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Abstract—This paper deals with discrete input one-bit output
quantization. A discrete input signal is subject to additive noise
and is then quantized to zero or one by comparison with a
threshold q. For finitely many fixed support points and fixed
threshold q we first determine the mutual information of this
channel. The capacity-achieving input distribution is shown
to be concentrated on merely two extreme support points.
Furthermore, an elegant representations of the corresponding
probabilities is found. Finally, we set out to determine the
optimum threshold q, which is an extremely hard problem.
By means of graphical representations a completely different
behavior of the objective function is revealed, depending on the
choice of parameters and the noise distribution.

I. INTRODUCTION

One-bit quantization of a real noisy signal is of high interest
from an information theoretic point of view. Because of the
non-linearity the problem of determining the optimum thresh-
old q? is rather cumbersome. In this paper, the optimal value
is characterized by the solution of an optimization problem,
which involves the noise distribution and the input signaling
points only. Moreover, we see certain applications in modeling
information processing in biological neural systems, see [1].

But also from an engineering point of view one-bit quantiza-
tion is an important element of modern digital receiver design.
Instead of using high precision analog-to-digital converters
(ADC) parallel one-bit quantizers could be employed. This
would allow for designing high-speed systems with much
lower energy consumption. For this purpose, the fundamental
limits of low precision ADC must be understood.

This paper aims at contributing to this objective. The
questions we ask are quite basic. Firstly, what is the capacity-
achieving distribution for an additive noise channel with a one-
bit output quantizer in the class of discrete input distributions
with m support or signaling points? Secondly, what is the
optimum threshold q? so that the capacity of this channel is
maximized?

Investigating quantizers of an input signal subject to additive
white Gaussian noise (AWGN) is the most popular case, as
the normal distribution has salient mathematical properties.
Considering discrete channel input is quite natural from a
practical point of view, since digital transmission systems
usually use finite sets of signaling points. Hence, in many
publications a discrete channel input in combination with
AWGN is considered. For example, a related problem is
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treated for the AWGN channel in [2], namely maximizing
mutual information subject to a power constraint. Similarly
in [3], it is stated that the capacity-achieving distribution over
all input distributions is discrete for AWGN noise, once an
average power constraint is applied. In the work [4], the
real discrete-time AWGN channel with an average power
constraint is considered. The authors show that for a K-
bit quantizer with a precision of log2(K) bits the capacity-
achieving input distribution is discrete with at most K + 1
mass points. For binary symmetric quantization this result is
refined to demonstrate that antipodal signaling is optimum for
arbitrary signal-to-noise ratios. The authors conjecture that
symmetric quantizers are optimal, however, are not able to
provide a proof. Moreover, the loss by low precision ADCs is
numerically quantified.

One-bit quantization is also considered in [5] for the AWGN
channel model. In the low signal-to-noise regime, as is relevant
for spread-spectrum and ultra-wideband communications, it is
shown that asymmetric signal constellations combined with
asymmetric quantization are superior to the fully symmetric
case. It is shown that with such asymmetric threshold quan-
tizers the capacity per unit-energy of the Gaussian channel
without output quantization is achieved. However, for this
purpose flash-signaling input distributions are required, which
are not within the class of peak power constrained input
distributions as they will be considered in the present work.

Moreover, by the paper [5], the work [3] has been extended
to include a peak power constraint for the Gaussian channel.
This leads to the result that the capacity-achieving input
distribution is concentrated on two extreme mass points, cf. [5,
Prop. 1]. Capacity is written as a maximization problem over
all possible thresholds, but only numerical indications are
given for the optimum threshold. Moreover, for the Gaussian
channel it is shown in [5] that a threshold quantizer is optimal.

Arbitrary noise distributions are considered in [6]. It is
shown that the capacity-achieving distribution for the one-bit
quantization channel is discrete whenever the support of the
input distribution is finite.

In the work [7] one-bit quantization is interpreted as an
asymmetric channel. Channel capacity and minimal error
probability are investigated in parallel, and optimal threshold
settings are determined numerically. In [8] the closely related
problem of optimal one-bit source quantization is studied. It is
shown that for symmetric and log-concave source distributions
the optimal one-bit quantizer is symmetric about the origin.
In the recent paper [9], for a complex-valued fading channel
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the ergodic capacity and outage probability of one-bit output
quantization for discrete I/Q modulation schemes have been
determined.

In this paper, we consider a real input channel with a finite
number of signaling points, arbitrary additive noise and one-
bit quantization by threshold q, see Fig. 1. The same model
is used in [10] where for fixed signaling points the capacity-
achieving distribution is determined. What discriminates this
work from others, are the following contributions.

We give an elegant direct proof of the fact that the capacity-
achieving input concentrates on the extreme signaling points
only. To this end, mutual information of the channel is repre-
sented explicitly as a function of the input distribution and the
threshold q. Finally, we investigate some structural properties
of the capacity as a function of threshold q. Determining
the capacity-maximizing threshold q is an extremely hard
problem. We arrive at an interesting symmetric representation
of the objective function. We also demonstrate by graphical
representations that completely different behavior of the ob-
jective function can be observed. In selected cases this entails
well founded conjectures on the optimum threshold q?.

II. CHANNEL MODEL

We assume an additive noise channel (not necessary Gaus-
sian). Real input X with cumulative distribution function
(CDF) F (x) is subject to additive noise W with density
function ϕ(w) and corresponding CDF Φ(w). X and W are
assumed to be stochastically independent. The noisy signal
X + W is then quantized by a binary quantizer Q with
threshold q as Q(s) = 1, if s > q and Q(s) = 0, otherwise.
The system model is depicted in Fig. 1 and reads as

Y = Q(X +W ). (1)

Let h(p) denote the binary entropy function, defined by

h(p) = −p loga p− (1− p) loga(1− p), 0 ≤ p ≤ 1 , (2)

where a > 1 denotes the base of the logarithm. It is well
known that h(p) is a strictly concave function of p ∈ [0, 1].

Including noise as input and maximizing mutual information
I(Z;Y ) is an easy task. Let F̃ (z) denote the CDF of Z. Since
H(Y | Z) = 0 we obtain

I(Z;Y ) = H(Y )−H(Y | Z) = h
(
F̃ (q)

)
≤ loga 2

with equality if and only if F̃ (q) = 1/2. Hence, the channel
capacity of Z to Y is loga 2. It is achieved for any distribution
of Z with F̃ (q) = 1/2. In contrast, maximizing I(X;Y ) is
much harder.

Mutual information between input X and binary output Y
may be written as

I(X;Y ) = H(Y )−H(Y | X) (3)

= h
(∫

Φ(q − x)dF (x)
)
−
∫
h
(
Φ(q − x)

)
dF (x).

Mutual information is hence a function of the input distribution
F , the noise distribution Φ, and the quantization threshold

+
q Y {0, 1}X

W

Z

Fig. 1: The system model: some real input X is subject to
additive noise W and is quantized with threshold q to yield
binary output Y .

q. This motivates the notation I(X;Y ) = I(F,Φ, q). In the
case that Φ is continuous (not necessary differentiable) and
F corresponds to a discrete distribution with finitely many
mass points m, described by the density p = (p1, . . . , pm)
and support points x = (x1, . . . , xm), we also write I(p,x, q)
for (3), i.e.,

I(p,x, q) = h
( m∑
i=1

piΦ(q − xi)
)
−

m∑
i=1

pih
(
Φ(q − xi)

)
. (4)

By γ = (γ1, . . . , γm) with γi = Φ(q − xi), 1 ≤ i ≤ m, a
concise representation of (4) is obtained as

I(p,γ) = h
( m∑
i=1

piγi

)
−

m∑
i=1

pih(γi). (5)

It is well known that I(F,Φ, q) is a concave function of F
and a convex function of Φ. Hence, I(p,γ) is concave in p and
convex in γ as well. Obviously, γi is monotonically increasing
and decreasing in its arguments q and xi, respectively.

III. CAPACITY-ACHIEVING INPUT DISTRIBUTION

From now on we will only consider discrete input distribu-
tions with finitely many support points x1, . . . , xm. From (5)
it follows that degenerate distributions cannot be capacity-
achieving, since in the case that pi = 1 for some i ∈
{1, . . . ,m} the identity I(p,γ) = h(γi) − h(γi) = 0 holds,
which cannot be the maximum of I(p,γ).

We first observe that the maximum of I(p,x, q) over
threshold q with p fixed does not change if each support point
is shifted by the same amount.

Proposition 1: The maximum maxq I(p,x, q) is invariant
to a constant additive shift α of the support points for any
fixed input distribution p.

Proof. For any α ∈ R it follows from (4) that
I(p,x, q) = I(p,x+ α1m, q + α), where 1m denotes the all-
ones vector of size m. Hence, the maximum with shifted
support points is attained at q? + α, if q? is a solution of
the original problem.

For any x and q, the capacity achieving distribution is
concentrated on the extreme support points, as is shown in
the following, see also [11, pp. 91–96].

Proposition 2: Consider the set D of discrete distributions
with support points x1 < · · · < xm and corresponding proba-
bilities p = (p1, . . . , pm). Then the maximum maxp I(p,x, q)
is attained at a distribution concentrated on the extreme points
x1 and xm. Hence, the capacity-achieving distribution over D
has at most two signaling points x1 and xm.
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Proof. Suppose x1 < · · · < xm and consider the first
derivative of I(p,γ) w.r.t. γj for some j ∈ {1, . . . ,m}, i.e.,

∂I(p,γ)

∂γj
= pj loga

(
1 +

(γj − γ̄j)(1− pj)
(1− γj)

∑m
i=1 piγi

)
,

where γ̄j =
∑m
i=1
i 6=j

piγi/
∑m
i=1
i 6=j

pi.

For any γj ≥ γ̄j the derivative ∂I(p,γ)
∂γj

is positive. De-
creasing xj towards x1 increases γj towards γ1 such that for
fixed p1, . . . , pm the inequality I(p, γ̃) ≥ I(p,γ) results. The
sequence γ̃ is identical to γ with the exception of γj = γ1.

Vice versa, if γj ≤ γ̄j , the derivative ∂I(p,γ)
∂γj

is negative.
Increasing xj towards xm decreases γj towards γm such that
I(p, γ̃) ≥ I(p,γ) results. Analogously, the sequence γ̃ is
identical to γ with the exception of γj = γm.

In both cases we end up with an increased I(p, γ̃)
having support points x1, . . . , xj−1, xj+1, . . . , xm
with probabilities (p1 + pj , . . . , pj−1, pj+1, . . . , pm) or
(p1, . . . , pj−1, pj+1, . . . , pj + pm), respectively.

Iterating this process for all 1 < j < m yields a distribution
with only two points x1 and xm of positive probability.

The explicit form of the capacity-achieving distribution has
been derived in [10]. We here present a different form by
a different proof, which finally allows for determining the
optimal threshold q.

Proposition 3: For any fixed support points x1 < · · · < xm
and any threshold q the capacity-achieving distribution p? is
concentrated on the extreme support points x1 and xm with
probabilities

p?1 =
1− (1 + as)γm

(1 + as)(γ1 − γm)
and p?m =

(1 + as)γ1 − 1

(1 + as)(γ1 − γm)
.

(6)
The corresponding channel capacity is given as

max
p

I(p,γ) = loga
(
1 + as

)
− (s+ t) (7)

with constants

s =
h(γ1)− h(γm)

γ1 − γm
and t =

γ1h(γm)− γmh(γ1)

γ1 − γm
. (8)

Proof. Since I(p,γ) is a concave function of p, the
maximization problem maxp I(p,γ) is a convex optimization
program such that the Karush-Kuhn-Tucker conditions char-
acterize the global optimum. The partial derivatives w.r.t. pj
of the corresponding Lagrangian

L(p,γ; t,µ) = −I(p,γ) +

(
1−

m∑
i=1

pi

)
t−

m∑
i=1

piµi

must vanish for all j = 1, . . . ,m. After some algebra we find
that ∂L(p,γ; t,µ)/∂pj = 0 holds if and only if h(γj) =
γjs+ t+ µj , for all j = 1, . . . ,m with

s = loga
1−∑m

i=1 piγi∑m
i=1 piγi

. (9)

Since h(γ) is a strictly concave function of γ there are at most
two intersecting points with the affine function γs + t + µj .

Hence, the capacity-achieving distribution has only two mass
points with pi + pj = 1. From Proposition 2 we know that
these correspond to the extreme support points x1 and xm.
The complementary slackness condition states that µj = 0
whenever pj > 0. Hence, t = h(γ1) − γ1s and t = h(γm) −
γms follows. These equations allow for determining t and s
explicitly, as is presented in (8).

From (9) the probabilities in (6) are deduced. Finally, the
optimum value I(p?,γ) in (7) is derived by incorporating p?,
s and t into I(p,γ). All step-by-step computations above are
rather lengthy and tedious to accomplish and are thus omitted
for reasons of brevity.

Concentrating on the extreme support points allows for
an interpretation as a binary asymmetric channel where the
error probabilities are given by Φ(q − xm) and Φ(q − x1),
respectively. Related early works on determining the capacity
are [12]–[15].

We now set out to demonstrate that capacity increases as
the distance between x1 and xm does.

Proposition 4: Set γ1 = γ and γm = γ + δ, and consider
the capacity I(γ1, γm) = maxp I(p,γ) derived in (7). Then
for any 0 ≤ γ ≤ 1 the capacity I(γ, γ + δ) is an increasing
function of δ, 0 ≤ δ ≤ 1− γ.

Proof. The first derivative of I(γ, γ+ δ) w.r.t. δ is given by

I(γ,γ + δ)′ = −
( 1

1 + as
− γ
)

(10)

· (γ + δ)h(γ)− γh(γ + δ) + δ loga(1− γ − δ)
δ2(γ + δ)

. (11)

We first show that the first factor (10) is non-negative, and
then prove that the quotient in (11) is less than or equal to
zero.

By Taylor’s theorem [16, p. 14, eq. 3.6.1-3.6.5] with the
Lagrange form of the remainder and a proper number ξ, 0 ≤
ξ ≤ δ, the following representation is obtained:

h(γ + δ)− h(γ) = δ loga

(1− γ
γ

)
︸ ︷︷ ︸

=h′(γ)

+
δ2

2

−1/ ln(a)

(1− ξ)ξ︸ ︷︷ ︸
=h′′(ξ)

.

Since the second derivative h′′(ξ) is always negative, it holds
that h(γ + δ) − h(γ) ≥ δ loga

(
1−γ
γ

)
which is equivalent to

1
1+as ≥ γ.

From the well-known inequality loga p ≤ p−1
ln a it follows

that

h(γ)− γ

γ + δ
h(γ + δ) +

δ

γ + δ
loga(1− γ − δ)

= γ loga

(γ + δ

γ

)
+ (1− γ) loga

(1− γ − δ
1− γ

)
≤ γ

ln(a)

(γ + δ

γ
− 1
)

+
1− γ
ln(a)

(1− γ − δ
1− γ − 1

)
= 0

which shows that the ratio (11) is non-positive.
In total, the derivative of I(γ, γ+δ) w.r.t. δ is non-negative

and I(γ, γ + δ) is an increasing function of δ.
Corollary 5: A conclusion of the previous proposition is

that due to the monotonicity of Φ, capacity is increasing with
respect to the difference |xm − x1|.
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(a) 3d-visualization with contour lines (b) Representation only by contour lines (top-view)

Fig. 2: Mutual information I(γ1, γm) from (12) as a function of (γ1, γm).

Capacity (7) as a function of (γ1, γm) has the following
representation which reveals inherent symmetry properties.
The derivation of (12) needs straightforward tedious algebra.

I(γ1, γm)

= loga

(
a

(1−γ1)h(γm)−(1−γm)h(γ1)
γ1−γm +a

γmh(γ1)−γ1h(γm)
γ1−γm

)

= loga

(
a

(1−γ1)(1−γm)
γ1−γm

γ1∫
γm

loga(γ)dγ

(1−γ)2
+a

γmγ1
γ1−γm

γ1∫
γm

loga(1−γ)dγ
γ2

)
(12)

Since the capacity-achieving distribution has only two mass
points x1 and xm, and the maximum capacity w.r.t. a threshold
q is invariant to an additive shift of the support points,
cf. Proposition 1, the support points of the input distribution
may be chosen symmetrically to zero as x′1 = (x1 − xm)/2
and x′m = (xm − x1)/2 without changing capacity.

Determining the capacity-maximizing threshold q? in gen-
eral is an extremely hard problem, the reason for which
becomes clear from the following graphical representations.

IV. SELECTED NUMERICAL RESULTS

First, mutual information I(γ1, γm) from (12) is depicted
as a function of two variables, neglecting that γ1 and γm are
subject to

γ1 = Φ(q − x1) and γm = Φ(q − xm) , q ∈ R. (13)

The corresponding three-dimensional plot and contour plot are
shown in Fig. 2a and Fig. 2b, respectively. The shape of the
surface I(γ1, γm) indicates convexity, which is actually true
and can also be proven analytically.

Further, three types of noise distributions are considered, the
Gaussian, uniform and mixture of two Gaussians. In the first
row of Fig. 3 the corresponding densities are shown. In the
second row the shifted cumulative distribution functions Φ(q−
xi) and their differences Φ(q−x1)−Φ(q−xm) are plotted as a
function of q; solid curves for the case xm−x1 = 1 and dashed
ones for xm − x1 = 5/2. The third row contains the contour

lines of I(γ1, γm) overlaid by the trajectories (γ1, γm)(q) =
(Φ(q − x1),Φ(q − xm)), q ∈ R.

Some interesting phenomena may be observed which make
the problem maxq I(γ1, γm), such that (13) holds, quite com-
plicated. In the case of Gaussian noise the optimum seems to
be always attained at some point γ?1 = 1 − γ?m, γ?m ∈ (0, 1),
leading to a threshold in the middle between x1 and xm. The
same holds true for certain cases of two Gaussian mixtures,
however if the spacing between x1 and xm is too large, two
optima occur close to the boundaries, which are asymmetric
in the sense that γ?1 6= 1−γ?m. For the uniform distribution the
optimum is always attained at the boundary values either with
γ?m = 0 or/and with γ?1 = 1. The solutions probably do not
have a general explicit form for arbitrary noise distributions.
Derivatives of I(γ1, γm) w.r.t. q and a Lagrangian approach
seem to be technically too demanding to deal with for further
investigations.

V. CONCLUSIONS

We have considered a one-bit quantization channel, where
a discrete real signal undergoes additive noise and is then
quantized according to a threshold q. We first have argued
that it is sufficient to deal with discrete input, since for
input with finite support the capacity-achieving distribution is
discrete anyway. We have shown that the capacity-achieving
input distribution puts only probability mass on the extreme
signaling points. Determining the optimum threshold q? is
extremely demanding. We have clarified the structure of the
problem and demonstrated by graphical representations that
depending on the actual parameters and noise distribution
completely different behavior may be observed.
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