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Abstract—Wideband signal acquisition and spectrum sensing
play a crucial role in a number of applications. In this work we
discuss the task of blind spectrum sensing of frequency-sparse
wideband signals sampled at sub-Nyquist rates. We show how
in a generic sub-Nyquist sampling framework the results of the
support recovery can be directly used for coarse multichannel
energy detection. We numerically study the performance of
the proposed compressive energy detector and compare it with
that of the related approaches. Our results demonstrate that it
outperforms its closest counterpart that operates on the recovered
power spectral density and provides a comparable performance
to the Nyquist-rate energy detector in the high SNRs.
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I. INTRODUCTION

The task of acquiring a wide frequency band that is
comprised of multiple communication sub-bands is crucial in
a number of applications including cognitive radio (CR), spec-
trum monitoring and radio surveillance. Sampling rate required
for traditional Nyquist sampling grows proportionally with
the bandwith of interest making analog to digital conversion
one of the main receiver’ bottlenecks. However, it has been
recently shown that by applying compressed sensing paradigm
to the reception of wideband signals it becomes possible
to significantly reduce sampling rates while preserving the
signal information content, provided that the signal’s energy
occupies only a fraction of the total frequency band [1], [2],
[3]. Given such a sub-Nyquist sampled signal the primary aim
of wideband spectrum sensing is to detect which parts of its
spectrum are occupied and which are not.

In a blind scenario when the positions and the bandwidths
of the signal sub-bands are unknown in advance, one has
to additionally solve an associated estimation problem. One
way of dealing with it is to recover and analyze the edge
spectrum, as proposed in [4] for instance. Another approach
is to first recover the signal’s spectrum from the compressed
measurements, then split it into multiple narrowband channels
and apply conventional signal detection methods, e.g., energy
detection, in each of them [5], [6], [7], [8]. This can be
done on either the frequency/power spectrum computed from
a reconstructed Nyquist sampled signal equivalent or on the
power spectral density (PSD) estimated directly from the
compressed measurements as in [6], [8], and [9]. Note that
in the blind scenario this will result in a coarse estimation of
the spectrum occupancy since the positions and the bandwidths
of these narrowband channels might not exactly coincide with

those of the signal sub-bands. Finally, it was pointed out in
[10] that the sub-Nyquist sampling framework already provides
coarse spectrum sensing functionality at a resolution of the
spectral channelization of the sampler.

Motivated by the latter approach, in this work we inves-
tigate energy based blind wideband sensing of sub-Nyquist
sampled sparse multiband signals. We show that in a generic
sub-Nyquist sampling framework one can coarsely detect the
presence of the signal energy directly from the compressed
measurements, i.e., without the need to perform full signal
or PSD recovery. Taking advantage of the implicit spectral
channelization that happens during the signal acquisition step,
we apply sparse recovery in order to estimate average signal
energy within the channalization sub-bands of the sampler
from the observation covariance matrix. Due to the complex
iterative nature of commonly used sparse solvers rigorous
performance analysis of such a compressive energy detector
does not seem to be feasible. Therefore we perform an exten-
sive numerical study instead. For various signal scenarios we
compare the empirical probabilities of correct detection, false
alarm and missed detection of the proposed approach and those
of the related approaches based on the multichannel energy
detection. Our results suggest that the proposed direct coarse
wideband sensing outperforms its counterpart that operates
on the recovered power spectrum, provided that the sensing
parameters are equal. An additional advantage comes from the
fact that it can be used without setting an arbitrary detection
threshold. It is worth noting that the spectral resolution of the
proposed detector is dictated by the parameters of the sampling
scheme and hence it is fixed. We demonstrate therefore how the
spectral accuracy of the resulting occupancy estimate depends
on the actual positions and bandwidths of the signal sub-
bands and numerically investigate its influence on the overall
detection performance.

II. SUB-NYQUIST SAMPLING OF ANALOG SPARSE

MULTIBAND SIGNALS

A. Multiband Signal Model

Consider a complex-valued continuous signal s(t) bandlim-
ited to Fn = [0,W ). Its energy is distributed over K disjoint
frequency intervals of widths Bi and central frequencies fci .
The Fourier transform of s(t) is given by

S(f) =

+∞∫
−∞

s(t)e−j2πft
dt, f ∈ Fn (1)



and the support of S(f) is defined as

F =
K
∪
i=1

[fci −Bi/2, fci +Bi/2] ⊂ Fn. (2)

This way in the absence of noise S(f)
Δ
= 0, f /∈ F . Note

that the complex-valued model was chosen for the sake of
presentation simplicity only.

The signal’s spectral support F is assumed to be arbitrary.
The positions of the signal sub-bands that contain energy
are unknown beforehand and individual signals within these
sub-bands are independent from each other. Additionally, the
total bandwidth W is supposed to be only sparsely occupied,
meaning that the Lebesgue measure λ(F) =

∑
i

Bi of the

spectral support is < 0.5W [1].

B. Sub-Nyquist Signal Acquisition

Suppose that the Nyquist range Fn = [0,W ) is virtually
split into L consecutive non-overlapping blocks of width

fs = W/L, so that Fn =
L
∪
�=1

F� with F� = [(�− 1)fs, �fs).

The core idea behind Xampling [11] is to treat the original
wideband signal s(t) as a finite union of continuous bandpass

spaces F� where S(f) = [S(1)(f), S(2)(f), . . . , S(L)(f)] and

S(�)(f) =

{
S(f), if f ∈ F�

0, otherwise.
(3)

By analog aliasing of the individual components S(�)(f) to
the baseband one can reduce the effective signal bandwidth to
be sampled from W to fs. During this process the baseband
portions of the original signal are additionally weighted and
combined together. The presence of M such down-converters
with different weighting coefficients ensure signal recoverabil-
ity. Note that the resulting sampling rate per branch fs has to
be ≥ max

i
(Bi) [3], [10], [11].

Denote the output of such a sampler as y[n] =
[y1[n], y2[n], · · · , yM [n]]T where (·)T is the vector transpose
and M is the number of parallel down-converting branches.
The process of sub-Nyquist sampling can be represented then
in a matrix from as

y[n] = Az[n], (4)

where z[n] = [z1[n], z2[n], · · · , zL[n]]
T and z�[n] is the time-

series corresponding to the baseband version of the bandpass
signal component S(�)(f). The M ×L matrix A is a sensing
matrix that weighs and linearly combines these together.

Applying the discrete-time Fourier transform (DTFT) to
both sides of (4), we have that in the frequency domain

ẏ(f) = Aż(f), f ∈ Fs, (5)

where Fs = [0, fs), ẏ(f) is a vector containing the DTFTs of
y[n], and ż(f) is an L× 1 vector with elements given by

ż�(f) = S(�)(f + �fs), f ∈ Fs. (6)

Relations (4) and (5) link the spectrum of the digital low-
rate output measurements y[n] to the unknown frequency
support F of the analog input signal s(t). The two most
well known sampling schemes practically implementing (4)
include Periodic Non-uniform Sampling (PNS) [1], [2] and
the Modulated Wideband Converter (MWC) [3].

Once the signal y[n] is acquired the goal of wideband
spectrum sensing is to detect which parts of the total band
of interest W contain signal energy and which do not. To do
so we propose to take advantage of the relations between S(f),
ż(f) and y[n] revealed by (4), (5) and (6) in order to directly
detect the presence of the signal energy within the consequent
spectral blocks F� from y[n].

III. DIRECT COARSE WIDEBAND SPECTRUM SENSING

A. Direct Compressive Energy Detector

Consider an observation covariance matrix R computed
from the compressed measurements y[n] as

R =

∞∑
n=−∞

y[n]y[n]H =

∫
f∈Fs

ẏ(f)ẏ(f)Hdf, (7)

where (·)H stands for the Hermitian transpose. Substituting (5)
into (7), we have

R =

∫
f∈Fs

Aż(f)ż(f)HAH
df = ARzA

H, (8)

where Rz is an M × M matrix. From (5) it is easy to see
that the diagonal elements (Rz)jj of Rz contain energy of the
corresponding bandpass signal components so that

(Rz)jj =

∫
f∈Fs

|żj(f)|
2
df =

∫
f∈Fj

|S(j)(f)|2df, (9)

where j = 1, 2, · · · ,M . The non-diagonal elements
(Rz)kj:k �=j therefore represent cross-correlation terms between

the kth and the j th signal components. Hence, when the signals
within the individual sub-bands are uncorrelated, Rz becomes
a diagonal matrix with K̃ ≤ 2K non-zero elements on the
main diagonal.

Using a well-known property of the Kroneker product for
matrix vectorization, we can write

r = vec(R) = (A′ ⊗A) · rz = (A′ �A) · diag(Rz), (10)

where rz = vec(Rz) is a K̃-sparse L2 × 1 vector, (·)′ is the
matrix conjugation, ⊗ and � denote the Kroneker and Khatri-
Rao products, respectively [8]. Thus, given the measurements
y[n], one can recover the unknown support S of z(f) by
solving a typical sparse recovery problem of a following form

Ŝ = supp
(
argmin

dz

(‖dz‖1)
)
s.t. r = AKR · dz, (11)

where r = vec
( ∞∑
n=−∞

y[n]y[n]H
)
, AKR = (A′ � A), and

dz = diag(Rz).

Now consider an L × 1 binary occupancy vector b, each
element of which is given by

b� =

{
1, if

∫
F� |S

(�)(f)|2df > 0
0, otherwise

. (12)

We have that b� = 0 ∀� /∈ S and ‖b‖0 = |S| where S contains
the positions of the non-zero elements of dz. Therefore, once
the support S is estimated one can detect the presence of the
signal energy in the �-th spectral block F� by applying one of
the following decision rules:



1) Direct non-parametric decision rule (DDR): The sup-
port S contains the positions of the non-zero entries of
diag(Rz) which are identical to the positions of the non-zero
elements in ż(f). The decision rule for signal detection is thus
simply given by

b� =

{
1, if � ∈ Ŝ
0, otherwise

, (13)

where Ŝ is the recovered support.

2) Energy based decision rule (EDR): Given the estimate

of the support Ŝ and taking into account (10), the energy
ξ� =

∫
F� |S

(�)(f)|2df within each of the spectral block can
be estimated as

ξ̂� =

{
Ψ

†
� · r , if � ∈ Ŝ

0 , otherwise
, (14)

where Ψ = A′ � A, Ψn contains the n-th column of Ψ

and (·)† denotes the Moore-Penrose pseudo-inverse. Hence,
the following decision rule can be applied

b� =

{
1, if ξ̂� > ζ
0, otherwise

, (15)

where ζ is some threshold defined in advance. Note that (15)
becomes (13) when ζ = 0.

B. Coarse Spectral Occupancy Estimation

The detection results from (13) and (15) can be used to
estimate coarse spectral support F̃ as follows

ˆ̃F = ∪
{�:b� �=0}

F�, λ( ˆ̃F) = κfs, (16)

where for DDR κ = |b| = |Ŝ| and for EDR κ = |b| ≤ |Ŝ|.
Suppose that the support S is estimated correctly. Then

the difference between the true spectral support F and the

estimated coarse spectral support
ˆ̃F is

0 ≤ δf = λ( ˆ̃F)− λ(F) ≤ 2Kfs, (17)

where the upper bound is due to the fact that a single signal
sub-band can potentially contribute to up to two consequent
spectral blocks F�. The actual value of δf depends on the
current positions fci and bandwidths Bi of the signal sub-
bands: it achieves 0 in the case when Bi = fs and fci =
fs/2 ∀i ∈ [1,K], whereas for any fixed values of Bi, it is
lower bounded by Kfs −

∑
i

Bi.

Figure 1 graphically demonstrates how the resulting spec-
tral accuracy depends on the difference between the channel-
ization and signal sub-band parameters for the case of a single
signal sub-band. It shows that there are two distinct areas:
triangular area around fc = (2k + 1)fs/2, k ∈ Z where the
estimation error is upper-bounded by fs (depicted by the light
grey colors) and the area mostly concentrated around the edges
of the sampler’ channel where the error is greater or equal to fs
and upper-bounded by 2fs (depicted by the dark grey colors).
This indicates that for a uniformly distributed unknown support
F with Bi � fs, with a high probability each signal sub-band
is split between two neighboring spectral blocks resulting both
in the increase of the sparsity order of rz and decrease of the
signal-to-noise ratio within the block. The degree to which
this has an effect on the spectrum sensing performance will
be investigated numerically in Section IV-C.

Fig. 1: Normalized difference δF/fs vs. normalized signal sub-band
position fn

c = fc/fs − �fc/fs� vs. normalized bandwidth B/fs
for the number of signal sub-bands K = 1, where �·� denotes the
operation of rounding to the nearest smaller integer

IV. NUMERICAL STUDY

A. Performance Metrics

Naturally, for each of the L spectral blocks S(�)(f) we
can introduce probabilities of false alarm Pfa,� and missed
detection Pmd,� so that

Pfa,�
Δ
= Pr(b� = 1|∫

F� |S�(f)|2df=0), (18)

Pmd,�
Δ
= Pr(b� = 0|∫

F� |S�(f)|2df>0). (19)

In order to evaluate the overall performance of the multichan-
nel signal detection, we define cumulative performance metrics
such as

• the total probability of correct detection Pd

Pd
Δ
= Pr(b� = 1 ∀� ∈ S, bk = 0 ∀k ∈ S ′), (20)

where S ′ = {1, 2, · · · , L}\S and {·}\{··} denotes the
relative complement of {·} in {··};

• the probability Pfa of at least one spectral block being
falsely detected as occupied

Pfa
Δ
= Pr(∃k ∈ S ′ : bk = 1); (21)

• the probability Pmd of at least one spectral block
S�(f) being falsely detected as non-occupied

Pmd
Δ
= Pr(∃k ∈ S : bk = 0). (22)

Derivation of general formulas linking (20)-(22) with (18)-
(19) is non-trivial since they depend both on the signal
properties and the recovery algorithm used to estimate S in
(11). Altogether, it makes the theoretical analysis of the prob-
lem at hand not feasible. Therefore we perform a numerical
performance study instead.

B. Simulation Setup

In this section we present the results of a series of nu-
merical simulations where the test multiband signals were
generated in the frequency domain by representing the Nyquist
range Fn = [0,W ) with a dense grid of LN equidistant points.
Each test signal had exactly K occupied sub-bands of equal
bandwidth B such that

S[fk] =

⎧⎨
⎩
σs,ie

jφ[fk] + w[fk] , fk ∈
K
∪
i=1

[ai, bi)

w[fk] , otherwise
, (23)
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Fig. 2: Probability of correct detection per block Pd,� vs. probability
of false alarm per block Pfa,� for the case of a single signal sub-band
that occupies exactly one spectral block

where w[fk] is additive wideband noise, fk = k W
LN , ai =

〈fci − B/2〉, bi = 〈fci + B/2〉 and 〈·〉 denotes the operation
of rounding to the nearest grid point. Parameters φ[fn], σs,i

and fci were drawn independently from uniform distributions
U(−π, π), U(0, 1) and U(B/2,W − B/2), respectively. The

signal powers σs,i were normalized so that
∑K

i=1 σ
2
s,i = 1.

The noise w[fk] was modeled as an i.i.d∼circularly symmetric
complex Gaussian white noise with variance σ2

0 where the
total signal-to-noise ratio was defined as η = 1/σ2

0. The
sensing matrix A was chosen randomly with entries ak,p drawn
independently from a complex normal distribution CN (0, 1),
after which they were normalized to an equal row norm, i.e.,
so that ‖ap‖2 = 1. The actual values of the parameters used
throughout the simulations can be found in Table I.

C. Performance Study

We study the applicability of the compressive energy de-
tector from III-A by comparing it with alternative multichannel
signal detection methods based on the estimation of the signal’s
power spectral density. For the PSD estimation we used two
approaches: direct reconstruction from y[n] as in [8] and
square magnitude of the originally Nyquist-sampled signal
S[fk]. Note that we did not consider an approach for estimating
PSD from the reconstructed Nyquist sampled signal equivalent
since it has been already shown to provide slightly worse
performance than the recovered PSD [8]. For the estimation
of the support S in (11) we used the Orthogonal Matching
Pursuit (OMP) from [12]. The number K of the active signal
sub-bands was assumed to be known a priori and used as a
stopping criteria for the OMP.

In order to perform a direct comparison, once the power
spectrum was estimated, it was split into L non-overlapping
consecutive blocks of bandwidth fs, after which energy de-
tection was performed independently for each of them. The
considered algorithms are further referred to as: C-DDR for
the proposed direct compressive energy detector with the
direct decision rule from (13) and C-EDR for the proposed
direct compressive energy detector with the energy based
decision rule from (15), C-PSD for the energy detection on
the recovered PSD, and Nyq for the energy detection on the
Nyquist sampled signal.

1) Single signal sub-band: We begin by considering a
single signal sub-band with a central frequency that is an
odd multiple of fs/2, meaning that it always occupies exactly
one spectral block S�[fk], i.e., |S| = K = 1. Figure 2
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Fig. 3: Total probability of correct detection Pd vs. total probability
false alarm Pfa for the case of a single signal sub-band that occupies
exactly one spectral block

TABLE I: Choice of Parameters for Simulations

Signal Parameters Sampling Parameters

K ∈ [1, 3] fNYQ/B = 105

B = 19 MHz L = 97 ≤ fNYQ/B

fNYQ = 2 GHz fs ≈ 20.6 MHz

N = 50 M = 30

presents the receiver operating characteristic (ROC), i.e., pos-
terior probability of detection versus posterior probability of
false alarm, per spectral block. Note that since C-DDR does
not require setting a threshold, it is represented by a single,
black, dot for each SNR. This also results in the posterior
probabilities of false alarm and correct detection not spanning
the whole range of [0, 1] for both C-DDR and C-EDR. One
can see that the reference Nyq scheme that corresponds to
the Nyquist-rate sampling provides better performance than
all three compressed detectors in the considered SNR range.

However, ROC curves for the total posterior probabilities
of correct detection and false alarm presented on Figure 3
demonstrate already a slightly different trend. For the reference
Nyquist-sampled scheme it is characterized by the inversion
of the characteristic for high false alarm rates and overall
deterioration of the performance with regard to the SNR.
Contrarily, the character of the ROC curves for C-DDR, C-
EDR and C-PSD is not significantly affected except for the
scaling factor. This is because, when applying sparse recovery
algorithms, the false detection can only occur when the support
was already recovered wrongly. Thus for the OMP with the
properly set stopping criteria Pfa ≈ Pfa,� · L and Pd = Pmd,�.

The resulting total posterior probability of correct detection
Pd versus SNR depicted on Figure 4 demonstrates that the
proposed C-DDR detector outperforms the compressive PSD
estimator C-PSD in the whole SNR range, while its energy
based modification C-EDR provides similar to C-PSD results
for both considered target false alarm rates. This corresponds
to the trend demonstrated by the ROC curves in Figure 3.
In the low SNRs C-EDR unsurprisingly performs worse than
non-compressive Nyqist rate energy detector. However, one
should bear in mind that the operating SNR range of C-
DDR exactly corresponds to the SNR range generally required
for signal recovery in sub-Nyquist sampling. It is also worth
noting that C-DDR does not require setting any additional
thresholds beyond the ones required for the execution of the



Fig. 4: Total probability of correct detection Pd vs. SNR for the case
of a single signal sub-band that occupies exactly one spectral block
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block fn

c = fc/fs −�fc/fs� for the case of a single signal sub-band
with B/fs ≈ 0.92

sparse recovery itself.

2) Single and multiple signal sub-bands: So far we have
considered a single spectral block occupied by a single signal
sub-band. In order to study how the position of the signal sub-
band influences the detection performance, Figures 5(a) and (b)
show the dependence of the Pd on the normalized signal sub-
band central frequency fn

c and SNR for the proposed C-DDR
and Nyquist reference detectors, respectively. In accordance
to the discussion in Section III-B, for both detectors the best
performance corresponds to the signal sub-bands with central
frequencies that are odd multiples of fs/2, i.e. when the whole
sub-band’s energy is contained within exactly one spectral
block. The performance however decays rapidly (by ≈ 5 dB
for each 10% shift) with the increase of the deviation from
this optimal position.

Finally, Figure 6 presents the results for the total posterior
probability of correct detection versus SNR for the case when
no restrictions were imposed on the positions of the active
signal sub-bands, i.e., the fcis were chosen uniformly at
random from a finite set of W/LN values. Comparing the
results for K = 1 in Fig. 6 with those from Fig. 4, one can
see the influence of the mismatch between the chanellization
parameters and distribution of the signal sub-bands in the
overall performance deterioration: the shift of the curves to
the higher SNRs and almost double stretching of the [0.1, 0.9]
interval.

V. CONCLUSION

In this work we proposed a compressive energy detector
for blind coarse wideband spectrum sensing of sub-Nyquist

Fig. 6: Total probability of correct detection Pd vs. SNR for the case
of no restrictions on the signal sub-band positions and the number of
signal sub-bands K = 1 and K = 3

sampled sparse multiband signals. We analyzed how the
mismatch between the signal and sampler parameters affect
the resulting spectral accuracy and performed an extensive
numerical performance study. Obtained results demonstrate
that the proposed detector is superior to its direct counterpart
while providing a comparative performance to the Nyquist
sensing in the high SNR regime.
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