and SFO Compensation

As discussed in the previous subsection, due to the finite variance of the CFO estimator
some residual CFO still exists, named ε′

c = ε̂c − εc . According to (2.61), the received
signal can be written as

Ri(n) = ej2πiNtφn/NH(n)Ci(n)fN(φn) + Ii(n, εc, εs) +Wi(n), (7.26)
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Algorithm 5 LLS algorithm for the residual CFO and SFO estimation.
1: φ̂0,n = 0, n = −N

2 , . . . ,
N
2 − 1

2: for i = 1, . . . , I do
3: Ỹ ′

i (n) = Ỹi(n) · e−j 2πNt
N

φ̂i−1,n , n = −N
2 , . . . ,

N
2 − 1

4: ξi(np) = ∠
(
Ỹi(np), Ci(np)

)
, np ∈ P

5: ε̂′
c = N

2πNt

∑
P ξi(np)
NP

6: ε̂s = N
2πNt

∑
P npξi(np)∑

P n2
p

7: φ̂i,n = ε̂′
c + nε̂s, n = −N

2 , . . . ,
N
2 − 1

8: Yi(n) = Ỹ ′
i (n) · e−j 2πNt

N
φ̂i,n , n = −N

2 , . . . ,
N
2 − 1

9: end for

where Ii(n, εc, εs) accounts for the ICI on the nth subcarrier in (2.62), and φn now cor-
responds to the residual CFO and SFO, i.e., φn = ε′

c + nεs. Assuming the large number
of subcarriers, the ICI term Ii(n, εc, εs) can be modeled as a Gaussian random variable,
with the variance in (7.2). However, due to the low value of this variance, for the sake of
simplicity in the following derivations concerned with the phase tracking, we neglect the
ICI term from (7.26), thus yielding

Ri(n) = ej2πiNtφn/NH(n)Ci(n) +Wi(n), (7.27)

where H(n) = fn(φn)H(n) represents the equivalent channel frequency response at the
beginning of the frame. Since this term is independent of the time index i, the phase shift
introduced by fn(φn) is removed by equalization, as discussed in Section 2.6. Assuming
the perfect channel estimate H(n), the received signal in the presence of the residual CFO
and SFO after equalization becomes

Ỹi(n) =
Ri(n)
H(n)

= ej2πiNtφn/NCi(n) + W̃i(n), (7.28)

where W̃i(n) = Wi(n)/H(n) represent the equalized AWGN samples. As (7.28) suggests,
each OFDM symbol still contains the phase shift proportional to iφn = i(ε′

c+nεs), which
is determined by the time index i. Additionally, the phase variations over subcarrier index
n are linear, with the slope determined by the symbol index i and normalized SFO εs as
shown in Figure 7.5a. The implemented LLS phase tracking [81] is based on the fitting
of the phases to the best linear line.

Within the frame, each data block contains NP pilot subcarriers symmetrically located
with respect to the DC subcarrier at the pilot subcarrier indexes P = {n1, n2, . . . , nNP }.
According to (7.28), the received signal at the pilot subcarrier np after equalization be-
comes

Ỹi(np) =
Ri(np)
H(np)

= ej2πiNtφnp/NCi(n) + W̃i(np), np ∈ P . (7.29)

Moreover, we assume that the power loaded on the pilot subcarriers σ2
P = |Ci(np)|2 is

equal to the average signal power, i.e., σ2
P = σ2

S. In general, as specified by some of the
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current wireless standards, the power of the pilot subcarriers are additionally boosted to
bring better estimation performance, e.g., in WiMAX the boosting factor is 2.5 dB. The
individual steps of the LLS phase tracking are given in Algorithm 5.

The time index i = 0 corresponds to the preamble symbol adjacent to the first data
symbol. Each symbol is pre-compensated with the phase offset determined from the pre-
vious symbol. This allows for reducing the phase ambiguity of the LLS estimate since the
slope of the phase increases with the time index i, as shown in Figure 7.5b. Furthermore,
in Step 4, ξi(np) denote the phase difference between the transmitted signal Ci(np) and
the equalized received signal Ỹi(np) at the npth pilot subcarrier. The LLS algorithm in-
terpolates those phase offsets to calculate the phase drift of each data subcarrier, as given
in steps 5-7. The CRBs that correspond to the residual CFO and SFO estimation are
derived in [77] as

CRB{ε̂′
c} =

1
ρPNP

(7.30)

and

CRB{ε̂s} =
1

ρP
∑

P n2
p

, (7.31)

respectively, where ρP = σ2
P

σ2
W

denotes the average SNR on the pilot subcarriers. We further
assume that the average SNR on pilot subcarriers is equal to the average SNR on data
subcarriers, i.e., ρP = ρav.

The given variances are independent of the estimated residual CFO and SFO and are
determined by the average SNR on the pilot subcarriers ρP , number of pilot subcarri-
ers NP , and their positioning within the OFDM symbol. The analytical expressions and
simulation results in Figure 7.6 and Figure 7.7 show the pdf of the estimated residual
CFO and SFO, respectively, for different SNR values in an AWGN and highly selective
Extended Typical Urban (ETU) channel, given in Appendix A. For an AWGN channel
the simulation results match the theoretical curves that correspond to the Gaussian dis-
tribution of given variance. It is shown that the corresponding estimates stay unbiased
but variance increases in an ETU channel due to the frequency selectivity. Figure 7.8 and
Figure 7.7 show the MSE of the estimated residual CFO and SFO as a function of the
SNR. For SNR values grater than 8 dB, the analytical and simulation curves are over-
lapping for an AWGN channel, while the SNR loss introduced by the frequency-selective
ETU channel stays constant.

The performance of an OFDM system with the considered synchronization stages, i.e.,
with Morelli’s CFO estimation and LLS phase tracking, for εs = 10−4 in an AWGN channel
is given in Figure 7.10. The related list of SNR values required to achieve BER= 10−3 is
given in Table 7.1 while corresponding rate-power functions are shown in Figure 7.11. In
Section 7.4, they are utilized for the rate adaptive algorithms addressed in Chapter 3.
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Table 7.1.: Required SNR, SNR gap, and SNR margin of an OFDM system with the LLS
phase compensation in an AWGN channel for BER = 10−3, N = 512, and
NP = 48.

LLS phase comp. (ideal transc.) LLS phase comp. (LS ch. est.)
Modulation

bits r
Required
SNR [dB]

Γr,LLS
[dB]

ΔSNRLLS
[dB]

Required
SNR [dB]

Γr,LLS+LS
[dB]

ΔSNRLLS+LS
[dB]

1 6.99 6.99 0.2 7.99 7.99 1.2
2 10.05 5.27 0.24 12.55 7.78 2.75
3 14.78 6.33 0.37 17.9 9.45 3.49
4 17.03 5.27 0.5 20.07 8.31 3.54
5 20.29 5.38 0.73 23.41 8.49 3.85
6 23.81 5.81 1.25 27.26 9.27 4.72
7 29.09 8.05 3.67 32.83 11.8 7.43
8

7.3. SNR Estimation in the Presence of Synchronization

Errors

The PS estimator, previously discussed in Chapter 4, is based on the second order mo-
ments of the preamble samples. It utilizes the presence of the noise samples on the received
nulled subcarriers and signal plus noise components on the received loaded subcarriers.
In previous sections of this chapter we have shown that the presence of synchronization
errors affects the received signal twofold. At first, it introduces the phase shift that rotates
the signal constellations, thus requiring for an additional phase compensation. Secondly,
the power leakage from adjacent subcarriers causes the ICI.

Concerning the PS estimator, in the presence of the CFO and SFO, the content on
the nulled subcarriers is changed such that besides noise components it contains the
ICI component originating from the adjacent loaded subcarriers. Write n = mQ + q,
m = −Np

2 , . . . ,
Np

2 − 1, and q = 0, . . . , Q − 1. Having the same notation setting as in
Section 4.2, the transmitted signal on the nth subcarrier is given by

C(n) = C(mQ+ q) =

⎧⎨⎩
√
QσSCp(mQ), q = 0

0, q = 1, . . . , Q− 1
. (7.32)

According to (4.17), the received signal on the nth subcarrier in the presence of the CFO
and SFO can be written as

Y (n) = Y (m+ q) =

⎧⎨⎩Yp(mQ), q = 0
Yz(mQ+ q), q = 1, . . . , Q− 1

,

where

Yp(mQ) =
√
QσS Hp(m)Cp(mQ)fN(φmQ) + I(mQ, εc, εs) +W (mQ) (7.33)

is the received signal on the loaded subcarriers, and

Yz(mQ+ q) = I(mQ+ q, εc, εs) +W (mQ+ q). (7.34)
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is the received signal on the nulled subcarriers. Here, I(mQ, εc, εs) denotes the ICI on the
nth subcarrier given by

I(mQ, εc, εs) =
√
QσS

Np
2 −1∑

l=− Np
2 ,

l �=m

Hp(lQ)Cp(lQ)fN (φlQ + (l −m)Q) , (7.35)

where fN(·) is given in (2.59). Moreover, φmQ presents the degradation effect of the joint
contribution of the CFO and SFO in (2.63) as φmQ ≈ εc +mQ · εs. From (7.34), it can be
seen that the received signal on the nulled subcarriers contains both the noise component
and ICI originating from the adjacent loaded subcarriers.

The estimation of the average SNR in the presence of the CFO and SFO, according to
(4.23), is given by

ρ̂FO,av =
1
Q

(
M̂FO,2,p

M̂FO,2,z
− 1

)
, (7.36)

where M̂FO,2,p and M̂FO,2,z denote the empirical second-order moments of the received
signal on loaded and nulled subcarriers, respectively. Therefore, by substituting (7.33) in
(4.20), the empirical second-order moment of the received signal on the loaded subcarriers
becomes

M̂FO,2,p =
1
Np

Np
2 −1∑

m=− Np
2

|Yp(mQ)|2. (7.37)

Its expected value can be written as

E
{
M̂FO,2,p

}
=

1
Np

E

⎧⎪⎨⎪⎩
Np
2 −1∑

m=− Np
2

|Yp(mQ)|2
⎫⎪⎬⎪⎭

=
1
Np

Np
2 −1∑

m=− Np
2

E
{
|Yp(mQ)|2

}

=
Qσ2

S

Np

Np
2 −1∑

m=− Np
2

E
{
|Hp(mQ)|2

}
|fN(φmQ|2)

+
Qσ2

S

Np

Np
2 −1∑

m=− Np
2

Np
2 −1∑

l=− Np
2 ,

l �=m

E
{
|Hp(lQ)|2

}
|fN (φlQ + (l −m)Q) |2 +

σ2
W

Np

Np
2 −1∑

m=− Np
2

E
{
|W (mQ)|2

}

=
Qσ2

S

Np

Np
2 −1∑

m=− Np
2

Np
2 −1∑

l=− Np
2

E
{
|Hp(lQ)|2

}
|fN (φlQ + (l −m)Q) |2 +

σ2
W

Np

Np
2 −1∑

m=− Np
2

E
{
|W (mQ)|2

}
= Qσ2

Sψ(Q) + σ2
W ,

(7.38)
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where ψ(Q) denotes the contribution from the loaded subcarriers mutually separated by
Q− 1 subcarriers given by

ψ(Q) =
Np
2 −1∑

l=− Np
2

|fN (φlQ + (l −m)Q) |2. (7.39)

Similarly, by substituting (7.34) in (4.22), the empirical second-order moment of the
received signal on the nulled subcarriers

M̂FO,2,z =
1

(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

|Yz(mQ+ q)|2 (7.40)

has expectation

E
{
M̂FO,2,z

}
=

1
(Q− 1)Np

E

⎧⎪⎨⎪⎩
Np
2 −1∑

m=− Np
2

Q−1∑
q=1

|Yz(mQ+ q)|2
⎫⎪⎬⎪⎭

=
1

(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

E
{
|Yz(mQ+ q)|2

}

=
1

(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

E
{
|I(mQ+ q)|2

}
+

1
(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

E
{
|W (mQ+ q)|2

}

=
Qσ2

S

(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

Np
2 −1∑

l=− Np
2

E
{
|Hp(lQ)|2

}
|fN (φlQ + (l −m)Q− q) |2

+
1

(Q− 1)Np

Np
2 −1∑

m=− Np
2

Q−1∑
q=1

σ2
W

=
Qσ2

S

Q− 1
(1 − ψ(Q)) + σ2

W ,

(7.41)

where, using (7.39), it yields

Q−1∑
q=1

Np
2 −1∑

l=− Np
2

E
{
|Hp(lQ)|2

}
|fN (φlQ + (l −m)Q− q) |2 =

Q−1∑
q=0

Np
2 −1∑

l=− Np
2

|fN (φlQ + (l −m)Q− q) |2

−
Np
2 −1∑

l=− Np
2

|fN (φlQ + (l −m)Q) |2

= 1 − ψ(Q).
(7.42)
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Inserting (7.37) and (7.40) in (7.36) yields

ρ̂FO,av =
1
Q

(
M̂FO,2,p − M̂FO,2,z

M̂FO,2,z

)

=
1
Q

⎛⎜⎝Qσ2
Sψ(Q) + σ2

W − Qσ2
S

Q−1(1 − ψ(Q)) + σ2
W

Qσ2
S

Q−1(1 − ψ(Q)) + σ2
W

⎞⎟⎠
=

σ2
S

σ2
W

(ψ(Q) − 1−ψ(Q)
Q−1 )

1 + σ2
S

σ2
W

Q
Q−1(1 − ψ(Q))

=
Q
Q−1(ψ(Q) − 1

Q
)ρav

1 + Q
Q−1(1 − ψ(Q))ρav

,

(7.43)

where ρav = σ2
S

σ2
W

is the ideal average SNR defined in (2.39).

To estimate the SNR per subcarrier from (4.30), the channel estimates in the presence
of the CFO and SFO after the N -point DFT can be written as (4.28)

ĤFO(n) = σSH(n)fn(φn) + I(n) +
σW√
Q

(n)W̃ (n), −N

2
≤ n ≤ N

2
− 1, (7.44)

where I(n) accounts for the ICI on nth subcarrier and is given by

I(n) =
√
QσS

N
2 −1∑

l=− N
2 ,

l �=n

H(l)C(l)fN (φl + (l − n)) . (7.45)

Similarly to (7.38), the expectation of the empirical second order moment |ĤFO(n)|2 can
be written as

E
{
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}
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{
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}
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E
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}
|fN (φl + (l − n)) |2

+
1
Q
E
{
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}
≈ σ2

SE
{
|H(n)|2

}
|fN (φn) |2 + σ2

S(1 − |fN (φn) |2) +
σ2
W

Q
.

(7.46)
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As given in (4.30), by using the noise power estimates from (7.40), the SNR estimate
on the nth subcarrier becomes

ρ̂FO(n) =
M̂FO,2,p(n)
M̂FO,2,z

− 1
Q

=
σ2
SE {|H(n)|2} |fN (φn) |2 + σ2

S(1 − |fN (φn) |2) + σ2
W

Q

Qσ2
S

Q−1(1 − ψ(Q)) + σ2
W

− 1
Q

=
σ2

S

σ2
W
E {|H(n)|2} |fN (φn) |2 + σ2

S

σ2
W

(1 − |fN (φn) |2) + 1
Q

− 1
Q

− σ2
S

σ2
W

1
Q−1(1 − ψ(Q))

1 + σ2
S

σ2
W

Q
Q−1(1 − ψ(Q))

=
|fN (φn) |2ρ(n) +

(
1

Q−1(Q− 2 + ψ(Q)) − |fN (φn) |2
)
ρav

1 + Q
Q−1(1 − ψ(Q))ρav

,

(7.47)

where ρ(n) = σ2
SE{|H(n)|2}

σ2
W

= ρav · E {|H(n)|2} is the ideal SNR on the nth subcarrier,
defined in (2.38).

7.3.1. Numerical Results

We investigate the impact of synchronization errors on the performance of the PS esti-
mator. Both the average SNR and SNR per subcarrier estimation are considered. The
performance for a different number of preamble identical parts, i.e., Q = 2, 4, and 8, is
compared with the real SNR in the presence of the CFO and SFO while the ideal SNR
value (of an ideal transceiver) is given as a reference. The investigated system comply
with the WiMAX specifications: N = 256 subcarriers, CP length of 32 samples, and 3.5
MHz bandwidth mode, see Appendix B.2.

Figure 7.12 shows the average SNR estimate for εc = 5 · 10−2 and εs = 10−4 in an
AWGN channel. The simulation results agree with the analytical expression in (7.43).
The estimated value of the average SNR approaches the real average SNR value as Q
increases. Figure 7.13 shows the mean of the average SNR estimation in the presence
of the Morelli’s estimator with the residual CFO ε′

c and SFO εs = 10−4. Because the
CFO estimation is performed prior to the DFT, ε′

c is normally zero-mean distributed
with the variance in (7.25). The real SNR curves obtained from (7.9) for a different
number of preamble identical parts, i.e., Q = 2, 4, and 8, are almost identical because the
corresponding variances of ε′

c perform closely as shown in Figure 7.3. As Q increases, the
estimated SNR is approaching the real SNR value.

Figures 7.14, 7.15, and 7.17 show that the PS SNR per subcarrier estimation in the
presence of the SFO does not follow the slope of the real affected SNR, due to the ICI
originating from the adjacent subcarriers. However, for small SFO vales, as one present in
the USRP, i.e., up to 10−4, Figure 7.15 shows that those degradations are negligible, such
that the PS SNR estimation bias to the real SNR per subcarrier value is negligible. It is
further shown in Figure 7.16 that the PS SNR per subcarrier estimation in the absence of
the SFO approaches the real SNR values and that the simulation results agree with the
analytical expression in (7.47).
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Figure 7.12.: Average SNR for εc = 5·10−2, εs = 10−4, andN = 256 withQ = 2, 4, and 8.
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Figure 7.13.: Average SNR in the presence of ε′
c for εs = 2 · 10−4 and N = 256 with

Q = 2, 4, and 8.
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Figure 7.14.: SNR per subcarrier for ρav = 20 dB, εc = 0, and εs = 2 · 10−4 with
Q = 2, 4, and 8.
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Figure 7.15.: SNR per subcarrier for ρav = 20 dB, εc = 0, and εs = 10−4 with
Q = 2, 4, and 8.
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Figure 7.16.: SNR per subcarrier for ρav = 20 dB, εc = 2 · 10−2, and εs = 0 with
Q = 2, 4, and 8.
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Figure 7.17.: SNR per subcarrier for ρav = 20 dB, εc = 5 · 10−2, and εs = 2 · 10−4 with
Q = 2, 4, and 8.
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7.4. Resource Allocation in the Presence of Receiver

Imperfections

In this section, we investigate by means of simulation study the performance of the Levin-
Campello (LC) and Uniform power (UP) rate adaptive algorithms discussed in Chapter 3
for an receiver with the PS SNR estimator. The simulation environment is compatible with
the WiMAX PHY standard specification, given in Appendix B.2. The system parameters
used in the simulation are taken from WiMAX 5 MHz mode having the total of N = 512
subcarriers, where Nu = 384 subcarriers are used for data transmission. Furthermore, the
CP length is 64 samples with the sampling frequency of 7.68 MHz (5 MHz bandwidth
mode). We evaluate the performance for the required BER= 10−3 in a highly selective
ETU channel, given in Appendix A.

We consider two general cases. The first case assumes an ideal transceiver, while the
second case includes the presence of the LS channel estimation. Figure 7.18 shows that
the increased SNR estimation variance at low SNR values favorizes the higher data rate
which results in the decreased rate decrement to water-filling. However, this introduces the
violation of the BER requirement. Figure 7.19 shows that the BER of the UP algorithm
is preserved below the required BER of 10−3 while its achieved rate is independent of
the number of identical parts Q in the synchronization preamble. On contrary, the LC
algorithm is highly sensitive to Q, especially in low SNR region. The performance of the
system utilizing the PS estimator with Q = 8 can be considered acceptable, thus offering
low BER variations for operating SNR values.

We further analyze the performance of the considered rate adaptive algorithms for a
receiver with the PS SNR estimator and synchronization stage that includes Morelli’s
CFO estimator and LLS phase tracking. Figure 7.20 and Figure 7.21 show that the LC
algorithm is more robust to the presence of the SFO. In the high SNR region,the ICI
causes the performance deterioration while the required BER is preserved. Moreover, the
UP algorithm experiences the large increase of the BER.

Figure 7.22 and Figure 7.23 compare several rate adaptive algorithms addressed in
Chapter 3 in the presence of the considered synchronization stage and εs = 20 ppm.
While the UP and SB methods experience either constant or decreasing BER with the
increasing SNR, the BER related to the LC algorithm constantly decreases, while offering
the highest data rate. In Chapter 8, we extend this analysis by comparing the simulation
results with the experimental measurements obtained by using the TIGR framework.
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Figure 7.18.: Rate decrement to water-filling vs. SNR for an OFDM transceiver with the
PS SNR estimation in the ETU channel for BER = 10−3.
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Figure 7.19.: BER vs. SNR for an OFDM transceiver with the PS SNR estimation in the
ETU channel for BER = 10−3.
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Figure 7.20.: Rate decrement to water-filling vs. SNR for an OFDM transceiver with the
PS SNR estimation and LLS phase compensation in the ETU channel for
BER = 10−3.
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Figure 7.21.: BER vs. SNR for an OFDM transceiver with the PS SNR estimation and
LLS phase compensation in the ETU channel for BER = 10−3.
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Figure 7.22.: Rate decrement to water-filling vs. SNR for an OFDM transceiver with the
PS SNR estimation with Q = 8 and LLS phase compensation in the ETU
channel for BER = 10−3.
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Figure 7.23.: BER vs. SNR for an OFDM transceiver with the PS SNR estimation with
Q = 8 and LLS phase compensation in the ETU channel for BER = 10−3.





8. Implementing Adaptive OFDM by
Software Defined Radio

Optimal utilization of radio resources (bandwidth, transmit power) in multicarrier systems
becomes very challenging due to the coexistence of various wireless standards within the
same frequency band. The investigation and assessment of information theoretic concepts
for wireless resource management in real-world scenarios requires flexible testbeds with a
wide range of reconfigurable parameters. These functionalities are currently offered only
by Software Defined Radio (SDR) technology based on general purpose reprogrammable
hardware. Using the SDR concept we developed TIGR (Theoretische Informationstechnik
GNU Radio), a modular, SDR based reconfigurable framework that allows for an adaptive
OFDM transmission with a large set of adaptable parameters for different radio scenarios.
Developed at the Institute for Theoretical Information Technology (TI) at RWTH Uni-
versity in Germany, TIGR is based on the GNU Radio framework [89], a free and open
source software toolkit based on hybrid C++/Python programming model that provides a
library of signal processing blocks for developing communication systems and conducting
experiments in different radio environments. The GNU Radio runs in real time and can be
interfaced with the RF hardware, thus allowing for a transition from the experimentation
to the deployment within the same framework.

We start with a general introduction to the SDR. Rather than presenting architectural
issues and in-depth conceptual analysis of the SDR, we focus on the basic ideas and SDR
adaptivity capabilities as well as on potential implementation issues. A more complete
coverage of the subject with a comprehensive list of references in the field can be found
in [90, 91, 92]. Moreover, the advantages of the SDR and the corresponding hardware
limitations are discussed. We further provide an overview of the GNU Radio, which
is used as the basis for TIGR and give the insight into the basic architectural features
considering the hardware and software specifications.

The corresponding system model and basic TIGR functionalities are described, while
different components of the system are individually introduced. Finally, we conduct a mea-
surement campaign to investigate several rate adaptive allocation algorithms addressed
in Chapter 3 and compare their performance with the simulation results. Similarly to the
simulation study, we utilize the concept of the SNR gap discussed in Chapter 3. Based
on BER measurements, for each modulation scheme we determine the required SNR for
achieving a given BER constraint. Due to the more “conservative“ rate-power functions
caused by the performance degradation in a real RF environment, the achieved data rates
are lower compared to the simulation results. The achieved BER violates the required
constraints in the low SNR region, mostly due to the finite variance of the SNR estimator
discussed in Chapter 7.

Parts of the following results have been presented at international conferences, see
[14, 18, 15, 16].
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8.1. The Basics of Software Defined Radios

An SDR is a radio system that is built entirely or in large parts in a software running
on a general purpose computer. It allows for the additional flexibility not available in
commercial hardware. Adaptivity can be realized by moving the signal processing into
the software domain such that certain functions can be performed on-the-fly by executing
the corresponding software routines. Moreover, new functionalities can be easily included
by software updates, hence without the need for a hardware modification.

This means that instead of using analog circuits or a specialized digital signal proces-
sor (DSP) to receive the radio signal, the digitized signals are processed by architecture
independent high level software running on a general purpose processor (GPP). The term
”radio” refers to any device that transmits and/or receives radio waves. While most mod-
ern radios contain the firmware written in a certain programming language, the important
distinction of the SDR is its general design irrespective to a specific chip or platform. It
is therefore possible to reuse its code across different underlying architectures [93].

Ideally, besides a computer, the only required hardware is an antenna, an analog-
to-digital converter (ADC) at the receiver, and a digital-to-analog converter (DAC) at
the transmitter. An ideal SDR thus looks as depicted in Figure 8.1. At the receiver,
a transmitted radio signal is picked up by an antenna, and then fed into an ADC for
sampling. Once digitized, the signal is sent to a general purpose computer (e.g. an
embedded PC) for further processing. The transmitter looks very similar, except that
the signal is sent in the reverse direction, and a DAC is used instead of an ADC. The
complete transceiver may share the processing unit and the antenna between the receiver
and transmitter.

While this concept is very simple and extremely versatile, it is not practical due to
limitations of a real hardware. However, various solutions have been suggested to over-
come these problems. Some of signal manipulation can be performed by hardware while
processors of different types, such as field programmable gate arrays (FPGA), DSP, and
general purpose processors (GPP) can handle other parts of the signal processing. A
quick look at different hardware limitations is given below. For better readability, only
the receiving side is discussed. The transmitting side is subject to analogous limitations.

• Analog-Digital Converters: The ultimate idea of the SDR is to move ADC/DAC as
close as possible to the antenna such that all signal processing can be done in the
digital domain. However, to implement this concept, the requirements of the ADC
and DAC far exceed practical capabilities such as the sampling rate, dynamic range
and bandwidth [94]. To digitize an analog RF signal at least requires sampling
rate that is determined by the Nyquist frequency. The high sampling rate requires
the higher resolution, which influences the dynamic range of the receiver. As each
additional bit doubles the resolution of the sampled input voltage, the dynamic
range can be roughly estimated as R = 6 dB × n where R is the dynamic range
and n is the number of bits in the ADC. As ADCs used for the SDR usually have
a resolution of less than 16 bits, it is important to filter out the strong interfering
signals, such as signals from mobile phones, before the wideband ADC. This is
usually done in the RF frontend.
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PC PCADCDAC

Figure 8.1.: Ideal SDR transmission.

• Bus Speed: Another problem lies in getting the data from the ADC to the computer.
For any practical bus, there is a maximum for possible data rate limiting the product
of the sample rate and resolution of the samples. The speed of common buses in
commodity PCs ranges from a few Mbps to several Gbps. As an example, the PCI
2.2 bus has a theoretical maximum speed of 4256 Mbps.

• Performance of the Processing Unit: For a real-time processing, the performance
of the CPU and sample rate limit the number of mathematical operations that
can be performed per sample, as samples must be processed on-line. In practice,
this means that fast CPUs, smart programming, and possibly parallelization are re-
quired. Parallelization brings two major benefits. At first, it allows for simultaneous
operation of the transmitter and receiver. Secondly, by segmenting the data stream
into the blocks of samples, different tasks such as synchronization, (de)modulation,
and (de)coding can be processed in parallel on different processing units. However,
if those are insufficient, a compromise must be found to use a suboptimal but faster
signal processing algorithms.

• Latency: Since general purpose computers are not designed for real-time applica-
tions, a rather high latency can occur in practical SDRs. While latency is not much
of an issue in transmit-only or receive-only applications, many wireless standards,
such as WLAN or LTE, require precise timing and are therefore very difficult to
implement in an SDR.

Because of the use of general purpose processing units, an implementation of a given
wireless application in an SDR usually requires more power and occupies more space
than a hardware radio with analog filtering and a dedicated signal processor. Because
an SDR contains more complex components than a hardware radio, it will likely be more
expensive.

Nevertheless, the SDR concept carries the flexibility of software over to the radio world
and introduce a number of interesting possibilities. For example, SDR could allow its
user to load a different configuration depending on whether the user wants to listen to a
broadcast transmission, place a phone call, or determine the position via GPS. The devel-
opment cycle for the signal processing software in SDR is much shorter and cost-effective
over designing and producing special purpose hardware such as application specific inte-
grated circuit (ASIC). Moreover, the reusability of the software between processors allows
for an easy porting with minimal required modification. While portability is the major
advantage in GPP-based SDR systems, it is not fully possible in the FPGA-based SDR
architectures with low level hardware description languages, such as Verilog or VHDL.
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Since the same hardware can be used for a variety of applications, a great reuse of re-
sources is possible. Another interesting application field of SDR is cognitive radio [95, 96],
a communication concept where different radio devices are aware of their RF environment
and accordingly adapt themselves to changes in the environment. By doing so, a cognitive
radio can use both the RF spectrum and its own energy resources more efficiently. As a
cognitive radio requires a very high degree of flexibility, the concept of SDR presents a
basis for its practical realization.

8.2. GNU Radio Architecture

GNU Radio is an open source, free software toolkit for building the SDRs [89]. It is
designed to run on personal computers (PC) and combined with the minimal hardware
allows the construction of simple software radios [93]. The project was started in early
2000 by Eric Blossom and has evolved into a mature software infrastructure that is used
by a large community of developers. It is licensed under the GNU General Public License
(GPL), thus anyone is allowed to use, copy, and modify the GNU Radio without limits,
provided that extensions are made available under the same license. While the GNU
Radio was initially started on a Linux platform, it now supports various Windows, Mac
OS, Unix platforms.

The GNU Radio architecture consists of two software components [97]. The first com-
ponent is the set of numerous building blocks representing C++ [98, 99] implementations
of digital signal processing routines such as (de)modulation, filtering, (de)coding, and I/O
operations. The second component is a framework to control the data flow among blocks.
Implemented as a Python script it enables easy reconfiguration and control of various
system functionalities and parameters. More insight into Python is given in [100]. By
“wiring” together the signal processing C++blocks, an user can create an SDR, similar to
connecting physical RF building blocks to create a hardware radio.

An RF interface for the GNU Radio architecture is realized by Universal Software
Radio Peripheral (USRP) boards, a general purpose RF hardware, which performs com-
putationally intensive operations such as filtering, up- and down-conversion controlled
through a robust application programming interface (API) provided by the GNU Radio.
Each USRP device provides an independent transmit and receive channel capable of full
duplex operation in some hardware configurations. A host PC connected to an USRP
acts as a software-defined radio with host-based digital signal processing. For the exper-
imental performance evaluation of TIGR in a real RF environment we use USRP1 and
USRP2 boards equipped with the RFX2400 daughterboards.

The Hardware - USRP

Despite some differences in characteristics and specifications among various models, all
USRP devices have the same general architecture shown in Figure 8.2. The RF frontend,
mixers, filters, oscillators, and amplifiers at the receive chain are used to translate a signal
from the RF domain to the complex baseband or IF signals. The baseband or IF signals
are sampled by the ADCs, and the digital samples are further processed into an FPGA.
The FPGA performs digital downconversion, which includes fine-frequency tuning and
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Table 8.1.: USRP1 and USRP2 comparison [89].

USRP1 USRP2

Photo

Interface USB 2.0 Gigabit Ethernet
FPGA Altera EP1C12 Xilinx Spartan 3-2000
RF bandwidth
to/from host

8 MHz @ 16 bits - 32 MB/s 25 MHz @ 16 bits 100 MB/s

ADC samples 12-bit, 64 MS/s 14-bit, 100 MS/s
DAC samples 14-bit, 128 MS/s 16-bit, 400 MS/s
Daughterboard
capacity

2 Tx, 2 Rx 1 Tx, 1 Rx

SRAM None 1 Megabyte
Power 6 V, 3 A 6 V, 3 A

several decimation filters. After the decimation, raw samples or other data are streamed
to a host computer through the host interface. The reverse process applies to the transmit
chain [101].

The comparison of the main characteristics between the USRP1 and USRP2 board is
given in Table 8.1 [102]. At the receive chain, the USRP1 has four high-speed 12-bit
ADCs with the sampling rate of 64 MS/s, which allows for digitization of a 32 MHz wide
band (100 MHz using bandpass sampling) [96]. The transmit chain has four 14-bit DACs
with the clock frequency of 128 MS/s and the useful output frequency range from DC
to about 50 MHz [89]. Four input and four output channels with the real sampling are
paired up to two inputs and two outputs with the complex (IQ) sampling and further
connected to an Altera Cyclone EP1C12 FPGA. More about IQ sampling can be found
in [103]. The FPGA further reduces data rates for the USB 2.0 and is connected to the
computer via a Cypress FX2 USB 2.0 interface chip. Both the FPGA circuitry and USB
microcontroller are programmabe over the USB 2.0 bus.

The USRP2 board is released in 2008 and presents an evolution of the USRP1 board.
It contains a Xilinx Spartan 3-2000 FPGA connected to a host computer via the Gb
Ethernet (GbE) port. The USRP2 also features a Secure Digital (SD) card reader used
for loading the firmware. The receive chain has a dual 14-bit ADC LTC2284 chip used at
the sampling rate of 100 MS/s. At the transmit chain, a dual 16-bit DAC AD9777 chip
fed with clock frequency of 100 Ms/s produces 400 MS/s based analog output based on
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Figure 8.2.: General USRP Architecture - USRP2 [101].

a selectable interpolation rate (2x/4x/8x) [89]. The transmit and receive chains operate
independently but share a common internal 10-MHz reference clock with the nominal
accuracy of 10 ppm from which local oscillator (LO) is derived. Timing and frequency
between two USRPs can be synchronized using the MIMO expansion port, which also acts
as an Ethernet switch allowing a pair of USRPs to share a single GbE connection. The
10-MHz reference clock and pulse per second (PPS) SMA connectors on the front of the
USRP enable an external frequency reference and timing synchronization to supplement
the internal reference clock for greater frequency accuracy or to provide synchronization
among a larger numbers of devices.

Two important operations inside the FPGA are digital downconversion (DDC) at the
receive chain and digital upconversion (DUC) at the transmit chain. Because the data rate
of the digitized IF signal at the output of an ADC is too high for further processing on the
GPP, it has to be decimated. The DDC shown in Figure 8.3 performs two actions. First,
it downconverts the signal from the IF to the baseband. The complex input IF signal is
multiplied by the constant IF exponential signal such that the resulting complex signal is
centered at 0 Hz. Secondly, the DDC decimates the signal such that the decimated data
rate is adapted to the rates of the USB 2.0 or GbE port reasonable for the GPP computing
capability. The DDC can be treated as a low-pas filter followed by a downsampler. The
decimation is performed by a four stage cascaded integrator-comb (CIC) filter, a high
performance filter using only adders and delays [103]. The CIC can decimate in the
ranges [1,128] and [4,512] for the USRP1 and USRP2, respectively. To finally obtain
the best possible spectral shaping and to reject out-of-band signals, there is a 31-tap
half-band filter (HBF) cascaded to the DDC. The USRP2 additionally has another 7 tap
HBF filter that decimates by the two. The standard FPGA configuration implements two
complete DDCs. There is also an image with four DDCs but without half band filters,
which allows one, two, or four separate RX channels, which are interleaved. The USRP
can operate in full duplex mode such that the multiple channels must be the same rate
while the combined rate must not exceed 32 MB/s or 100 MB/s for USRP1 and USRP2,
respectively.

At the transmit chain, the baseband signal from the USB 2.0 or GbE port has to be
upconverted to the IF band, i.e., to be adjusted to the clocking rate of the DACs. The
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Figure 8.3.: The digital downconversion (a) and upconversion (b) at the USRP [89].

procedure is reversal to the receiver chain. The input IF signal is first interpolated by
the CIC filters in the FPGA. The signal is further interpolated by a factor of four using
HBF filters and upconverted to the IF. In contrast to decimation, HBF filters and digital
upconversion are implemented in the AD9862 DAC chip, not in the FPGA, as shown in
Figure 8.3.

The Hardware - RFX2400 Daughterboard

The major part of analog processing is performed in a daughterboard, which is connected
to the USRP via the SMA connectors. It has a heterodyne structure containing an
RF filter to circumvent the out-of-band transmission, a low noise amplifier (LNA), a
mixer to translate the signal from RF to intermediate frequency (IF), an IF filter, and
an IF amplifier. The complete list of daughterboards provided by Ettus Research is
given in [101]. For our experimentation we have chosen the RFX2400 daughterboard, a
transceiver board operating in full duplex mode in 2.4-2.5 GHz ISM band. The main
features of the RFX2400 are:

• Frequency range 2.4-2.483 GHz
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Figure 8.4.: RFX2400 daughterboard.

• Maximal transmit power 50 mW (17 dBm)
• Independent local oscillators for the Tx and Rx chains
• Noise figure 8 dB
• Adjustable transmit power controllable from the GNU Radio.

As shown in Figure 8.4, the RFX2400 daughterboard has two SMA connectors allowing
for the two independent RF sections. The connector TX/RX has access to the output of
the DAC for the transmit chain and to the input of the ADC for the receive chain, while
the connector RX accesses only the input of the ADC for the receive chain.

The Software - Gnu Radio Framework

A data flow among different blocks is abstracted by a flow graph, a directed acyclic graph
where the vertices corresponds to the GNU Radio blocks and edges are data streams as
shown in Figure 8.5. Generally, the GNU Radio blocks shown in Figure 8.6 operate on
continuous data streams. Most of the blocks have a set of input and/or output ports, and
therefore they consume data from the input streams and generate data for their output
streams. Special blocks called sources and sinks either only consume or only produce data,
respectively. Examples of sources and sinks are blocks that read and write, respectively,
from the USRP receive ports, sockets, and file descriptors. Each block has an input
and output signature (IO signatures), which defines the minimum and maximum number
of input and output streams, respectively, as well as the size of the data type on the
corresponding stream. The supported types are:

• c - complex interleaved floats (8 byte each)
• f - floats (4 byte)
• s - short integers (2 byte)
• b - byte integers (1 byte).
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Figure 8.5.: An example of a flow graph.

Each block defines a general_work() function that operates on its input to produce the
output streams. To help the scheduler decide when to call the work function, blocks also
provide a forecast() function that returns the system runtime, the number of required
input items required to produce a number of output items, and how many output items a
block can produce given a number of the input items. At the runtime, the blocks inform
the system how many input (output) items they have consumed (produced). The blocks
may consume data on each input stream at a different rate, but all of the output streams
have to produce data at the same rate. The input and output streams of a block have the
associated buffers. Each input stream has a read buffer, from which the block reads data
for further processing. Similarly, after processing, a block writes data to the appropriate
write buffers of its output streams. The data buffers are used to implement the edges in
the flow graph: the input buffers for a particular block are at the same time the output
buffers of the upstream block in the flow graph. The GNU Radio buffers are single writer,
multiple reader FIFO (First In First Out) buffers.

Several blocks are connected in Python forming a flow graph using the connect function
that specifies how the output stream(s) of a processing block connects to the input stream
of one or more downstream blocks. The flow graph mechanism then automatically builds
the flow graph; the details of this process are hidden from the user. A key function
performed during the construction of a flow graph is the allocation of data buffers to
connect the neighboring blocks. The buffer allocation algorithm considers the input and
output block sizes and the relative rate at which blocks consume and produce items on
their input and output streams. Once the buffers have been allocated, they are connected
with the input and output streams of the appropriate block.

Several blocks can also be combined in a new block, named hierarchical block as shown
in Figure 8.7. Hierarchical blocks are implemented in Python and together with other
blocks can be combined into a new hierarchical block. Input and output ports of hierar-
chical blocks have the same constraints as those of terminal blocks.

GNU Radio
Block

GNU Radio
Block

C++ class

Figure 8.6.: GNU Radio blocks.
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Hierarchical block

Sink

Source

DSP

Sink

Figure 8.7.: An example of a flow graph with a hierarchical block.

The GNU Radio scheduler executes the graph that was built by the flow graph mech-
anism. During the execution, the scheduler queries each individual block for its input
requirements and uses the abovementioned forecast functions to determine how much
data the block can consume from its available input. If sufficient data is available in the
input buffers, the scheduler calls the work function within a block. If a block has insuffi-
cient input, the scheduler simply moves on to the next block in the graph. The skipped
blocks will be executed later, when more input data become available. The scheduler is
designed to operate on a continuous data stream.

8.2.1. An Example: Wireless Channel Simulation

It will be shown how a model for a static wireless channel can be implemented as a
GNU Radio hierarchical block. The channel is affected by the multipath propagation,
frequency offset, and additive noise. Figure 8.8 shows a model with internal blocks and
the corresponding ports [104].

The multipath effects are modeled using a FIR-filter for which the complex filter coeffi-
cients are taken from an arbitrary channel model, e.g., Rayleigh channel model. The signal
from an input port is derived to the corresponding GNU Radio block gr.fir_filter_ccc.
The suffix ccc denotes that the input stream, output stream, and filter coefficients are of
complex data type.

According to (2.53), the frequency offset is modeled as a sine wave with the fixed
frequency and is multiplied with the incoming signal. The corresponding GNU radio
blocks are the complex sine signal source gr.sig_source_c and the multiplicator with
complex inputs and outputs gr.multiply_cc. Finally, the complex additive Gaussian noise
generated by gr.noise_source_c is added to the incoming signal in the gr.add_cc block
and the result is directed to the output port.

The initial parameters of a given hierarchical block, named simple_channel, are the
additive noise standard deviation, frequency offset normalized to the subcarrier spacing,

in FIR

NCO

Mult outAdd

Noise

Figure 8.8.: Wireless communication channel simulation model.
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Program 1 Python script for the simulation of a wireless communication channel.
class simple_channel(gr.hier_block2):

def __init__(self, noise_rms, frequency_offset, channel_coefficients):
gr.hier_block2.__init__(self, "simple_channel", # Blocktype Identifier

gr.io_signature(1,1,gr.sizeof_gr_complex), # incoming
gr.io_signature(1,1,gr.sizeof_gr_complex)) # outgoing

# for example channel_coefficients = [0.5+0.1j, 0.2-0.01j]
multipath_sim = gr.fir_filter_ccc(1, channel_coefficients)

# frequency_offset normalized to subcarrier spacing
# amplitude = 1.0, DC offset = 0.0
offset_src = gr.sig_source_c(1, gr.GR_SIN_WAVE, frequency_offset, 1.0, 0.0)
mix = gr.multiply_cc()

# noise_rms -> var(noise) = noise_rms**2
noise_src = gr.noise_source_c(gr.GR_GAUSSIAN, noise_rms/sqrt(2))
add_noise = gr.add_cc()

# describe signal paths
self.connect(self, multipath_sim) # incoming port
self.connect(multipath_sim, (mix,0))
self.connect(offset_src, (mix,1))
self.connect(mix, (noise_add,0))
self.connect(noise_src, (noise_add,1))
self.connect(noise_add, self) # outgoing port

and complex FIR-filter coefficients. The IO signatures of the input and output ports are
identical; there is minimum one port and maximum one port for both input and output.
At the runtime, internal blocks are initialized and connected to the flow graph. The
corresponding Python script is shown above.

8.3. TIGR System Overview

The system diagram of the TIGR framework is shown in Figure 8.9. The transmitter
and receiver nodes are composed of a host commodity computer and a general purpose
RF hardware (USRP)[101]. The baseband signal processing at the host computer is
implemented in the GNU Radio framework, while the USRP performs computationally
intensive operations such as filtering, up- and downconversion controlled through a robust
application programming interface (API) provided by the GNU Radio. The communica-
tion between the transmit and receive node is organized as a reconfigurable continuous
one-way transmission of OFDM symbol frames. As shown in Table 8.2, input configura-
tion parameters are divided into two sets. The set of static parameters containing FFT
size, the number of subchannels, frame size, etc., is initialized at the beginning of the
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Figure 8.9.: The system overview.

transmission and is known to both nodes. The set of dynamic parameters, which are re-
configurable at runtime includes the total transmit power, carrier frequency, and allocated
power/rate over subcarriers. The TIGR OFDM frame structure is shown in Figure 8.10.
The sequence of ten data symbols is preceded with two preambles (one synchronization
preamble and one preamble used for the channel estimation) and one ID symbol used for
the synchronization.

Each frame contains an unique ID associated with the current parameter settings. The
decoded ID enables the receiver to perform a parameter lookup necessary for demapping.
The forwarding of meta information to the receiver is implemented by the Common Object
Request Broker Architecture (CORBA) communication library [105] over the Ethernet.
Moreover, the ID is utilized both at the transmitter and receiver to determine the random
bit sequence used for BER calculation.

The transmission parameters such as carrier frequency, transmission power, and
power/bit loading on the subcarriers, can be reconfigured on-the-fly. The Graphical User
Interface (GUI) is further used to observe the impact of these changes on the received
signal by showing estimated SNR, normalized channel state information, carrier frequency
offset (CFO), and measured BER.

Moreover, TIGR can operate in two modes: the first mode assumes the RF transmission
where the transmitter and receiver are interfaced with the USRPs; the second is the
simulation mode where the transmitter and receiver “communicate“ over an emulated
channel, without the RF interface (USRPs). This allows for the exclusion of unwanted
distortions caused by the hardware, but also for system evaluation in the presence of
various controllable channel and hardware impairments, such as CFO, sampling frequency
offset (SFO), additive noise, interference, and multipath propagation. An example of a
simulated channel is shown in Figure 8.11.
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Table 8.2.: TIGR OFDM symbol parameters.

Bandwidth (static) Variable, up to 8 MHz
FFT length (static) 64 − 1024
Frame length (static) Variable
Carrier frequency(dynamic) 2400 − 2483 MHz
Modulations (dynamic) BPSK, QPSK, 8-PSK, 16-QAM,

32-QAM, 64-QAM, 128-QAM,
256-QAM

Power (dynamic) Up to 20 mW

Signal processing block are implemented as C++classes and connected in a directed
acyclic graph forming a flow graph in Python. Flow graphs are implemented as Python
scripts that take care of communication among signal processing blocks. The most of
the used signal processing blocks within TIGR are developed at the TI and are further
referred with the prefix ofdm_, while CORBA blocks have the prefix corba_. The blocks
from the standard GNU Radio library are usually prefixed as gr_.

8.3.1. CORBA Integration

The backbone of the system is realized over the local Ethernet network by the CORBA
event service, a distributed communication model that allows an application to send an
event that will be received by any number of objects located in different logical and/or
physical entities. The typical communication model through an event channel is shown in
Figure 8.12. The estimated parameters that indicate link quality (average S(I)NR, CSI,
and BER) and current static transmitter’s parameters are supplied as CORBA events

Figure 8.10.: Frame structure.
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additive_noise

frequency_offset

frequency_selective_channel

sampling_offset

ofdm_transmith_path

gr_fir_filter_ccc

ofdm_receive_path

gr_add_cc

gr_multiply_cc

complex_white_noise

ofdm_frac_interpolator

gr_sig_source_cc

Figure 8.11.: Simulation channel between the transmit and receive chain.

to an event channel, which allows other components (consumers) within the system to
register their interests in events.

From a supplier’s perspective, the event channel appears as a single consumer, while
from a consumer’s perspective, the event channel appears as a single supplier. In this way,
suppliers and consumers are decoupled where any number of suppliers can issue events to
any number of consumers while using a single event channel.

As shown in Figure 8.9, the estimated parameters that indicate a link quality are
supplied to an event channel from the GNU Radio flow graph using CORBA suppliers
implemented as a GNU Radio sink block. At the GUI, a CORBA consumer provide the
corresponding events to the GUI objects. In this way, the transceiver system can run
independently of the GUI activity since CORBA consumers make no assumptions on the
number of connected CORBA suppliers.

��

������� �	
���
��

��
 �����
��

���� �����
��

������ �	
���
��

���	���� ���

��������

��������

��������

��������

��������

	�

����

	�

����

	�

����

	�

����

	�

����

	�

����

����� ������	

���� 
��
�������

Figure 8.12.: Communication model through an event channel.
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Figure 8.13.: Resource manager.

8.3.2. Resource Manager

The central control unit that determines the optimal input transmission parameters for
given requirements is resource manager, whose basic functionalities are depicted in Fig-
ure 8.13. Controlled by the interactive GUI it consumes the supplied events forwarded
from an event channel, performs the allocation in an optimal manner, and supplies new
transmission parameters, i.e., the total transmit power and power/rate per subchannel
(rate and power allocation), which are finally consumed by other components within the
system. The current stage of the TIGR framework implements resource manager as a
Python class, thus allowing for flexible design of different scenarios, such as grouping of
subcarriers in subbands in the presence of weak frequency-selective channels or enabling
an opportunistic use of available spectrum through Dynamic Spectrum Access (DSA).

8.3.3. Graphical User Interface (GUI)

The Graphical User Interface (GUI), facilitating the demonstration, is developed in the
Qt/C++ framework. The simplicity, high modularity, and rich collection of Qt GUI wid-
gets allow for fast prototyping of the interactive GUI elements. The transmitter’s GUI
contains the static transmission parameters and current allocation of rate and power over
subchannels as shown in Figure 8.14. The receiver’s GUI, depicted in Figure 8.15, dynam-
ically shows estimated signal parameters (average S(I)NR, CSI, BER, and a scatterplot of
the specified subcarrier) and contains interactive interface for controlling of transmitted
power and allocation strategy in the resource manager. This further allows for on-the-
fly configuration of the number of allocation subbands in resource allocation, given the
certain constraints and requirements. For example, TIGR can be reconfigured from per
subcarrier allocation based on the SNR measurements [15] to per subband allocation in
DSA environment based on the SINR measurements [16].
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Figure 8.14.: The transmitter’s GUI.

Figure 8.15.: The receiver’s GUI with an interactive control interface.
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8.3.4. The Transmitter

The flow graph of the TIGR OFDM transmitter is shown in Figure 8.16. The transmitter
is controlled by the corba_tx_control Python hierarchical block. It contains the corba_
C++ blocks that represent wrappers for CORBA consumers. The control of the whole
adaptation starts from the corba_id_src block that consumes an ID (implemented as a
simple counter) from the event channel. Every time when an ID is changed it ”triggers”
the other CORBA blocks to consume events from the event channel. The ID is also
encoded with the repetition code while being included in the frame after the preambles,
as shown if Figure 8.10. Whenever the ID is changed at its input, the corba_bitmap_src
block connects to an event channel, consumes the event that contains the bit allocation
vector, and, finally, forwards this vector to the ofdm_generic_mapper block. Similarly,
corba_bitcount_source_src_si consumes the bit allocation and, for the given frame size,
calculates the number of bits which will be transmitted within one frame. For the bit
allocation vector r = [r1 r2 . . . rNu ], where Nu is the number of loaded subcarriers, the
total number of transmitted bits within the frame containing Npl payload OFDM symbols
is given by

rframe = Npl

Nu∑
n=1

rn. (8.1)

The ofdm_reference_data_source_id block reads rframe bits from the stored random
data file and supplies them to ofdm_stream_controlled_mux_b, which further multiplexes
it with the encoded ID, thus forming a data payload part of the frame. The output of
ofdm_stream_controlled_mux_b is forwarded to the ofdm_generic mapper_bcv block
that actually performs mapping of the incoming bits to the complex signals. This block
is triggered once for each frame and performs the mapping according to the output of
corba_bitmap_src, which is a CORBA consumer block that receives the bit allocation
from the event channel and forwards it to the ofdm_generic mapper_bcv block.

The ID OFDM symbol is always BPSK modulated to provide the robust and safe
signaling communication to the receiver. Following the mapper, the signal is derived to the
corba_power_allocator block that loads on individual or grouped subcarriers the power
allocation vector consumed from the event channel. The data stream is further forwarded
to the standard OFDM transmit chain. Firstly, ofdm_pilot_subcarrier_inserter inserts
stored vector of pilot subcarriers into the each data OFDM symbol. Currently, a static
configuration of 8 pilot subcarriers is supported, but in general TIGR allows for inserting
an arbitrary number of pilots depending on the FFT length and number of available data
subcarriers. Furthermore, before the FFT block, each data symbol is padded with the
zeros at the edges forming the guard bands to avoid an out-of band transmission due to
the high sidelobes. To circumvent unwanted DC and low-frequency components generated
by the receiver’s frontend [41], the two subcarriers in the middle are also nulled.

The number of nulled DC and side subcarriers is also reconfigurable and is defined at
the initialization of the transmitter and receiver script. The zero padded OFDM data
symbol, shown in Figure 8.17, with the DFT length of 256, having 200 data subcarriers,
two nulled DC subcarriers, eight pilot subcarriers and 23 nulled subcarriers at the both
edges, is derived to the IFFT block taken from the standard GNU Radio library. After the
IFFT, the time domain signal is forwarded to the ofdm_frame_mux block that prepends
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Figure 8.16.: The flow graph of the TIGR OFDM transmitter.

Figure 8.17.: Frequency domain representation of the QPSK modulated OFDM data sym-
bol.
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two predefined and prestored preambles. Furthermore, to protect against multipath prop-
agation causing intersymbol interference (ISI), an cyclic prefix (CP) is prepended to each
symbol in the frame. The complex OFDM baseband signal is then scaled with the complex
amplitude and derived either to the simulation channel or to the USRP where is further
upconverted through the DUC and DAC and, finally transmitted to the RF channel the
using the RFX2400 daughterboards.

8.3.5. The Receiver

The flow graph of the TIGR receiver is shown in Figure 8.18 containing an incoming
complex baseband data stream originating either from a simulation channel or from an
USRP (the downconverted signal after the DDC). It is clear that the receive chain has
higher computational complexity compared to the transmitter, due to the synchronization
and data acquisition required for the decoding of the transmitted signal. In general,
besides the receiver chain, TIGR also allows for a simultaneous observation of the spectral
content by deriving the incoming complex data stream to the power spectral density (PSD)
analyzer whose output is supplied to an event channel and consumed at the receiver’s GUI
as shown in Figure 8.15.

Timing Synchronization

The first synchronization stage at the receive chain has to actually identify the beginning
of an OFDM frame. The implemented frame detection is a slightly modified version
of Schmidl & Cox timing estimator [43], which is based on the autocorrelation of the
incoming sample stream. Due to the time periodic structure of the first preamble, by
detecting the pick of the timing metric, a timing trigger (the start of the each OFDM
frame) is created. The resulted timing metric taken as a screenshot from the TIGR
GUI is shown in Figure 8.19. The exact timing trigger is located within the plateau,
which is induced by a CP insertion. For further information on experimentation with
different timing synchronization algorithms in GNU Radio, readers are referred to [106].
The time periodic structure of the first preamble is created in the frequency domain by
inserting seven zeros between the loaded subcarriers. In such a way, every eight subcarrier
is loaded, which is exploited for the PS SNR estimation proposed in Chapter 4, while
the time-domain representation has eight identical parts utilized for the Morelli’s CFO
estimation method addressed in Section 7.2. The ofdm_time_sync block produces two
output streams, denoted 0 and 1: the output 0 is the time synchronized complex data
stream; the output 1 is the frame (timing) trigger.

CFO Synchronization

After the initial timing estimation, the receiver has to estimate the carrier frequency
offset (CFO) caused by the mismatch between the transmitter and receiver oscillator.
It is customary to divide the CFO into an integer part (ICFO), a multiple of subcarrier
spacing, which produces a shift of subcarrier indexes, plus a fractional part (FCFO), which
results into the inter-carrier interference (ICI) due to the loss of the orthogonality among
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Figure 8.18.: The flow graph of the TIGR OFDM receiver.
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Figure 8.19.: The Schmidl & Cox timing metric for SNR = 10 dB.

the subcarriers. All standard designs of the receiver chain assume the initial stage for
the fine frequency synchronization (FCFO estimation based on the autocorrelation of the
input stream in the time domain), while the stage for the ICFO estimation is performed
after the FFT and is based on the correlation of the frequency-domain structure of used
preamble(s). However, to circumvent an additional increase of the receiver complexity
and leave the ICFO estimation out, we implement the Morelli’s method for the CFO
estimation [57].

The Morelli’s method extends the acquisition range of the CFO by increasing the num-
ber of time periodic parts. During the TIGR implementation, based on the experimental
investigation, we choose the number of periodic parts to be eight, thus allowing for the
CFO acquisition in the range of (−4,+4] subcarrier spacings Δf . This is shown to be
sufficient for the signal bandwidths (2 − 8 MHz) used during the experimentation with
the USRPs. The structure of the synchronization preamble is shown in Figure 8.20. The
estimated CFO is further filtered and, finally, the phase of each time domain sample is
corrected. Nevertheless, as discussed in Section 7.2, there is still a residual CFO and
SFO that have to be corrected. The more detailed discussion and the corresponding
mathematical model on phase correction and its performance is given in Chapter 7.

Channel Estimation

After the CFO estimation, the next step is the transition from the time to the fre-
quency domain, which is done by the FFT block. To compensate any amplitude
and/or phase noise introduced by the wireless channel, an equalization needs to be
performed by means of the least square (LS) estimation previously discussed in Sec-
tion 2.6. The received second preamble is multiplied with the stored conjugated
replica of the transmitted version, thus giving the channel frequency response. The
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Figure 8.20.: The synchronization preamble logged at the TIGR transmitter. Every 8th
subcarrier is loaded with a QPSK symbol.

ofdm_postprocess_CTF_estimate block produces two output streams. The first out-
put is further derived to the ofdm_channel_equalizer block. The second output stream
contains the squared magnitude of the channel frequency response, which is supplied to
an event channel. In such a way, it may be further consumed at the resource manager as
the input for a resource allocation algorithm or may be shown at the GUI as depicted in
Figure 8.15.

Phase Tracking

Due to the residual CFO and SFO caused by different sampling times of transmitter
and receiver, an additional phase correction is performed in the ofdm_phase_tracking
block based on the phase tracking of pilot subcarriers inserted within the data payload
OFDM symbols. The detailed description of the linear least square (LLS) phase tracking
algorithm [81] is given in Section 7.2.

Demodulation

Furthermore, to extract only the data symbols (including the ID symbol), preambles
and pilot subcarriers are removed in ofdm_pilot_block_filter and pilot_subcarrier_filter,
respectively. Based on the synchronization preamble, the SNR or SINR estimation is
performed to provide an information about signal quality to the resource manager. The
implemented PS SNR estimation algorithm is proposed in Chapter 4.

After dealocating the power on data subcarriers in the CORBA controlled
corba_power_allocator block, the demapping of complex samples to a bitstream is
performed in ofdm_generic_demapper_vcb according to the bitmap allocation consumed
from the event channel in corba_bitmap_src, in a similar way as at the transmitter. To
measure the BER, data from the identical random file as the one stored at the trans-
mitter is derived to the ofdm_ber_measurement block that performs BER measurement
and supplies it to the event channel. The S(I)NR estimation, channel estimation, BER
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Figure 8.21.: The TIGR receiver performance for the QPSK signal in the simulated chan-
nel at SNR = 25 dB, εc = 2.5, and εs = 20 ppm.

Figure 8.22.: TIGR receiver performance for the QPSK signal with the estimated
SNR = 25 dB in an RF channel with 2.45 GHz carrier frequency and
1 MHz bandwidth.
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measurements, and current ID block are finally derived to the corba_rx_info_sink block,
which supplies them to an event channel.

We further investigate the TIGR receiver performance in a simulated AWGN channel
with the QPSK modulated subcarriers for SNR ρav = 25 dB, CFO εc = 2.5, and SFO εs =
20 ppm. Using modified plotting tool available in a standard GNU Radio distribution,
the corresponding results are shown in Figure 8.21. The spectrum (PSD) of the received
signal is depicted in the bottom left corner. The upper left plot shows the phase of the
received data samples before (blue) and after (red) frequency synchronization performed
on the time domain signals. The effects of the residual CFO and SFO are still present
in the received samples inducing a linear phase increase over the subcarriers, as shown
in upper right plot. This plot depicts the input (blue) and the output (red) streams of
the ofdm_phase_tracking block showing the effect of phase tracking based on the pilot
subcarriers. The corresponding constellation plot in bottom right shows the corrected
phase shift of data symbols in the I/Q plane prior to deriving to the demapper.

The performance of the TIGR receiver in a real RF environment is shown in Figure 8.22.
The RF link between two nodes equipped with the USRP1s operates at the carrier fre-
quency of 2.45 GHz having the bandwidth of 1 MHz. The transmit amplitude is adjusted
such that the estimated SNR at the receiver is 25 dB. Similarly to the simulation re-
sults, Figure 8.22 shows the effects of the CFO and SFO as well as the effects of their
compensation at the TIGR receiver.

8.4. Experimental Results

We conduct a series of measurements using the TIGR framework to investigate the per-
formance of several rate adaptive algorithms in a real RF link. The OFDM symbol
parameters assume the DFT length N = 256 and Nu = 208 occupied subcarriers con-
taining the eight pilot subcarriers used for the phase tracking and 200 data subcarriers,
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Figure 8.23.: Two RF experimentation scenarios: (a) Connection over coaxial cable with
an attenuator - Wired link; (b) Wireless link.
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Figure 8.24.: Estimated vs. true average SNR.

as shown in Figure 8.17. The synchronization preamble has Q = 8 identical parts as
depicted in Figure 8.20. The communication between the transmit and receive node is
organized as a reconfigurable continuous one-way transmission of OFDM symbol frames.
The frame structure is shown in Figure 8.10 and represents a sequence of ten data sym-
bols preceded with two preambles (one synchronization preamble and one preamble used
for the channel estimation) and one ID symbol used for the synchronization. The easy
reconfigurable back-end and control mechanisms of the TIGR framework allows for the
on-the-fly monitoring of the measurement result at the receiver GUI shown in Figure 8.15.

We consider two experimental RF scenarios shown in Figure 8.23. First, the transmitter
and receiver nodes (composed of a host commodity computer and an USRP) are connected
via an RF cable and an attenuator as shown in Figure 8.23a. The wired link between two
nodes excludes the impact of a wireless RF channel and includes only the effects of the
hardware components neglecting the potential effects caused by the RF cable. In this way,
the wired link emulates a static, frequency-flat SNR propagation environment, which we
use to determine the rate power function for a real RF environment. The second scenario
assumes the wireless link between two nodes equipped with omnidirectional antennas and
spaced two meters apart, which we use for the experimental evaluation of the rate adaptive
transmission. During the RF experimentation we use one pair of USRP1s and one pair of
USRP2s equipped with the RFX2400 daughterboards. Each measurement is performed
using the carrier frequency of 2.48 GHz, which belongs to the IEEE 802.11 Channel 14.
Since Wireless LAN devices in Europe and North America are prohibited to operate in
this channel, we avoid the potential interference to an RF link between two USRPs.

Prior to performing the actual measurements, we have conducted several calibration
steps. First, because an accurate SNR estimate represents the crucial input parameter
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to many allocation methods, we need to validate the performance of the PS estimator in
the TIGR framework. As discussed in Section 8.3, TIGR can operate in the simulation
mode where the transmitter and receiver are connected via an artificial channel with the
controllable noise power. The performance of the estimated vs. true average SNR in the
simulated ETU channel is shown in Figure 8.24. The PS estimator implemented in the
TIGR framework provides an unbiased estimate over a large SNR range in the absence of
any hardware impairment.

Moreover, when using the USRP boards equipped with the RFX2400 daughterboard as
an RF interface, the only controllable parameter that determines the transmit power is
the digital amplitude assigned from the GNU radio software. The next calibration step is
to investigate how the change of the digital amplitude influences the SNR of the received
signal in an RF link. For both pairs of USRP boards we measure the SNR performance
as a function of the digital transmit amplitude. We set the receiver gain to 30 dB since it
provides the best SNR value given the received power [107]. This is performed by using
the TIGR control mechanism where a specially designed resource manager automatically
changes the transmit amplitude every 30 seconds while logging to the file the measured
SNR and the corresponding transmit amplitude.

The measurement results that correspond to a pair of USRP1 boards for signal band-
widths of 1 MHz and 2 MHz are shown in Figure 8.25. For each value of the signal
bandwidth, we investigate four cases: one case assumes the wireless link shown in Fig-
ure 8.23b while other three cases assumes the wired links with 20 db, 30 dB, and 40 dB
attenuators, as shown in Figure 8.23a. The wireless link experiences the similar SNR
conditions as the wired link having a 40 dB attenuator. As expected, the corresponding
curves for different bandwidths differ approximately 3 dB. It is shown that the received
SNR stops increasing after reaching the digital amplitude value of 12000. For further
experimental investigation with the pair of USRP1s we choose a bandwidth of 1 MHz
and use a wired link with 40 dB attenuation for the derivation of the rate power function.
The received SNR range between 7 dB and 29 dB is achieved by changing the transmit
amplitude from 400 to 12000.

Similarly, the corresponding measurement results for a pair of USRP2 boards using the
signal bandwidths of 2.5 MHz and 5 MHz are shown in Figure 8.26. The x-axis corresponds
to the digital amplitude range of [0,1]. In this case, the wireless link experiences similar
SNR conditions as the wired link having a 30 dB attenuator. Here, the signal with the
bandwidth of 5 MHz achieves at most THE SNR of 27 dB, while the 2.5 MHz signal
reaches 29 dB in a wireless link. For further investigation with the USRP2s we choose a
bandwidth of 2.5 MHz and a wired link with 30 dB attenuation for the derivation of the
rate power function. In these cases, the received SNR range between 7 dB and 29 dB is
achieved by changing the transmit amplitude from 0.005 to 0.3.

8.4.1. TIGR Receiver Performance

SNR Estimation

Furthermore, we investigate the performance of the PS estimator in a real RF environment
in terms of the normalized variance of the measured average SNR. This measure is equiv-
alent to the normalized mean square error (NMSE) given in (4.68), which is considered
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Figure 8.25.: Estimated SNR vs. digital amplitude for the USRP1.
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as a performance metric for the Matlab simulations performed in Section 4.2. However,
in contrast to the simulation, the true SNR is not available for an RF channel. Assuming
the unbiased estimator, the mean value of the measured SNR can approximate its true
value, such that the normalized variance is a good approximation of the NMSE.

Figure 8.27 shows the measurement results for the normalized variances as a function
of the measured average SNR. The results correspond to several investigated scenarios
in a real RF environment (using a pair USRP1 and USRP2 boards both in wired and
wireless links) as well as to the simulation results obtained from the Matlab and TIGR.
While both simulation models assume an AWGN channel, the TIGR simulation includes
the complete transceiver chain containing all synchronization stages, while the Matlab
simulation corresponds to an ideal transceiver. The simulation results shows that as SNR
increases, the normalized variance obtained from the TIGR simulation is approaching the
Matlab simulation curve and becomes identical to it for the SNR higher than 22 dB. In
the investigated RF scenarios for SNR values below 10 dB the normalized variances of
the PS estimator are substantially high, which is caused by the estimation variance of the
synchronization stage in the low SNR region. While the particular USRP pair performs
similarly for the wired and wireless links, the USRP1 pair provides better performance
than the pair of USRP2 boards. Moreover, as SNR increases, the normalized variance
is increasing starting from 22 dB and 18 dB for a pair of USRP1s and USRP2s, respec-
tively. This can be explained by the presence of the residual CFO and SFO, which are
theoretically discussed in Chapter 7.

Figure 8.28 shows the probability density function (pdf) of the measured average SNR
in several investigated RF scenarios as well as the analytical result given in (4.53) for the
true SNR = 10 dB. Here, for the measurement results, the “true SNR” corresponds to
the measured average SNR ≈ 10 dB. The TIGR simulation results agree with the derived
analytical model. Moreover, the pdf of the measured average SNR is characterized with
the increased variance for the investigated RF scenarios.

CFO Estimation

The next step of the calibration process is to investigate the performance of the TIGR
synchronization stages. We firstly consider the performance of the CFO estimator in a
real RF environment and observe the long term CFO variations due to the environmental
changes and inherent offsets between different oscillators. The performance of the CFO
estimator is affected by the real-world degradations, such as voltage fluctuations, phase
noise, and variable SNR.

Figure 8.29 shows the measured normalized CFO over the period of one hour for a
pair of USRP1s and a pair of USRP2s. For each pair of boards, the transmitter and
receiver node are connected via an RF cable and a 30 dB attenuator as shown in Fig-
ure 8.23a. The transmitter and receiver daughterboards operate independently, each
with its own local oscillator to generate an RF carrier frequency. The output of the
ofdm_mm_frequency_estimator block from the receiver flow graph shown in Figure 8.18
is logged to the file in the receiver PC at the beginning of each frame. The mean values
of the collected measured CFO estimates are shown in Figure 8.29.
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Figure 8.27.: Normalized variance vs. measured average SNR.
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Figure 8.28.: Pdf of the average PS SNR estimation in TIGR for the measured average
SNR ≈ 10 dB.
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Figure 8.31.: Pdf of the normalized residual CFO ε′
c = ε̂c − Mean(ε̂c) measured over the

period of two seconds; The measured average SNR ≈ 10 dB.
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Figure 8.33.: Var(ε̂′
c) vs. measured average SNR.

The CFO variation over time between the two USRP1 boards is higher compared to
the CFO variation associated with the USRP2 boards. The corresponding pdfs are shown
in Figure 8.30. The shape of the pdf indicate that the measured CFO between the two
USRP1 boards can not be characterized by a simple distribution. In contrast, the pdf
of the measured CFO for the pair of USRP2 boards can be fitted to the Gaussian curve
determined by the corresponding empirical mean and standard deviation.

As shown, the CFO varies over time and temperature. However, it can be assumed
that that the frequency offset is constant during the frame, whose duration is less than
5 ms in our system settings. Since the CFO is extracted at the beginning of each frame,
the addressed time and temperature variations can be accurately tracked. The pdfs of the
short term CFO measurements over the period of two seconds are shown in Figure 8.31.
The results obtained from the TIGR simulation fit well with the Normal distribution while
the measurements taken in a real RF environment are characterized with the increased
variance.

Figure 8.32 shows the variance of the measured CFO as a function of the measured
average SNR. For this measurement campaign, the resource manager is configured to
change the transmitted amplitude in a given range every 30 seconds and log the measured
CFO in a file. The TIGR simulation results fit well with the analytical variance given
in 7.25. However, the measurement results follow the analytical curve closely up to the
SNR of 14 dB and then start to reach the performance floor, which is caused by the
presence of the SFO. The transceiver using a pair of USRP2s performs slightly better
than the transceiver with the USRP1 boards.
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Figure 8.34.: Var(ε̂s) vs. measured average SNR.

Phase Tracking

We further investigate the performance of the phase tracking at the TIGR receiver chain.
Similarly as for the CFO estimation, the specially configured resource manager changes
the transmitted amplitude in a given range every 30 seconds and log the residual CFO and
SFO outputs of the ofdm_phase_tracking block for each OFDM symbol. The variance
of the measured residual CFO and measured SFO as a function of the measured SNR
is shown in Figure 8.33 and Figure 8.34, respectively. In both cases, the measurements
obtained from the TIGR simulation perform closely to the analytical curves. However,
the results related to the measured SFO in a real RF environment reach the floor already
in the low SNR region.

.

8.4.2. Resource Allocation Performance

To further analyze the performance of rate adaptive algorithms in a real RF environment
using the TIGR framework we need to determine the corresponding rate-power function,
which maps the performance of a particular modulation to the required SNR under the
given BER condition. As the first step, we investigate the BER vs. SNR simulation per-
formance of the TIGR framework in an AWGN channel excluding all potential hardware
impairments. Figure 8.35 shows this performance for three different cases. The first case
corresponds to the mapper/demapper performance that excludes other transceiver stages,
i.e., it assumes an ideal transceiver. The second case considers the performance of TIGR
including channel estimation in the absence of synchronization stages. And, finally, the
third case corresponds to the whole TIGR transceiver chain. As a benchmark we use the



166 Chapter 8. Implementing Adaptive OFDM by Software Defined Radio

−5 0 5 10 15 20 25 3010−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
ER

BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM
MATLAB simul.
TIGR ideal
TIGR no sync.
TIGR simul.

Figure 8.35.: BER vs. SNR performance of the TIGR transceiver in the simulation
environment.

results obtained from the Matlab simulation of an ideal transceiver. The results show
that an ideal TIGR transceiver performs identically to the corresponding Matlab simula-
tion model. As expected, the implemented LS channel estimation in TIGR introduces a
SNR loss that varies between 3 and 4 dB for a particular modulation scheme. Moreover,
starting from QPSK up to 256-QAM there is an additional loss around 0.8 dB introduced
by the finite variance of the synchronization stages (CFO estimator and phase tracking).

We further investigate the BER performance for a pair of the USRP1 boards. Due
to the implementation issues, the transmitted signal bandwidth is 1 MHz. The two RF
scenarios are considered, as shown in Figure 8.23. At first, we evaluate the performance of
the wired link, where the USRPs are connected via a coaxial cable and a 40 dB attenuator
to include only the effects of hardware components, thereby excluding the influence of a
wireless channel and neglecting the potential effects caused by an RF cable. Secondly,
the BER vs. SNR performance of the wireless link is investigated using omnidirectional
antennas spaced two meters apart. The obtained results together with the TIGR sim-
ulation performance are shown in Figure 8.36. The TIGR receiver performs almost
identically in a wired and a wireless link due to the small bandwidth of the transmit-
ted signal, which prevents multipath effects. Based on the measured BER performance
shown in Figure 8.36, the corresponding rate-power function for BER = 10−3 is depicted
in Figure 8.37 together with the Shannon spectral efficiency given in (3.1). The results
show that the residual phase offset in a real RF environment precludes the two highest
modulation schemes, 128-QAM and 256-QAM, from achieving the BER of 10−3 within
the operating SNR range.

Figure 8.38 and Figure 8.39 show the experimental results obtained from the measure-
ment campaign where several resource allocation algorithms are investigated in a real RF
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Figure 8.36.: BER vs. SNR performance of the TIGR transceiver with USRP1 boards for
the bandwidth of 1 MHz.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

2

4

6

8

10

SNR [dB]

bi
ts
/s

ub
ca

rr
ie

r

Spectral efficiency [eq. (3.1)]
Rate-power function of TIGR simulation for BER = 10−3

Rate-power function of a TIGR wired link for BER = 10−3

Rate-power function of a TIGR wireless link for BER = 10−3

Figure 8.37.: Rate-power function of the TIGR transceiver with USRP1 boards for the
bandwidth of 1 MHz and BER = 10−3.



168 Chapter 8. Implementing Adaptive OFDM by Software Defined Radio

Table 8.3.: Rate-power function, SNR gap, and SNR margin of the TIGR transceiver with
USRP1 boards for the bandwidth of 1 MHz and BER = 10−3.

TIGR
Modulation

bits r
Required
SNR [dB]

Γr,GR
[dB]

ΔSNRGR
[dB]

1 9.24 9.24 2.45
2 13.2 8.43 3.39
3 18.58 10.13 4.17
4 19.97 8.21 3.43
5 23.82 8.91 4.25
6 27.1 9.11 4.55
7
8

environment. The OFDM signal parameters are given at the beginning of the section
while the corresponding rate-power function shown in Figure 8.37 is used to determine
the required SNR values to achieve BER = 10−3, see Table 8.3. We consider the Levin-
Campello (LC) algorithm, Subband allocation with the eight subbands using geometric
SNR mean as the measure of the subband quality (SB-geo), and Uniform power (UP)
rate adaptive allocation in an wireless link using a pair of USRP1 boards equipped with
omnidirectional antennas spaced two meters apart. Due to the narrowband nature of the
wireless channel, grouping the subcarriers in subbands does not affect the achieved rate
due to the large coherence bandwidth. This results in almost identical performance for the
LC and SB-geo algorithms, while the UP algorithm performs approximately 3 dB worse.
The corresponding measured BER values perform similarly. Although the high variance
of the BER measurement causes the instability of the measured BER for values less than
10−3, the main tendency of the BER performance is easily noticeable in Figure 8.39.

Furthermore, Figure 8.40 shows the measured BER performance for a pair of the USRP2
boards. The transmitted signal bandwidth is 2.5 MHz. We consider the same two RF
scenarios shown in Figure 8.23 as for a pair of the USRP1s. The TIGR simulation per-
formance is used as a benchmark. In contrast to the previous case that assumes the
USRP1 boards, the TIGR performance in a real RF environment with the USRP2 boards
with the transmitted signal of 2.5 MHz bandwidth is worse than the simulation results
obtained from the simulation. However, the TIGR receiver performs almost identically in
a wired and a wireless link because the signal bandwidth of 2.5 MHz is still insufficiently
large to introduce multipath effects. Based on the measured BER performance shown in
Figure 8.40, the corresponding rate-power function for BER = 10−3 is depicted in Fig-
ure 8.41 together with the Shannon spectral efficiency in (3.1). The corresponding SNR
values required to achieve BER = 10−3 are given in Table 8.4. The results show that the
residual phase offset in a real RF environment precludes the highest modulation scheme,
256-QAM, from achieving the BER of 10−3 within the operating SNR range.

Moreover, to compare the performance of the TIGR transceiver in a wireless RF en-
vironment with the Matlab simulation results discussed in Chapter 7, the ETU channel
with parameters given in Appendix A is “emulated”. This is achieved by the convolution
of the output signal of the transmit chain with the considered channel impulse response.
The resulted signal is further forwarded to the USRP2 such that the transmitted narrow-
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Figure 8.38.: Number of bits per subcarrier vs. SNR for BER= 10−3; Wireless RF channel;
USRP1 boards; Bandwidth 1 MHz.
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Figure 8.40.: BER vs. SNR performance of the TIGR transceiver with USRP2 boards for
the bandwidth of 2.5 MHz.
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Figure 8.41.: Rate-power function of the TIGR transceiver with USRP2 boards for the
bandwidth of 2.5 MHz and BER = 10−3.
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Table 8.4.: Rate-power function, SNR gap, and SNR margin of the TIGR transceiver with
USRP2 boards for the bandwidth of 2.5 MHz and BER = 10−3.

TIGR
Modulation

bits r
Required
SNR [dB]

Γr,GR
[dB]

ΔSNRGR
[dB]

1 10.46 10.46 3.67
2 14.69 9.92 4.89
3 19.31 10.86 4.9
4 20.98 9.22 4.44
5 24.38 9.47 4.82
6 26.48 8.48 3.93
7 29.73 8.69 4.32
8

band signal of 2.5 MHz “becomes” frequency-selective, allowing us to investigate the joint
influence of the time dispersive channel and hardware impairments to the performance of
the TIGR transceiver.

Figure 8.42 shows the bits per subcarrier vs. measured average SNR performance for
several rate adaptive allocation algorithms, including the LC, SB-geo allocation with the
eight subbands, and UP methods. Three different transmission scenarios are investigated.
The first scenario assumes a TIGR transceiver using a pair of USRP2 boards equipped
with omnidirectional antennas spaced two meters apart in the wireless “emulated” ETU
RF channel. The second scenario corresponds to the TIGR simulation including the ETU
channel. The third scenario presents the simulation results obtained from the Matlab
transceiver model with the same synchronization stage as the one implemented in TIGR
including the additional presence of the normalized SFO εs = 20 ppm, which corresponds
to the specifications of the USRP boards.. Finally, the optimal water-filling (WF) contin-
uos rate allocation is given as a benchmark. The SB-geo and LC allocation still perform
closely as in the previously investigated case with the USRP1 boards and 1 MHz signal.
Moreover, due to conservative strategy of keeping the transmitted amplitude constant
over all subcarriers, the UP allocation achieves lower rate compared to other two meth-
ods. The investigated methods achieve lower rates in a real RF environment compared
to the simulation scenario due to the higher SNR requirements to support the particular
modulation scheme given the BER = 10−3 constraint, as shown in Table 8.4.

It can be also concluded that the concept of SNR gap provides a good strategy in
the operating SNR range. As shown in Figure 8.43, starting from the minimum SNR =
10.46 dB that allows for the transmission (of a BPSk modulated signal), the investigated
methods violate the BER constraint just slightly even in the presence of a relatively large
SNR estimation variance in the high SNR region shown in Fig 8.27. However, the large
performance gap between the optimal WF solution and investigated algorithms, shown in
Figure 8.42, may be further decreased by implementing more advanced channel estimation
scheme or more accurate synchronization methods, which comes at the cost of increased
computational complexity. Software profiling of the GNU Radio transceiver, introduced
in Appendix D, gives the insight into the computational complexity of each individual
signal processing block. This provides a good starting point for the future development
of the TIGR framework and improvement of the overall transceiver performance.
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Figure 8.42.: Number of bits per subcarrier vs. SNR for BER= 10−3; Wireless “emulated”
RF channel; USRP2 boards; Bandwidth 2.5 MHz.
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9. Conclusions

9.1. Summary

Optimal utilization of radio resources (bandwidth, transmit power) in multicarrier systems
becomes very challenging due to the coexistence of various wireless standards within the
same frequency band. The investigation of theoretical concepts for wireless resource
management in a real RF environment requires flexible testbeds with a wide range of
reconfigurable parameters. To bridge the gap between the theoretical investigations and
real world scenarios we have developed a highly reconfigurable SDR framework, named
TIGR.

In this thesis, we have proposed novel methods and presented new results concerning the
performance evaluation of an adaptive OFDM system in a wireless RF environment. First,
we have developed an efficient algorithm for the SNR estimation. It has been noticed that
existing methods for SNR estimation performs poorly in a frequency-selective channel.
The proposed algorithm outperforms the existing solutions and provides a reliable SNR
estimate required for many resource allocation algorithms.

Initially proposed for SISO systems, the SNR estimator has been further extended to
a MIMO scenario, thus enabling for future expansion of the TIGR framework. Moreover,
we have shown that the properly adjusted preamble structure can be applied for the joint
synchronization and spectrum characterization in OFDM-based cognitive radio systems.

Furthermore, we have conducted a simulation study investigating the influence of hard-
ware impairments on the performance of rate adaptive allocation methods. Several re-
source allocation algorithms, characterized with different computational complexity and
sensitivity to hardware imperfections, have been considered. The presence of the estima-
tion noise is introduced through the concept of SNR loss assuming the individual SNR
gap for each modulation scheme. While most of the current research work assumes the
constant gap approximation due to decreased computational complexity, it has be shown
that this assumption introduces performance degradations and violation of the constraints
that become even more critical in the presence of synchronization errors. The simulation
results are compared to the measurements obtained in a real RF environment using the
implemented testbed.

The results show the applicability of modeled hardware imperfections and robustness
of the proposed SNR estimator to the design of efficient resource allocation algorithms.
Finally, through the extensive measurement campaign in a real RF environment, we have
demonstrated that the TIGR framework can be utilized for further experiments related
to this area.
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9.2. Outlook

TIGR supports for continuous capacity achieving OFDM transmission with the optimal
rate and power allocation over subchannels for given system constraints. The developed
framework extends the PHY layer functionalities of the current wireless standards by offer-
ing control and feedback mechanisms for easy reconfiguration of transmission parameters.
This allows for the evaluation of different communication strategies in either simulation or
RF scenarios. However, additional experimental evaluation in different indoor conditions
is required in order to get a larger insight into the capability of the TIGR framework

The current efforts are focused on the profiling of the transmitter/receiver execution
in order to optimize the signal processing code, thus allowing for higher bandwidths and
implementing more efficient algorithms. Additionally, TIGR is close to support an addi-
tional feature of fully adaptive Coded OFDM (COFDM), which enables the joint coding
and rate allocation. This brings the framework capabilities closer to the current wireless
standards (WiMAX, LTE). The work on MIMO implementation has been conducted and
some initial results are derived. Available flexibility further allows for the integration of
some advanced communication features, such as an implementation of cyclostationary sig-
natures [18, 19, 20] and filterbank multicarrier techniques in order to support additional
cognitive radio scenarios.



A. Simulation Setup

The extended ITU channel models adopted by LTE are used for simulations in this thesis.
They are based on ITU channel models further modified for the large bandwidth scenarios
supporting up to 25 MHz bandwidth [26]. The power delay profiles of Extended Pedestrian
A (EPA), Extended Vehicular A (EVA), and Extended Typical Urban (ETU) are listed
in Table A.1.

Table A.1.: Extended ITU channel models adopted in LTE.
EPA EVA ETU

Path
number

Delay Average
relative
power

Delay Average
relative
power

Delay Average
relative
power

l τl (ns) Ωl (dB) τl(ns) Ωl (dB) τl(ns) Ωl (dB)
1 0 0 0 0 0 −1
2 30 −1 30 −1.5 50 −1
3 70 −2 150 −1.4 120 −1
4 80 −3 310 −3.6 200 0
5 110 −8 370 −0.6 230 0
6 190 −17.2 710 −9.1 500 0
7 410 −20.8 1090 −7 1600 −3
8 1730 −12 2300 −5
9 2510 −16.9 5000 −7

The corresponding RMS delay spreads τRMS, derived in (2.4), are listed in Table A.2.

Table A.2.: RMS delay spreads τRMS for extended ITU channel models.

Category Channel
model

RMS delay spread
τRMS (ns)

Low delay spread EPA 43
Medium delay spread EVA 357
High delay spread ETU 991

The adopted Doppler frequencies 5, 70, 300, and 1000 Hz correspond to pedes-
trial/vehicular speeds of 2, 30, 120, and 350 km/h, respectively, for the carrier frequency
of 2.7 GHz.
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B. OFDM Based Wireless Standards

We provide a brief overview of the current wireless standards based on OFDM technology
with the corresponding system parameters. It includes a discussion on available practical
modulation and coding schemes.

B.1. Wireless LAN (IEEE 802.11 Series of Standards)

The first communication standard that adopted OFDM transmission for broadband con-
nectivity was Digital Subscriber Line (DSL). It has been shown that DSL is an efficient
solution for the last-mile connection over the existing Public Switched Telephone Network
(PSTN) primarily used to carry voice communication between 300 and 3400 Hz. DSL
operates over the twisted pair cooper wire in a higher frequency band, reaching up to 30
MHz and achieving up to 200 Mbps in the recent implementations. Due to the very stable
channel behavior, such high data rates are enabled by the adaptive modulation per sub-
carrier without the significant signaling loss. In particular, the SNR estimates obtained
during the sufficiently long initialization phase stay valid until the end of the transmis-
sion. The initially proposed algorithms for the adaptive subcarrier allocation [2, 3] were
designed for DSL systems.

However, a DSL signal undergoes strong attenuation over the distance requiring for
a repeater on every few kilometers. An increased need for the mobility, while keeping
broadband connectivity, furthermore resulted in the development of the Wireless LAN
(WLAN) standard. WLAN establishes connection between wireless stations, such as
PCs, notebooks and handhelds, and the access point connected to DSL or Ethernet. This
offers broadband connectivity to either fixed wireless users or pedestrian users. WLAN
operates in unlicensed frequency bands, such as ISM bands at 900 MHz, 2.4 GHz, and
5.8 GHz, as well as in the Unlicensed National Information Infrastructure (U-NII) band
at 5 GHz.

The standardization of WLAN was performed within the 802.11 framework. The first
version IEEE 802.11b based on Direct Sequence Spread Spectrum (DSSS) is introduced
in 1999 and utilized 83.5 MHz spectrum in the 2.4 GHz ISM band, while offering the data
rates up to 11 Mbps within the range of 100 m. However, it became clear that further
throughput could not be increased by using the single carrier transmission, due to the
distorting influence of multipath spread for the short symbol durations. Therefore, IEEE
802.11a was introduced in 1999 as the first wireless standard to use OFDM modulation.
IEEE 802.11a specifies communication in the 5.4 GHz U-NII band over 20 MHz bandwidth
with the FFT length of 64 with 48 data subcarriers. Various modulation and coding
schemes (MCS) were defined to provide scalable data rates from 6 up to 54 Mbps within
less than 100 m range. In 2003, IEEE 802.11g was introduced as an extension of IEEE
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Table B.1.: IEEE 802.11 system parameters.

Parameters Specification
Frequency band [GHz] 2.4, 3.6 (USA), 4.9 (USA), 5
Bandwidth [MHz] 20, 40 (IEEE 802.11n)
Subcarrier spacing [kHz] 312.5
Payload modulation BPSK, QPSK, 16-QAM, 64-QAM
FEC Convolutional coding (1/2 binary

convolutional coder with constraint length 7
and puncturing modes in Table B.2)

Transmit EIRP [W] 0.1 − 1, regulated by domestic agencies
FFT size 64
Number of data subcarriers 48, 52 (IEEE 802.11n)
Number of pilot subcarriers 4, 6 (optional)
Number of null/guardband
subcarriers

12, 10 (IEEE 802.11n)

Symbol duration [μs] 4
CP length 1/4, 1/8 (optional)
Multiple access CSMA/CA
Duplexing TDD

802.11a in the 2.4 GHz ISM band while preserving the same design and offering backward
compatibility with IEEE 802.11b. These systems, although attended to support high data
rates, lack a MAC protocol with Quality of Service (QoS) requirements, later introduced
in the IEEE 802.11e amendment. In 2007, IEEE released a comprehensive specification
named IEEE Std 802.11-2007, which included the amendments of groups a, b, e, g, h, i,
and j.

The latest specification, named IEEE 802.11n is ratified in 2009. The main technical
advancement of IEEE 802.11n is the introduction of MIMO technology with different MCS
and multi-antenna configurations. It includes from 1 to 4 spatial streams, supporting the
data rates from 6.5 up to 289 Mbps in 20 MHz channels. Moreover, the bonding of two
20 MHz channels into the one having 40 MHz bandwidth, the increased number of data
subcarriers from 48 to 52, and reduced length of cyclic prefix from 800 ns to 400 ns allow
for higher data rates (up to 600 Mbps).

In Europe, the standardization efforts for WLAN service based on OFDM technology
were ratified in 2000, when European Telecommunications Standards Institute (ETSI)
issued HiperLAN/2. Due to cheaper production costs and market acceptance of products
specified for the IEEE 802.11 series of standards, HiperLAN/2 have never received a wide
commercial implementation. However, much of the work on HiperLAN/2 has survived in
the PHY specification of IEEE 802.11a, which is nearly identical to the PHY of Hiper-
LAN/2. Since IEEE 802.11 series of standards only defines PHY and MAC layers, the
Wi-Fi Alliance was formed as a nonprofit industry association. The main goal of the
Wi-Fi Alliance is to enhance the user experience by defining the networking layer and to
contribute to testing and certification programs. The success of the WLAN has enforced
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Table B.2.: Modulation and coding rates for IEEE 802.11a/g with 6 MHz channel and
CP length of 1/16.

PHY
mode

Modulation Coding rate Data rate
[Mbps]

Spectral
efficiency
[bits/s/Hz]

1 BPSK 1/2 6 0.3
2 BPSK 3/4 9 0.45
3 QPSK 1/2 12 0.6
4 QPSK 3/4 18 0.9
5 16-QAM 1/2 24 1.2
6 16-QAM 3/4 36 1.8
7 64-QAM 2/3 48 2.4
8 64-QAM 3/4 54 2.70
81 64-QAM 5/6 65 3.25

the development of broadband wireless connectivity characterized by more mobility and
guaranteed QoS.

The values of key parameters for the IEEE 802.11 series of standards are given in
Table B.1. The supported modulation and coding rates are shown in Table B.2.

B.2. WiMAX (IEEE 802.16 Series of Standards)

The very successful deployment of OFDM based IEEE 802.11a/g networks led to the
new wireless technologies for Broadband Wireless Access (BWA), which should reduce
operational costs and infrastructural demands required by the DSL and cable modem.
The IEEE 802.11 series of standards are characterized with the limited performance in
severe multipath environments with multi-user requirements, as well as with the lack of
mechanisms to regulate multi-user network interoperability. Therefore, the IEEE 802.16
Working Group initiated the standardization activities for BWA based on the OFDM
technology. In 2003, the IEEE 802.16a version is completed, specifying PHY and MAC
layers. It was replaced by the IEEE 802.16-2004 standard (fixed WiMAX profile) with the
operating band of 2 − 11 GHz, which further formed a basis for fixed WiMAX solutions.
In 2005, the IEEE 802.16e-2005 amendment (mobile WiMAX profile), based on scalable
OFDMA, is ratified to introduce the enhancement for high-speed mobile environments.
The corresponding system parameters are given in Table B.3. Since the IEEE 802.16
series of standards specify only PHY and MAC layers functionalities, the industry-led
WiMAX Forum created guidelines for the network architectures and protocols including
the certification and interoperability with the other networks.

1Added to the IEEE 802.11n amendment, while Mode 2 is removed. Additionally, MIMO functionality
supports 1-4 spatial streams, thus giving in total 32 modes.
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Table B.3.: IEEE 802.16 system parameters.
Parameters IEEE 802.16-2004 IEEE 802.16e-2005
Frequency band [GHz] 2 − 11, regulated by domestic regulations
Bandwidth [MHz] 3.5 1.25 5 10 20
Sampling rate 8/7 28/25 28/25 28/25 28/25
FFT size 256 128 512 1024 2048
Subcarrier spacing [kHz] 15.63 10.9375
Payload modulation BPSK, QPSK, 16-QAM, 64-QAM
FEC Convolutional coding at rates 1/2, 2/3, 3/4, 5/6

(optional LDPC, BTC, CTC)
Transmit EIRP [W] 0.1 − 1, regulated by domestic agencies
Number of data subcarriers 192 96 384 768 1536
Number of pilot subcarriers 8 12 48 96 192
Number of null/guardband
subcarriers

56 20 80 160 320

Number of subbands 4 2 8 16 32
Number of data subcarriers in
subband

48

Symbol duration [μs] 72 102.9
CP length 1/8, (optional 1/4, 1/16, 1/32)
Multiple access OFDMA
Duplexing TDD, FDD
Number of OFDM symbols in
5 ms frame

69 48

Mobile WiMAX has been also seen as the main candidate for the 4G mobile networks,
due to the presence of several features that outperform the data throughput of common
3G standards, such as Evolution-Data Optimized (EV-DO) and High Speed Packet Access
(HSPA). These capacity achieving features are: scalable OFDMA, Adaptive Modulation
and Coding (AMC), Time Division Duplexing (TDD), MIMO technology, Hybrid-ARQ,
fast frequency-selective scheduling, fractional frequency use, and bandwidth efficient han-
dover. The peak data rate is 74 Mbps in the 20 MHz channel. The main technical
advancement of WiMAX is a scalable PHY architecture that allows for easy scalability
of data rate by changing the FFT length based on the available channel bandwidth. The
system parameters of the IEEE 802.16 series of standards for different channel bandwidths
are shown in Table B.3.

WiMAX supports a number of modulation and forward error correction (FEC) coding
schemes and allows their change per user and per frame basis according to the channel
conditions. The FEC coding based on convolutional codes is mandatory, while convo-
lutional codes are combined with an outer Reed-Solomon code in the downlink. Turbo
codes and low-density parity check (LDPC) codes are optionally supported giving in total
52 combinations of modulation and coding schemes. AMC is an effective mechanism to
maximize throughput in a time-varying channel. The adaptation algorithm typically calls
for the use of the highest modulation and coding scheme that can be supported by the
SINR ratio of the particular user.

2Used for pilot subcarriers and for data modulation only in IEEE 802.16-2004.
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Table B.4.: Modulation and mandatory coding rates for the IEEE 802.16 series of
standards.

PHY
mode

Modulation Coding rate

0 BPSK2 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16-QAM 1/2
4 16-QAM 3/4
5 64-QAM 1/2
6 64-QAM 2/3
7 64-QAM 3/4

IEEE 802.16-2004 and IEEE 802.16e-2005 support both the time division duplexing
(TDD) and frequency division duplexing (FDD), as well as a half-duplex FDD, which
allows for a low-cost system implementation. TDD is favored by a majority of implemen-
tations because of its advantages, such as flexibility in choosing uplink-to-downlink data
rate ratios, ability to exploit channel reciprocity, and less complex transceiver design. All
initial WiMAX profiles are based on TDD, except two fixed WiMAX profiles in the 3.5
GHz band.

In Mobile WiMAX, both uplink and downlink resource allocations are controlled by
a scheduler in the base station. Capacity is shared among multiple users on a demand
basis using a burst TDM scheme. By using the OFDMA-PHY mode, multiplexing is
additionally done in the frequency dimension, by allocating the different subsets of OFDM
subcarriers to different users. Resources may be also allocated in the spatial domain by
using the optional advanced antenna systems (AAS). The standard allows for the resource
allocation in time, frequency, and space, enabled by a flexible mechanism to convey the
signaling information on a frame-by-frame basis.

Data and pilot subcarriers can be grouped into subbands that represent the smallest
unit for data allocation. The concept of grouping into subbands is used in the uplink
of IEEE 802.16-2004 and both in the uplink and downlink of IEEE 802.16e-2005. In
the downlink, the base station allocates subbands to different users based on their data
requirements and channel conditions. The lower modulation schemes are allocated to the
users with poor channel quality, while higher modulation schemes are allocated to the
users with high SNR values. In the uplink, the users can be grouped into subbands only
if the base station acknowledges that it is capable of decoding corresponding subbands.
This type of multiple access scheme is called orthogonal frequency division multiple access
(OFDMA). Each subband contains either distributed subcarrier permutation (FUSC and
PUSC modes) or adjacent (contiguous) subcarrier permutation (AMC).

In distributed subcarrier permutation, the subcarriers are partitioned into the groups
of contiguous subcarriers, where each subband consists of one subcarrier from each of
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these groups either in uniform or in random way. The subchannels formed by the dis-
tributed subcarriers provide higher frequency diversity, which is particularly useful for
mobile applications. WiMAX defines several grouping schemes based on the distributed
subcarriers both for the uplink and downlink. One of them, named partial usage of
subcarriers (PUSC), is mandatory for all mobile WiMAX implementations.

In contrast, the AMC permutation mode assumes that all subcarriers of a particular
subband are adjacent to each other. Although frequency diversity is lost to a large extent,
the exploitation of multiuser diversity is easier. Multiuser diversity provides the signif-
icant improvement in overall system capacity because, at any given time, a subband is
allocated to the user with the highest SNR (capacity) in that subband. In this subcarrier
permutation, nine adjacent (eight data and one pilot) subcarriers are used to form a bin.
Four adjacent bins in the frequency domain constitute a band. An AMC subband consists
of six contiguous bins from the same band. Thus, an AMC subband can consist of one
bin over six consecutive symbols, two consecutive bins over three consecutive symbols, or
three consecutive bins over two consecutive symbols. In general, the contiguous subbands
are more suited for fixed and low-mobility applications.

Each subcarrier permutation defines a slot structure, which is a basic building block of
an OFDMA frame. Each slot starts with the preamble, utilized for the synchronization.
The preamble and pilot subcarriers are BPSK modulated having the power boosted 2.5
dB above the average power value specified by the other modulations.

B.3. LTE

The increased capacity due to robustness to multipath effects offered by OFDM technology
was one of the main reasons for the wide acceptance of WLAN and the subsequent intro-
duction of the WiMAX technology. The Third Generation Partnership Project (3GPP),
formed by Global System for Mobile communications (GSM) and consisting of several
standardization groups from different regions worldwide, utilized the IP-based OFDMA
technology within the Long Term Evolution (LTE) project. The main goal of LTE was to
accommodate increasing data rate demands and new multimedia applications in the 4G
mobile networks.

The objectives of LTE were to address higher throughput, increase base station ca-
pacity, reduce latency, enable full mobility, and to include a radio interface PHY layer
supporting wireless bandwidth up to 20 MHz with new transmission schemes and ad-
vanced multiantenna technologies. Additionally, LTE was supposed to target some of the
weak points of the other OFDM-based wireless standards and to preserve compatibility
with the legacy infrastructure.

In December 2008, the Release 8 of the 3GPP standard was ratified, where LTE Radio
Access Modes, transmission bandwidth, and peak data rates are defined. The follow-
ing Release 9 introduced the Self-Organizing Networks (SON) and Multimedia Broad-
cast/Multicast Service (MBMS) features. The Release 10, also known as LTE Advanced
(LTE-A), released in March 2011, introduced the spectrum aggregation of non-contiguous
channels up to 100 MHz together with MIMO enhancements, with up to 4 layers for uplink
spatial streams and up to 8 downlink spatial streams. Moreover, the new features included
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Table B.5.: Downlink LTE system parameters.
Parameters Specification
Frequency band [GHz] 0.8 − 2.62, regulated by domestic regulations
Bandwidth [MHz] 1.25 2.5 5 10 15 20
Sampling frequency
[MHz]

1.92 3.84 7.68 15.36 23.04 30.72

FFT size 128 256 512 1024 1536 2048
Subcarrier spacing
[kHz]

15

Payload modulation QPSK, 16-QAM, 64-QAM, (optional OFDM/OQAM)
FEC Turbo or Convolutional coding with rate 1/3, rate matching

(optional LDPC, BTC, CTC)
BS Transmit EIRP
[dBm]

45 − 48, regulated by domestic regulations

UE Transmit EIRP
[dBm]

23 ± 2, minimum power −40, off power −50

Number of data subcar-
riers

60 150 250 500 750 1000

Number of pilot subcar-
riers

12 30 50 100 150 200

Number of
null/guardband sub-
carriers

56 86 212 424 636 848

Frame duration [ms] 10
Slots per frame 20
OFDM symbols per slot
(short/long CP)

7/6

OFDM symbols dura-
tion (short/long CP)
[μs]

71.3 × 6. 71.9 × 1/83.3

Short CP length (5.21/10)×1, (5.21/20)×1, (5.21/40) × 1, (5.21/180)×1, (5.21/120)×1, (5.21/160)×1,

(μs/samples) (46.9/9) × 6 (46.9/18) × 6 (46.9/36) × 6 (46.9/72) × 6 (46.9/108) × 6 (46.9/144) × 6

Long CP length 16.67/32 16.67/64 16.67/128 16.67/256 16.67/384 16.67/512
(μs/samples) ×6 ×6 ×6 ×6 ×6 ×6
Number of RB 6 15 25 50 75 100
Number of RB per
frame

120 300 500 1000 1500 2000

MIMO configurations Downlink: 1 × 1, 1 × 2, 2 × 2, 4 × 4
Uplink: 1 × 1, 1 × 2

Multiple access OFDMA
Duplexing TDD, FDD

the relay techniques to increase the coverage and data rate, and coordinated multipoint
transmission to reduce the inter-cell interference and improve the signal strength.

Similar to WiMAX, LTE allows for TDD and FDD, while the scalable OFDM enables
efficient spectrum utilization. The supported transmission bandwidths and the other
system parameters are shown in Table B.5. LTE also utilizes OFDMA for a multiple
access scheme in the downlink. The basic allocation unit assigned by the scheduler at the
base station is a physical resource block (PRB), which consists of 12 adjacent (10 data
and 2 pilot) subcarriers within one slot. Two CP lengths are supported: the first CP
length is 1/4 of the useful symbol duration or 4.687 μs and is used for the communication
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Table B.6.: Modulation and mandatory coding rates for LTE.

PHY
mode

Modulation Coding rate /1024

1 QPSK 78
2 QPSK 120
3 QPSK 193
4 QPSK 308
5 QPSK 449
6 QPSK 602
7 16-QAM 378
8 16-QAM 490
9 16-QAM 616
10 64-QAM 466
11 64-QAM 567
12 64-QAM 666
13 64-QAM 772
14 64-QAM 873
15 64-QAM 948

with large delay spreads; the second CP length is 1/16 or 16.67 μs and is used for the
communication characterized with low delay spreads (for distances up to 5 km). Because
the slot duration is fixed to 0.5 ms, the longer CP allows for 6 symbols per slot, while
shorter CP allows for 7 symbols per slot with the first CP extended to 5.2 μs. The generic
radio frame consists of 20 slots with maximum information block size of 6144 bits. The
supported modulation schemes and FEC coding rates are given in Table B.6.

For the LTE uplink, Single Carrier Frequency Division Multiple Access (SC-FDMA) is
used as a multiple access technique. Although it is still based on the OFDMA technology,
SC-FDMA is mainly introduced due to the low peak to average power ratio (PAPR) char-
acteristic, which is a critical issue for the power consumption at the user equipment (UE).
While PAPR is not a problem for the base station, it is unacceptable for the mobile unit.
As a result, SC-FDMA combines the low PAPR offered by single-carrier systems with the
multipath interference resilience and flexible subcarrier frequency allocation provided by
the OFDM. The peak downlink and uplink data rates for the 20 MHz channel bandwidth
are 326 and 86 Mbps, respectively. Furthermore, by utilizing the spectrum aggregation
up to 100 MHz, the achievable peak rates are 1 Gbps and 500 Mbps for downlink and
uplink, respectively.

B.4. WRAN (IEEE 802.22 Standard)

In November 1994, IEEE formed the 802.22 Working Group for the Wireless Regional
Area Networks (WRAN). The specific task of the IEEE 802.22 standard was to intro-
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Table B.7.: IEEE 802.22 system parameters.

Parameters Specification Remark
Frequency range 54 − 862 MHz

Bandwidth [MHz] 6, 7, 8 Accommodated to TV
channelization of different

regulatory domains
Sampling rate

[MHz]
6.856, 8, 9.136

Subcarrier spacing
[kHz]

3.348, 3.906, 4.46

Payload
modulation

QPSK, 16-QAM, 64-QAM BPSK used for preambles,
pilots and CDMA modes

FEC Convolutional coding (1/2 binary
convolutional coder with
constraint length 7 and

puncturing modes in Table B.8)

Optional FEC modes
(CTC, SBTC, LDPC)

Transmit EIRP 4 W maximum for CPEs 4 W maximum for BSs in
the USA but may vary in
other regulatory domains

Multiple access OFDMA
FFT size 2048

Number of guard
subcarriers

368 (184,1,183)

Number of used
subcarriers

1680

Number of data
subcarriers

1440

Number of pilot
subcarriers

240

CP length 1/4, 1/8, 1/16, 1/32
Multiple access OFDMA

Duplexing TDD

duce PHY and MAC regulations based on cognitive radio techniques, to allow for the
non-interfering sharing of geographically unused spectrum allocated to the licensed TV
broadcast service. The cognitive radio features comprise the channel sensing, detection
of spatially or temporally unused portions of the spectrum (spectrum holes or white
spaces), adjustment of operating frequencies, and transmit control. Those actions must
be performed dynamically such that harmful interference to the licensed transmissions is
avoided.

In contrast to WiMAX, IEEE 802.22 targets the WRAN over the UHF/VHF TV bands
between 54 and 862 MHz in rural and remote areas of typically 17-30 km in radius (up to
the maximum of 100 km) from a base station (BS). Each BS serves up to 255 fixed units
of customer premises equipment (CPE) with the outdoor directional antennas located
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Table B.8.: Modulation and coding rates for IEEE 802.22 with 6 MHz channel and CP
length of 1/16.

PHY
mode

Modulation Coding rate Data rate
[Mbps]

Spectral
efficiency
[bits/s/Hz]

1 BPSK Uncoded 4.54 0.76
2 QPSK 1/2, repetition 4 1.13 0.19
3 QPSK 1/2, repetition 3 1.51 0.25
4 QPSK 1/2, repetition 2 2.27 0.38
5 QPSK 1/2 4.54 0.76
6 QPSK 2/3 6.05 1.01
7 QPSK 3/4 6.81 1.13
8 QPSK 4/5 7.56 1.26
9 16-QAM 1/2 9.08 1.51
10 16-QAM 2/3 12.10 2.01
11 16-QAM 3/4 13.61 2.27
12 16-QAM 4/5 15.13 2.52
13 64-QAM 1/2 13.61 2.27
14 64-QAM 2/3 18.15 3.03
15 64-QAM 3/4 20.42 3.40
16 64-QAM 4/5 22.69 3.78

at nominally 10 m above ground level. The data rate requirement at the edge of the
coverage area is 1.5 Mbps in the downlink and 384 kbps in the uplink, available in 50% of
the locations and 99.9% of the time, to provide a reliable connection where it is possible.
Due to the extended coverage offered by the UHF/VHF TV bands, the choice of the PHY
technology should be robust to the longer multipath excess delays up to 37 μs. Therefore,
OFDM has been chosen for PHY in the WRAN standard. Additionally, OFDM provides a
flexible spectral shape that fills spectral gaps without interfering with the licensed systems
and allows for adaptive modulation.

The IEEE 802.22 PHY specification and its key parameters are summarized in Ta-
ble B.7. It can be noticed that MIMO technology is not supported due to the large phys-
ical size of antennas in this low frequency band. Moreover, TDD is the only duplexing
mode currently supported, while the specification of FDD is expected in a future amend-
ment to the standard. To achieve trade-off between data rate and robustness, depending
on channel quality and interference condition, IEEE 802.22 defines 16 combinations of
three modulations (QPSK, 16-QAM, 64-QAM) and 4 coding rates (1/2, 2/3, 3/4, 5/6),
obtained by puncturing the output of the convolutional coder. The first 4 modes are used
for control signaling while the rest of the modes are used for the data transmission. The
corresponding parameters are given in Table B.7, where data rates and spectral efficiencies
correspond to the 6 MHz channel and CP length of 1/16.

The elementary unit for resource allocation is the subchannel, which consists of 28 (24
data + 4 pilot) subcarriers. There are total of 60 subchannels in each OFDM symbol.



C. The Impact of the Constant Gap
Assumption

A majority of published work on resource allocation in OFDM systems assumes the con-
stant SNR gap for all considered M-QAM constellations. The most commonly used con-
stant gap value is given as Γ = Γrn = −1.5/ ln(5 · BER), rn ∈ {1, . . . ,M} as derived
in [108]. Because Γ depends only on the required BER, the expression for the incremental
power on the nth subcarrier in (3.20) can be simplified as

ΔPrn(n) =

⎧⎨⎩
Γ

G(n) , rn = β
Γ

G(n)2
rn

(
1 − 2−β

)
rn > β

. (C.1)

Having the granularity of one bit, i.e., β = 1, the incremental power becomes

ΔPrn(n) =

⎧⎨⎩
Γ

G(n) , rn = 1
Γ

G(n)2
rn−1 rn > 1

. (C.2)

Our simulation results indicate that for the LC algorithm the constant SNR gap slightly
reduces data rate compared to the assumption of individual SNR gaps. However, the
constant SNR gap introduces BER violations at low SNR values and BER improvements
in the high SNR region as shown in Figure C.1 and Figure C.2. In our performance
analysis in Chapters 3, 7, and 8 we avoid the concept of constant gap and assume that
each modulation scheme is characterized with the individual SNR gap.
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Figure C.1.: Number of bits per subcarrier vs. average SNR in the EVA channel.
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Figure C.2.: BER vs. average SNR in the EVA channel.



D. The TIGR Transceiver Benchmark

As addressed in Section 8.2, the TIGR framework is based on the GNU Radio software
architecture where signal processing blocks are implemented as a C++ class while Python
connects several blocks into a flow graph. Each GNU Radio block has a few callable
functions that perform different parts of the signal processing. The important issue in the
design of any software defined radio (SDR) is to investigate the software performance on
different platforms. Therefore, to analyze the performance of the signal processing blocks
utilized by the TIGR framework we conduct several benchmarking tests.

We profile the TIGR transceiver by using the gr-benchmark [109], a new tool for char-
acterizing the software radio performance on different architectures platforms. The gr-
benchmark is available as an out-of-tree GNU Radio repository and further allows for
waveform level performance measurement. A number of specific tests is given in the form
of the Python based GNU Radio waveform test modules. A test definition given as a
parametrized Javascript Object Notation (JSON) description runs the particular test in
a module for a specific number of data items and number of iterations while recording
execution time and runtime spent in each instantiated block of the flow graph [110].

First, we investigate the performance of the generic mapper and generic demapper for
different modulation schemes at the transmitter and receiver, respectively. We compare
their performance on two different machines: a desktop PC with i7-960 CPU @ 3.20 GHz
and a Lenovo X220 Thinkpad notebook with i7-2620M CPU @ 2.70 GHz. While the
performance of other processing blocks is affected only by the symbol (sampling) rate,
the computational complexity of the mapper and demapper additionally depends on the

Benchmark mapper Benchmark demapper

corba_bitmap_src

ofdm_generic_mapper_bcv

bi t
loading

gr_vector_source_b

r andom
bits

gr_null_sink

complex
symbols

ofdm_generic_demapper_vcb

gr_null_sink

demapped
bits

gr_vector_source_c

random complex
symbols

corba_bitmap_src

bi t
loading

Figure D.1.: Benchmark flow graph for the TIGR mapper and demapper.
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Figure D.2.: Performance comparison of the mapper/demapper block for different modu-
lations available in TIGR.

particular bit loading vector given at the input. The GNU Radio flow graphs of the
mapper and demapper bechmark tests are shown in Figure D.1.

In the mapper benchmark, the gr_vector_source_b block produces the random bits
that are derived to the ofdm_generic_mapper_bcv block, while corba_bitmap_source
provides the bit loading vector defining the particular modulation scheme on each sub-
carrier at the mapper. For each modulation scheme, gr_vector_source_b generates the
number of random bits required by the mapper to produce 100000 OFDM symbols. The
higher the modulation scheme, the more bits are supplied to the mapper. Similarly,
for the demapper benchmark, the gr_vector_source_c produces 100000 complex OFDM
symbols supplied to the ofdm_generic_demapper_bcv block, while corba_bitmap_source
provides the bit loading vector. The outputs of the mapper and demapper are derived
to the gr_null_sink block to flush the generated complex symbols and demapped bits,
respectively. However, the execution time of one simulation run may depend on the par-
ticular value of random bits as well as on the operating system factors. The simulation
is thus run 100 times and the average execution time that mapper/demapper spends to
generate/decode one OFDM symbol is used as a statistic to measure the performance,
as shown in Figure D.2. The execution times that correspond to the shortest simulation
runs (the light bars), as well as the corresponding standard deviation of the execution
times are also depicted.
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Figure D.3.: Execution times for the TIGR transmitter.

As expected, the BPSK modulation requires the least computational effort while the
computational footprint increases with the number of constellation points. For the map-
per, the average execution time for a notebook with an i7-2620M processor is nearly
doubled compared to the performance of a desktop PC with an i7-960 processor. How-
ever, it is shown that the performance difference between two machines decreases in the
demapper benchmark.

Furthermore, we profile the transmitter and receiver to analyze the execution times
of different GNU Radio blocks within the TIGR transceiver. We also investigate the
influence of the signal bandwidth (sampling rate) on the performance of the individual
block. The benchmark is performed at the desktop PCs with an i7-960 CPU @ 3.20 GHz
by transmitting/receiving the signals with the bandwidths of 1 MHz and 2.5 MHz via a
USRP2 board. The 10000 OFDM frames are generated. The frame structure is shown in
Figure 8.10 and represents a sequence of ten data symbols preceded with two preambles
(one synchronization preamble and one preamble used for channel estimation) and one
ID symbol used for the synchronization. The data subcarriers carry 16-QAM modulated
complex symbols.

Figure D.3 shows that the mapper has the biggest computational footprint compared
to other blocks at the transmitter. Since symbol bandwidth determines the number of
bits transmitted during a given period, the demapper spends more time to generate one
1MHz symbol then for producing one 2.5MHz symbol.

At the receiver, the gr_uhd_usrp_source block experiences the longest execution time
as shown in Figure D.4. Since the source block receives samples from the USRP and writes
them to a stream further processed in the GNU Radio flow graph, the long execution time
is caused by the buffering of the incoming samples from the USRP.
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Figure D.4.: Execution times for the TIGR receiver.
The second largest computational effort at the receiver is associated with the timing

synchronization consisting of five blocks: four autocorrelation blocks for generating the
timing metrics and one gr_time_sync block that performs the peak detection. The timing
synchronization is the initial processing stage at the receiver, i.e., the incoming samples
from the USRP are firstly processed to find the correct beginning of an OFDM frame.
Thus, the further reduction of the overall receiver complexity can be achieved by moving
the timing synchronization into the FPGA at the USRP board.



Acronyms

3GPP Third Generation Partnership Project
AAS Advanced Antenna Systems
ADC Analog-to-Digital Converter
AMC Adaptive Modulation and Coding
API Application Programming Interface
ARQ Automatic Repeat Request
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BLUE Best Linear Unbiased Estimator
BPSK Binary Phase Shift Keying
BS Base Station
BWA Broadband Wireless Access
CFO Carrier Frequency Offset
CFR Channel Frequency Response
CIC Cascaded Integrator-Comb
CIR Channel Impulse Response
CNR Channel-to-Noise Ratio
CORBA Common Object Request Broker Architecture
CP Cyclic Prefix
CPU Central Processing Unit
CRB Cramer-Rao Bound
DAC Digital-to-Analog Converter
DDC Digital Downconversion
DECT Digital Enhanced Cordless Telecommunications
DFT Discrete Fourier Transform
DSA Dynamic Spectrum Access
DSL Digital Subscriber Line
DSSS Direct Sequence Spread Spectrum
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DUC Digital Upconversion
EPA Extended Pedestrian A Channel Model
ERF Error Function
ERFC Complementary Error Function
ETSI European Telecommunications Standards Institute
ETU Extended Typical Urban Channel Model
EVA Extended Vehicular A Channel Model
EV-DO Evolution-Data Optimized
FBW Fractional Bandwidth
FCFO Fractional Carrier Frequency Offset
FDD Frequency Division Duplexing
FEC Forward Error Correction
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field Programmable Gate Array
FUSC Full Usage of Subcarriers
FZC Frank-Zadoff-Chu
GbE Gigabit Ethernet
GPL General Public License
GPP General Purpose Processor
GPS Global Positioning System
GSM Global System for Mobile Communications, orig. Groupe Spécial Mobile
GUI Graphical User Interface
HBF Half-Band Filter
HSPA High Speed Packet Access
ICFO Integer Carrier Frequency Offset
ICI Inter-carrier Interference
IDFT Inverse Discrete Fourier Transform
IF Intermediate Frequency
IFFT Inverse Fast Fourier Transform
IPS Improved Periodic Sequence Estimator
ISI Inter-symbol Interference
JSON Javascript Object Notation
LDPC Low Density Parity Check
LLS Linear Least Square
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LNA Low Noise Amplifier
LO Local Oscillator
LOS Line-Of-Sight
LS Least Square
LTE Long Term Evolution
LTE-A Long Term Evolution Advanced
MAC Media Access Control
MBMS Multimedia Broadcast/Multicast Service
MCS Modulation and Coding Scheme
MIMO Multiple Input Multiple Output
MMSE Minimum Mean Square Error
M-PSK Multiple Phase Shift Keying
NCO Numerically Controlled Oscillator
NCRB Normalized Cramer-Rao Bound
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PAPR Peak-to-Average Power Ratio
PCI Peripheral Component Interconnect
PDF Probability Density Function
PDP Power Delay Profile
PHY Physical Layer
PPS Pulse Per Second
PS Periodic Sequence Estimator
PSD Power Spectral Density
PSK Phase Shift Keying
PSTN Public Switched Telephone Network
PUSC Partial Usage of Subcarriers
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
SB Subband Resource Allocation
SC-FDMA Single Carrier Frequency Division Multiple Access
SD Secure Digital
SDR Software Defined Radio
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SER Symbol Error Rate
SFO Sampling Frequency Offset
SIR Signal-to-Interference Ratio
SISO Single Input Single Output
SMA SubMiniature Version A
SNR Signal-to-Noise Ratio
SON Self-Organizing Networks
STO Symbol Timing Offset
TDD Time Division Duplexing
UE User Equipment
U-NII Unlicensed National Information Infrastructure
UP Uniform Power Allocation
USRP Universal Software Radio Peripheral
VC Virtual Subcarriers
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WMAN Wireless Metropolitan Area Network
WRAN Wireless Regional Area Network
ZF Zero Forcing
ZP Zero Padding



Notations

Symbols for General Purpose

∗ Convolution operation.

� Circular convolution operation.

(·)∗ Complex conjugate.

(·)N Modulo N .

E(X) Expectation value of X.

R(X) Autocorrelation of X.

Var(X) Variance of X.

B(u, v) Beta function.

Ia(u) Modified Bessel function of the first kind of the order a.

J0(u) Bessel function of the first kind of the order 0.

L(λL) Lagrange function.

Q(x) Q function.

erfc(x) Inverse error function.

Γ(u) Gamma function.

P Noncentral chi-squared random variable.

V Noncentral F random variable.

Z Central chi-squared random variable.

λL Lagrange multiplier.

Fνp,νz(λ) Noncentral F -distribution with with νp numerator and νz denominator
degrees of freedom and noncentrality parameter λ.

χ2
νp,λ Noncentral chi-squared distribution with νp degrees of freedom and non-

centrality parameter λ.

χ2
νz

Central chi-squared distribution with νz degrees of freedom.
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N,N0 Set of natural numbers and natural numbers including zero, respectively.

Z Set of integer numbers.

Symbols for SISO OFDM Systems

B Signal bandwidth, p. 7.

Bc Coherence bandwidth, p. 7.

C Capacity, p. 34.

Ci(n) Transmitted complex data symbol on the nth subcarrier in the ith
OFDM symbol, p. 15.

C̃i(n) Equalized complex data symbol on the nth subcarrier in the ith OFDM
symbol, p. 29.

Cp(n) Transmitted complex data symbol on the nth subcarrier of the pream-
ble, p. 29.

G(n) CNR of the nth subcarrier, p. 36.

H(f) Channel frequency response, p. 6.

H(f, t) Time-variant channel frequency response, p. 5.

H(n) Channel frequency response on the nth subcarrier, p. 17.

Ĥ(n) Estimated channel frequency response on the nth subcarrier, p. 29.

Ii(n, εc, εs) ICI on the nth subcarrier caused by the normalized CFO εc and nor-
malized SFO εs, p. 27.

K Modulation dependent scaling factor, p. 21.

L Number of received signal paths (length of the channel impulse re-
sponse), p. 5.

M̂2,p Empirical second order moment of the received signal on the loaded
subcarriers, p. 55.

M̂ ′2,p Empirical second order moment of the received signal on the loaded
subcarriers (IPS estimator), p. 74.

M̂2,p(n) Empirical second order moment of the received signal on the nth loaded
subcarrier, p. 57.

M̂2,z Empirical second order moment of the received signal on the nulled
subcarriers, p. 55.

N Number of subcarriers (subchannels), p. 12.

Ng Number of samples in the guard interval, p. 14.
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Np Number of loaded subcarriers of the preamble, p. 54.

Npl Number of data symbols in the frame, p. 149.

Nt Total number of samples in OFDM symbol, p. 14.

Nu Number of occupied subcarriers, p. 149.

Nz Number of nulled subcarriers of the preamble, p. 54.

P (n) Power allocated on the nth subcarrier, p. 36.

P ∗(n) Optimal power allocated on the nth subcarrier, p. 37.

Pav Average transmit power, p. 44.

PD(τ) Power delay profile, p. 6.

Prn(n) Required power for transmitting r bits over the nth subcarrier, p. 39.

Ptot Total available power, p. 37.

Q Number of identical parts in the synchronization preamble, p. 54.

Ri(n) Received complex data symbol on the nth subcarrier in the Ith OFDM
symbol in the presence of synchronization impairments, p. 26.

SD(f) Doppler spectrum, p. 10.

Tc Coherence time, p. 10.

Tg Guard interval duration, p. 15.

Ts Sampling time, p. 12.

T ′
s Mismatched sampling time at the receiver, p. 23.

Tsym OFDM symbol duration, p. 12.

Wi(n) Complex noise samples on the nth subcarrier in the ith OFDM symbol,
p. 17.

Yi(n) Received complex symbol on the nth subcarrier in the ith OFDM sym-
bol, p. 17.

Ỹi(n) Received complex symbol on the nth subcarrier in the ith OFDM sym-
bol after equalization in the presence of the residual CFO and SFO,
p. 115.

Yp(n) Received complex symbol on the nth loaded subcarrier of the preamble,
p. 54.

Yz(n) Received complex symbol on the nth nulled subcarrier of the preamble,
p. 54.
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c Spectral efficiency, p. 34.

c(k) Discrete-time domain representation of the transmitted OFDM symbol,
p. 16.

c(t) Continuous-time domain representation of the transmitted OFDM sym-
bol, p. 16.

Δf Subchannel bandwidth (subcarrier spacing), p. 12.

fc Carrier frequency, p. 23.

fD Maximum Doppler frequency, p. 10.

fd Frequency offset, p. 23.

fLO Local oscillator frequency, p. 23.

fN(x) Auxiliary function, p. 27.

fn Subcarrier frequency, p. 12.

fs Sampling rate, p. 12.

f ′
s Mismatched sampling rate at the receiver, p. 23.

g(t) Pulse shape, p. 19.

h(k) Discrete-time channel impulse response, p. 16.

ĥ(k) Estimated channel impulse response prior to the DFT, p. 56.

ĥp(k) Estimated channel impulse response after the IDFT, p. 56.

h(τ) Channel impulse response, p. 6.

h(τ, t) Time-variant channel impulse response, p. 5.

i OFDM symbol time index, p. 15.

k Time index, p. 15.

Δk Timing offset, p. 24.

m Subcarrier index in the ICI term, p. 28.

n Subcarrier index, p. 15.

r Data rate, p. 34.

r Bit distribution vector, p. 39.

rWF Data rate achieved by the water-filling algorithm, p. 44.
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r(k) Discrete-time domain representation of the received OFDM symbol in
the presence of synchronization impairments, p. 23.

rframe Total number of transmitted bits within the frame, p. 149.

w(k) Time domain representation of complex noise samples , p. 16.

y(k) Discrete-time domain representation of the received OFDM symbol,
p. 16.

Γ Constant SNR gap, p. 35.

Γr SNR gap for the modulation r, p. 34.

Γrn SNR gap for the modulation r on the nth subcarrier, p. 39.

Ω(l) Expectation value of the received power associated with the lth multi-
path component, p. 6.

β Information granularity, p. 39.

γFCFO(n) SNR loss on the nth subcarrier in the presence of the CFO, p. 109.

γFCFO,av Average SNR loss in the presence of FCFO, p. 110.

γFO(n) SNR loss on the nth subcarrier in the presence of the CFO and SFO,
p. 107.

γFO,av Average SNR loss in the presence of the CFO and SFO, p. 107.

γSFO(n) SNR loss on the nth subcarrier in the presence of the SFO, p. 108.

γSFO,av Average SNR loss in the presence of the SFO, p. 108.

φm Phase shift at the mth subcarrier, p. 28.

φ̂i,n Estimated phase offset on the nth subcarrier in the ith OFDM symbol,
p. 115.

ρ(n) SNR per subcarrier, p. 18.

ρ̂(n) Estimated SNR on the nth subcarrier, p. 57.

ρav Average SNR, p. 18.

ρ̂av Estimated average SNR, p. 56.

ρ̂′
av Estimated average SNR (IPS estimator), p. 74.

ρ̂av,Bou Estimated average SNR (Boumard’s estimator), p. 51.

ρ̂av,i Estimated average SNR in the ith simulation trial, p. 65.

ρ̂av,MMSE Estimated average SNR (MMSE estimator), p. 51.
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ρ̂av,Ren I Estimated average SNR (Ren’s I Estimator), p. 52.

ρ̂av,Ren II Estimated average SNR (Ren’s II Estimator), p. 53.

ρFCFO(n) SNR on the nth subcarrier in the presence of the CFO, p. 109.

ρFCFO,av Average SNR in the presence of FCFO, p. 110.

ρFO(n) SNR on the nth subcarrier in the presence of the CFO and SFO, p. 106.

ρFO,av Average SNR in the presence of the CFO and SFO, p. 107.

ρ̂i(n) Estimated SNR per subcarrier in the ith simulation trial, p. 65.

ρP Average SNR on the pilot subcarriers, p. 117.

ρSFO(n) SNR on the nth subcarrier in the presence of the SFO, p. 108.

ρSFO,av Average SNR in the presence of the SFO, p. 108.

σ2
h(k) Average power of the kth CIR path, p. 73.

σ2
ĥp

(k) Estimated average power of the kth CIR path after the IDFT, p. 73.

σ2
I (n, εc, εs) ICI power on the nth subcarrier caused by the normalized CFO εc and

normalized SFO εs, p. 106.

σ2
P Average power on the pilot subcarriers, p. 117.

σ2
S Average signal power, p. 15.

σ̂2
S,Bou Estimated average power (Boumard’s estimator), p. 51.

σ̂2
S,MMSE Estimated average power (MMSE estimator), p. 51.

σ̂2
S,Ren I Estimated average power (Ren’s I Estimator), p. 52.

σ̂2
S,Ren II Estimated average power (Ren’s II Estimator), p. 53.

σ2
W Average noise power, p. 16.

σ̂2
W,Bou Estimated noise power (Boumard’s estimator), p. 51.

σ̂2
W,MMSE Estimated noise power (MMSE estimator), p. 51.

σ̂2
W,Ren I Estimated noise power (Ren’s I Estimator), p. 52.

σ̂2
W,Ren II Estimated noise power (Ren’s II Estimator), p. 53.

τRMS Root mean square delay spread, p. 6.

θ0 Constant phase, p. 19.

εc Normalized CFO, p. 24.
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εs Normalized SFO, p. 23.

ϕi Phase offset of the ith OFDM symbol, p. 27.

ξi(np) Phase offset on the npth pilot subcarrier in the ith OFDM symbol,
p. 115.

Additional Symbols for MIMO OFDM Systems

Ct(i, n) Complex data symbol on the nth subcarrier in the ith OFDM symbol
at the tth transmit antenna, p. 79.

Ctp(mt) Complex data symbol on the mtth subcarrier of the preamble at the tth
transmit antenna, p. 81.

Htr(i, n) Channel frequency response on the nth subcarrier in the ith OFDM
symbol between the tth transmit and rth receive antenna, p. 80.

Ĥtr(n) Estimated channel frequency response on the nth subcarrier between
the tth transmit and rth receive antenna, p. 84.

M̂2,p,tr(n) Empirical second order moment of the received signal on the nth loaded
subcarrier between the tth transmit and rth receive antenna, p. 84.

M̂2,rz Empirical second order moment of the nulled signal on the loaded sub-
carriers at the rth receive antenna, p. 83.

M̂2,trp Empirical second order moment of the received signal on the loaded
subcarriers at the rth receive antenna originating from the tth transmit
antenna, p. 83.

M̂ ′2,trp Empirical second order moment of the received signal on the loaded
subcarriers at the rth receive antenna originating from the tth transmit
antenna (MIMO-IPS estimator), p. 85.

NR Number of receive antennas, p. 79.

NT Number of transmit antennas, p. 79.

Wr(i, n) Complex noise samples on the nth subcarrier in the ith preamble at the
rth receive antenna, p. 80.

Yr(i, n) Received complex data symbol on the nth subcarrier in the ith preamble
at the rth receive antenna, p. 80.

Yrz(n) Received complex symbol on the nth nulled subcarrier of the preamble
at the rth receive antenna, p. 81.

Ytrp(n) Received complex symbol on the nth loaded subcarrier of the preamble
at the rth receive antenna originating from the tth transmit antenna,
p. 81.
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ĥtr(k) Estimated channel impulse response between the tth transmit and rth
receive antenna prior to the DFT, p. 83.

ĥtrp(k) Estimated channel impulse response between the tth transmit and rth
receive antenna after the IDFT, p. 83.

mt Index of loaded preamble subcarriers at the tth transmit antenna, p. 81.

ρav,r Average SNR at the rth receive antenna, p. 80.

ρ̂av,r Estimated average SNR at the rth receive antenna, p. 83.

ρ̂′
av,r Estimated average SNR at the rth receive antenna (MIMO-IPS estima-

tor), p. 85.

σ2
htr

(k) Average power of the kth CIR path between the tth transmit and rth
receive antenna, p. 84.

σ2
ĥtrp

(k) Estimated average power of the kth CIR path between the tth transmit
and rth receive antenna after the IDFT, p. 84.

σ2
S,t Average signal power at the tth transmit antenna, p. 79.

σW,r Average noise power at the rth receive antenna, p. 80.

Additional Symbols for Cognitive Radio OFDM Systems

Cm(n) Transmitted complex data symbol on the nth subcarrier in the mth
mode, p. 93.

Cp,m(n) Transmitted complex data symbol on the nth subcarrier of the preamble
in the mth mode, p. 95.

I(n) Interference on the nth subcarrier, p. 93.

Im(n) Interference on the nth subcarrier in the mth mode, p. 93.

M̂2,i Empirical second order moment of the received signal on the subcarriers
in nonactive subbands, p. 98.

M̂2,l Empirical second order moment of the received signal on the loaded
subcarriers in active subbands, p. 98.

M̂2,z Empirical second order moment of the received signal on the nulled
subcarriers in active subbands, p. 98.

MA Number of active subbands, p. 93.

MT Number of FBW modes, p. 93.

Nst,m Index of the first subcarrier in the mth mode, p. 95.

Pm(n) Frank-Zadoff-Chu sequence on the nth subcarrier in the mth mode,
p. 95.
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R(n) Received complex symbol on the nth subcarrier, p. 94.

Rp(n) Received complex symbol on the nth subcarrier of the preamble after
the ICFO correction, p. 97.

R′
p(n) Received complex symbol on the nth subcarrier of the preamble after

the FCFO correction, p. 97.

Rp,i(n) Received complex symbol on the nth subcarrier of the preamble in non-
active subbands, p. 98.

Rp,l(n) Received complex symbol on the nth loaded subcarrier of the preamble
in active subbands, p. 98.

Rp,z(n) Received complex symbol on the nth nulled subcarrier of the preamble
in active subbands, p. 98.

S(n) Transmitted complex data symbol on the nth subcarrier, p. 93.

Sm Set of subcarriers belonging to active subbands in the mth mode, p. 93.

Sp(n) Transmitted complex data symbol on the nth subcarrier of the pream-
ble, p. 95.

Sp,m Set of loaded subcarriers of the preamble belonging to active subbands
in the mth mode, p. 95.

Sz,m Set of nulled subcarriers of the preamble belonging to active subbands
in the mth mode, p. 97.

i(k) Time domain representation of the interference signal, p. 95.

m Index of FBW modes, p. 93.

m̂ Estimated mode index m, p. 97.

rp(k) Time domain representation of the received preamble, p. 96.

r′
p(k) Time domain representation of the received preamble after the FCFO

correction, p. 96.

s(k) Time domain representation of the transmitted OFDM signal, p. 95.

sp(k) Time domain representation of the transmitted preamble, p. 95.

η Integer CFO (ICFO), p. 96.

η̂ Estimated ICFO, p. 97.

ν Fractional CFO (FCFO), p. 96.

ν̂ Estimated FCFO, p. 96.

σ2
I Interference power, p. 93.

σ̂2
I Estimated interference power, p. 99.
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