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Abstract—We present an analytical derivation of the proba-
bility density functions (PDFs) of the maximum-minus-minimum
eigenvalue (MMME) detector for the special case of two cooper-
ating secondary users (SUs) in a spectrum sensing scenario. For
this we employ a simple additive white Gaussian noise (AWGN)
model, where in general K cooperating SUs are monitoring the
wireless spectrum to determine the presence of a single primary
user, which transmits phase shift keying (PSK) modulated signals.
The sample covariance matrix is a Wishart matrix under both the
noise only and the signal plus noise hypothesis under this model.
For K = 2, we derive the exact PDFs for the MMME detector
under both hypotheses for a finite number of samples N taken.
Then, we compare the performance of the MMME detector and
the maximum-minimum eigenvalue (MME) detector aided by
exact PDFs available in the literature for this model. Finally,
we analyze the noise power uncertainty tolerance margin of the
MMME detector under which it shows superior performance to
the MME detector.

I. INTRODUCTION

Modern mobile multimedia streaming services put a huge
demand for high data rates on wireless telecommunication
systems. This demand is expected to continually increase in
the coming years, as the number of mobile Internet users is
steadily growing. However, de facto all interesting frequency
bands are already licensed at the moment and adoption of
such spectral bands is only possible by termination of existing
licenses, which is an accountability of governmental agencies.
Since in practice large parts of the spectrum are not continually
in use at specific locations and at certain points in time, it
was proposed to reuse these currently unoccupied spectral
bands for unlicensed users. In the literature such techniques
can be subsumed under the term dynamic spectrum access,
see e.g. [1]. If the unlicensed users, called secondary users
(SUs), autonomously decide about communicating on licensed
spectral bands, they perform opportunistic spectrum access.
It is directly clear, that it is of utmost importance to prevent
SUs from creating significant interference for licensed primary
users (PUs).

The process of detecting transmission opportunities for
SUs is called spectrum sensing. Various detection strategies
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have been proposed in the literature, which assume different
amounts of knowledge about the PU signal and therefore
differ in the signal features used for detection, see [2] for a
review. Typically, the noise present in communication systems
is assumed to be uncorrelated. In contrast to this, a signal
transmitted by a PU which is observed by multiple cooperating
SUs shows correlation. This motivates the application of
detectors based on the sample covariance matrix, see for
instance [3]–[7]. Of special interest in this work are two simple
detectors, which rely on the two extreme eigenvalues of the
sample covariance matrix. The test statistic of the maximum-
minimum eigenvalue (MME) detector is defined as [3], [4]:

T =
λ1

λK
, (1)

where λ1 and λK are the biggest and the smallest eigenvalue
of a sample covariance matrix which was generated from
the observations of K cooperating SUs with N number of
samples. A very similar test statistic was introduced in [7],
the maximum-minus-minimum eigenvalue (MMME) detector:

D = λ1 − λK . (2)

Recent advances in Random Matrix Theory (RMT) enable
the investigation of exact distributions of the eigenvalues of so
called Wishart matrices, see e.g. [8]. Such Wishart matrices
occur for instance when a Gaussian random matrix A is
multiplied with its’ hermitian, i.e., AAH . In a communication
context this is relevant in the analysis of the multiple-input
multiple-output (MIMO) correlation matrix [9] and also for
the analysis of detectors based on the eigenvalues of sample
covariance matrices in spectrum sensing applications [10].

In this work, we derive the probability density functions
(PDFs) of the MMME test statistic under both the noise only
as well as the signal plus noise hypothesis. This is done for the
special case of two cooperating SUs under a simple additive
white Gaussian noise (AWGN) model featuring a single phase
shift keying (PSK) modulated PU signal. Since the PDFs of
the MME detector are available under the same model from
literature [11], a direct analytical performance comparison is
possible.

In Section II we specify our system model and define
notation. Section III focuses on the PDFs of the two detectors978-1-4673-6540-6/15/$31.00 c©2015 IEEE



MME and MMME. After summarizing existing results for
the MME detector in Section III-A, we derive the PDFs of
the MMME detector in Section III-B under both Hypotheses.
Based on these analytical results, a performance comparison
is conducted in Section IV. Since the MMME detector has
a dependency on the noise power we evaluate how much
noise power uncertainty can be tolerated such that the MMME
detector performs favorably when compared to the MME
detector in Section V.

II. SYSTEM MODEL

In spectrum sensing, deciding whether a PU is present can
be cast as a binary hypothesis testing problem. Assuming
additive noise, we can formalize this problem as:

H0 : y(t) = w(t)

H1 : y(t) = x(t) + w(t) .

Here, y(t) is a vector of complex baseband samples collected
by the SUs at time index t ∈ N = {1, 2, . . . } of dimension
K × 1. The vectors x(t) and w(t), describe the received PU
signal (if present) and the noise, respectively. Thus, under
H0 no received signal is present, which means the PU is not
present or not transmitting.

We assume that the PU is using a PSK signal and the
SUs receive this signal subject to additive white Gaussian
noise (AWGN). Furthermore, the SUs are assumed to have
the same signal-to-noise ratio (SNR) α, resulting in the same
received signal power σ2

x. Thus, x(t) = σx s(t) 1K describes
the received PU signal at the SUs, where s(t) ∈ C is a complex
PSK symbol on the unit circle (|s(t)| = 1) and 1K is a
column vector of dimension K containing only ones. The PSK
symbols s(t) are assumed to be i.i.d. and to follow a uniform
distribution with an arbitrary PSK alphabet as support. Each
entry of the noise vector w(t) is assumed to follow a complex
circularly symmetric Gaussian distribution with variance σ2

w,
denoted as CN (0, σ2

w). Signal and noise are assumed to be
independent and likewise all entries of the noise vector are
assumed to be independent from each other.

By combining N sample vectors into the sample matrix
Y = (y(1),y(2), . . . ,y(N)), we can grasp the model in a
convenient matrix form. Defining the PU signal matrix X and
the noise matrix W in the same way, we get Y = X + W
under H1 and Y = W under H0. Thus, the sample covariance
matrix follows as Ry = 1

NYYH .

III. TEST STATISTIC DISTRIBUTIONS

In this Section we summarize results on the test statistic
distributions of the maximum-minimum eigenvalue detector
and develop new results on the test statistic distribution of
the maximum-minus-minimum eigenvalue detector. As a basis
we will briefly summarize the distributions of the sample
covariance matrix first. To simplify the results, we assume
the noise power to be σ2

w = 1, so that the signal power
equals the SNR directly (σ2

x = α) and furthermore consider
an unnormalized version of the sample covariance matrix
R = YYH in the following.

UnderH0, it follows that R0 = WWH , which is a complex
uncorrelated central Wishart matrix of dimension K with N
degrees of freedom [12]. We denote this as R0 ∼ CWK(N).

Under H1, we have R1 = (X + W)(X + W)H . In [11],
it was shown that R1 is a complex uncorrelated non-central
Wishart matrix of dimension K with N degrees of freedom.
We will denote this as R1 ∼ CWK(N,Ω). The so called non-
centrality matrix Ω is a parameter depending on the SNR α
and the dimensions of the sample matrix Y. It can be given
as Ω = E[R1] = E[XXH ] = αN 1K1T

K .
Analytical results for both the MME test statistic PDFs as

well as the MMME test statistic PDFs under both hypotheses
can be developed by confining the model to K = 2 SUs,
which will be assumed to be the case for the remainder of
this paper.

A. MME test statistic distribution

Under hypothesis H0, the PDF of the test statistic T , see
(1), for K = 2 has been found in [13] as:

f0(T ) =
Γ(2N)

Γ(N)Γ(N − 1)

(
1− 1

T

)2(
1

T

)N (
1 +

1

T

)−2N

,

(3)
for T ≥ 1 and f0(T ) = 0 for T < 1.

Under hypothesis H1, the PDF of T for K = 2 parameter-
ized on the SNR α has been reported in [11]:

f1(T ) = e−(2αN) (T − 1)T (N−2)× (4)
∞∑
j=0

(T j − 1) Γ(j + 2N − 1) (2αN)(j−1)

j! Γ(j +N − 1) Γ(N − 1) (T + 1)(j+2N−1)
,

for T ≥ 1 and f1(T ) = 0 for T < 1.
Note, that the normalization factor of the sample covariance

matrix Rx is present in both eigenvalues and cancels out in
the ratio. Also, for both PDFs (3) and (4) knowledge of the
actual noise power is not necessary, as (3) depends on the
number of samples N and (4) depends on N and the SNR α.

B. MMME test statistic distribution

In order to derive the PDFs of the test statistic D, see (2),
we need the joint PDF of the ordered eigenvalues of the unnor-
malized sample covariance matrix R, denoted as fλ(λ), under
both hypotheses. Here, λ = (λ1, λ2, . . . , λK)T is the vector
of the ordered eigenvalues of R, so that λ1 ≥ λ2 ≥ · · · ≥ λK .
Then, since for K = 2 it holds that λ1 = λ2+D, the following
transformation gives the desired PDF:

g(D) =

∫ ∞
0

fλ(λ2 +D,λ2) dλ2 . (5)

Under H0, a convenient representation of the joint PDF of
the eigenvalues of the unnormalized sample covariance matrix
R0 can be found in [8]. Setting K = 2, we find that

fλ(λ) =
(λ1 − λ2)2(λ1λ2)(N−2)e−(λ1+λ2)

(N − 1)! (N − 2)!
. (6)



Inserting (6) into the transformation (5) yields:

g0(D) =
D2 e−D

(N−1)!(N−2)!

∫ ∞
0

e−2λ2(λ2 +D)(N−2)λ
(N−2)
2 dλ2.

(7)
The definite integral can be found in [14] (3.383.8), so that
after simplifying we arrive at:

g0(D) =
D(N+1/2)K(3/2−N) (D)√

π Γ(N) 2(N−3/2)
, (8)

for D ≥ 0 and g0(D) = 0 for D < 0. Here, Ka (b) is the
modified Bessel function of the second kind of order a.

As mentioned above, under H1 the Wishart matrix R1 de-
pends on the non-centrality matrix Ω = αN 1K1T

K , which is a
rank one matrix [11]. Thus, the vector of ordered eigenvalues
ω of Ω can be given explicitly. For K = 2, it follows that
ω1 = 2αN and ω2 = 0. The joint PDF of the eigenvalues
of the unnormalized sample covariance matrix R1 has ω as a
parameter, see [8]. Inserting the values for ω and K = 2, it
follows:

fλ(λ) =
e−(2αN)e−(λ1+λ2)(λ1−λ2)(λ1λ2)(N−2) |F(λ,ω)|

2αN [(N − 2)!]2
.

(9)
There, |F(λ,ω)| is the determinant of a matrix where the
(i,j)-th entry is 0F1(N − 1;λjωi), which is a standard
generalized hypergeometric function, c.f. [14] (9.14.1). The
determinant can be explicitly calculated to |F(λ,ω)| =

0F1(N −1; 2αNλ1)− 0F1(N −1; 2αNλ2). Inserting (9) into
the transformation (5) yields:

g1(D) =
De−De−(2αN)

2αN [(N−2)!]2

∫ ∞
0

e−(2λ2)λ
(N−2)
2 (λ2+D)(N−2)×

[0F1(N−1; 2αN(λ2+D))− 0F1(N−1; 2αNλ2)] dλ2.
(10)

To the best of our knowledge, the definite integral in (10)
does not have a closed-form solution. Hence, we take a
similar path to [11], [15] and rewrite the hypergeometric
function in terms of the modified Bessel function of the first
kind of order a, denoted as Ia(b), by using the identity
0F1(a+ 1; b) = a! b−(a/2) Ia(2

√
b). Furthermore, we proceed

to replace the Bessel function by its series expansion Ia(b) =∑∞
j=0

1
j! Γ(j+a+1)

(
b
2

)(2j+a)
. After substituting Λ = λ2/D and

simplifying we obtain (11). There, we have also used that
for a ∈ N it holds that Γ(a) = (a − 1)!. Both definite
integrals in (11) can be found in terms of Tricomi’s confluent
hypergeometric function, which is a solution to Kummer’s
differential equation, denoted as U (a, b, c), see also [16]
(13.2.5). Using this result, we finally arrive at (12) for D ≥ 0
and g1(D) = 0 for D < 0.

In contrast to the MME detector the MMME detector is de-
pendent on the noise power σ2

w as well as the typically present
normalization factor of the sample covariance matrix Ry .
When considering the normalized sample covariance matrix
Ry , the eigenvalues λ must be scaled by 1/N compared to the
unnormalized case discussed above. Similarly, a noise power
σ2
w 6= 1, results in a scaling factor σ2

w for the eigenvalues.

Hence, using the simple transformation D̂ =
σ2
w

N D on the
PDFs (8) and (12), i.e., ĝ(D̂) = N

σ2
w
g
(
D̂N
σ2
w

)
, yields the

desired PDFs (13) and (14) for D ≥ 0. Note, that ĝ0(D̂) = 0
and ĝ1(D̂) = 0 for D̂ < 0.

ĝ0(D̂) =
D̂(N+1/2)N (N+3/2)K(3/2−N)

(
D̂N
σ2
w

)
√
π Γ(N) 2(N−3/2) σ

(2N+3)
w

(13)

In Figure 1, ĝ0(D̂) is shown for different number of samples
with noise power σ2

w = 1. As expected, increasing the number
of samples in the sample covariance matrix reduces the vari-
ance of the PDF and also reduces the mean. Asymptotically,
i.e. for N →∞, the test statistic D should be zero.
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Fig. 1. ĝ0(D̂) is plotted for different number of samples N and noise power
σ2
w = 1.

The dependency of ĝ0(D̂) on the noise power σ2
w is depicted

in Figure 2, where it can be seen that increasing σ2
w affects

the variance greatly and also shifts the mean away from zero.
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Fig. 2. ĝ0(D̂) is plotted for different values of the noise power σ2
w and

N = 1000 number of samples.

Figure 3 visualizes ĝ0(D̂) together with ĝ1(D̂) for different
SNRs. Higher SNRs predominantly increase the mean of
the PDF, while only slightly increasing the variance. Values
obtained from a digital simulation of 50000 monte-carlo



g1(D) =
e−De−(2αN)

2αN Γ(N − 1)

∞∑
j=0

(2αN)jD(j+2N−2)

Γ(j + 1) Γ(j +N − 1)
×[∫ ∞

0

Λ(N−2)(Λ + 1)(j+N−2)e−(2DΛ) dΛ−
∫ ∞

0

Λ(j+N−2)(Λ + 1)(N−2)e−(2DΛ) dΛ

]
(11)

g1(D) =
e−De−(2αN)

Γ(N − 1)

∞∑
j=0

(2αN)(j−1)D(j+2N−2)

Γ(j + 1) Γ(j +N − 1)
×

[Γ(N − 1)U (N − 1, j + 2N − 2, 2D)− Γ(j +N − 1)U (j +N − 1, j + 2N − 2, 2D)] (12)

ĝ1(D̂) =
e
−
(
D̂N
σ2w

)
e−(2αN)

Γ(N − 1)

∞∑
j=0

(2αN)(j−1)N (j+2N−1)D̂(j+2N−2)

Γ(j + 1) Γ(j +N − 1)σ
(2j+4N−2)
w

×[
Γ(N − 1)U

(
N − 1, j + 2N − 2,

2D̂N

σ2
w

)
− Γ(j +N − 1)U

(
j +N − 1, j + 2N − 2,

2D̂N

σ2
w

)]
(14)

instances, where each covariance matrix was estimated from
N = 1000 samples, are drawn in circles for ĝ0(D̂) and for
ĝ1(D̂) with α = −13 dB as an example. It is evident, that the
empirical results confirm our theoretical findings.
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Fig. 3. ĝ0(D̂) and ĝ1(D̂) are plotted for different values of the SNR α,
N = 1000 number of samples and noise power σ2

w = 1. The circles indicate
values obtained from a digital simulation.

IV. PERFORMANCE EVALUATION

Under the system model introduced in Section II, the
PDFs for the MME detector as well as the PDFs for the
MMME detector are now available for both hypotheses for
K = 2. Although a CDF is known for the MME detector
under Hypothesis H0 [9], the other PDFs are either very
complicated to integrate or an analytical form of the integral is
unknown to us. However, having analytical expressions for the
PDFs, numerical integration of the PDFs to obtain the CDFs
works very well. Thus, we can compute the performance of
both detectors in terms of the receiver-operator characteristic
(ROC) by numerically calculating the CDFs, since it holds

for the probability of false-alarm PMME
fa and the probability of

detection PMME
d of the MME detector:

PMME
fa (hMME) = 1− F0(hMME) = 1−

∫ hMME

1

f0(T ) dT ,

PMME
d (hMME) = 1− F1(hMME) = 1−

∫ hMME

1

f1(T ) dT .

Here, hMME is the threshold of the MME detector. Likewise,
PMMME

fa and PMMME
d can be obtained for the threshold hMMME

for the MMME detector. In Figure 4, the ROCs for both
the MME and the MMME detector are depicted for different
SNRs, N = 1000 number of samples and noise power
σ2
w = 1. Again, we have drawn values resulting from a digital

simulation of 50000 blocks in circles into the same figure.
Firstly, the predicted performance is in total agreement to
the empirical results. Secondly, the MMME detector shows
a better performance than the MME detector, as was reported
in [7].
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Fig. 4. ROC comparison between the MME and the MMME detector for
different SNRs, N = 1000 number of samples and noise power σ2

w = 1.
The circles indicate values obtained from a digital simulation.



V. NOISE UNCERTAINTY EVALUATION

We have shown that the MMME detector performs favorably
compared to the MME detector in Section IV. However,
as demonstrated in Section III-B, the test statistic of the
MMME detector depends on the noise power σ2

w. Since the
precise noise power is usually unknown at the receiver, it
must be estimated. For a robust detection the uncertainty
of the noise power estimation must be taken into account
when setting the detector threshold. Hence, the performance
of the MMME detector will deteriorate as the noise power
uncertainty increases. Naturally, the question arises how much
noise uncertainty can be tolerated, so that the MMME detector
still performs better or equal to the MME detector.

For this analysis, let σ2
w and α denote the actual noise power

and SNR, respectively. The noise power estimation is assumed
to return a value that is accurate within a bounded interval
[(1/ρ)σ2

w, ρ σ
2
w]. When designing the threshold hMMME, it is

usually desired to attain a false alarm rate that is below or
equal to a predefined value. Thus, in order to have an upper
bounded PMMME

fa , the noise power must be assumed to be
ρ σ2

w to set the threshold robustly. For the following derivation
we denote the CDFs of the MME detector and the MMME
detector as F and G, respectively. Subscripts identify the
corresponding Hypothesis H0 or H1.

Suppose the threshold of the MME detector hMME was set,
so that the false-alarm rate is Pfa. In order to find the threshold
of the MMME detector hMMME, which results in the same
detection performance, it must hold PMME

d = PMMME
d and

hence hMMME = G−1
1 (F1(hMME)). Then, we have to find ρ,

such that G0(hMMME; ρσ2
w)

!
= Pfa. Here, G0(hMMME; ρσ2

w)
is the CDF of the MMME detector under Hypothesis H0

evaluated for the upper bounded noise power instead of the
true noise power. Deriving a closed-form expression for ρ is
not possible, since closed-form expressions for the (inverse)
CDFs are missing. However, similar to the ROC calculation,
ρ can be found by numerical evaluation. For N = 1000
number of samples, actual noise power σ2

w the values found
are summarized in Table I for different SNRs. If an estimation

TABLE I
MAXIMUM NOISE UNCERTAINTY ρ TOLERABLE, SO THAT
PMMME

D ≥ PMME
D WITH UPPER BOUNDED PFA ≤ 0.01

SNR −10 dB −11 dB −12 dB
ρ 0.3904 dB 0.3163 dB 0.2563 dB

SNR −13 dB −14 dB −15 dB
ρ 0.2062 dB 0.1662 dB 0.1321 dB

of the noise power is available that is at least as accurate
as summarized in Table I it would be beneficial to use the
MMME detector instead of the MME detector. As an example,
if the SNR is −11 dB, we can deduce from the table that the
noise power estimate may be approx. 7.5% larger than the true
value before the MMME detector starts to perform worse than
the MME detector.

VI. CONCLUSION

In this work, we have derived the test statistic PDFs of the
MMME detector under both Hypotheses H0 and H1. We use
a simple AWGN model and assume one potentially present
PU which transmits a PSK modulated signal. For K = 2
cooperating secondary users, analytical expressions for the test
statistic distributions of the MMME detector were derived.
Analytical test statistic PDFs of the well-known MME detector
under the same model for both Hypotheses are taken from the
literature. Then, we compare their performance using a ROC,
which is calculated numerically based on the available PDFs.
It becomes evident that the MMME detector shows superior
performance over the MME detector. However, the MMME
detector is dependent on the noise power. Thus, we analyze
how much noise power uncertainty can be tolerated, so that
the MMME detector still performs favorably.
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