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Abstract—Power consumption and lifetime are essential fea-
tures of sensor networks. On the one hand, the power con-
sumption should be as low as possible to enable an energy-
aware system. On the other hand, the lifetime should be as long
as possible to ensure for a comprehensive coverage. Especially,
for application of sensor networks in extreme environments,
it is also necessary to achieve high reliability over the whole
lifetime. However, these features are contrary and they must
be optimized simultaneously to achieve an optimal performance.
In this paper, we thus study the minimization of the overall
power consumption for any given lifetime and any required
signal quality. First, a theoretical and challenging approach is
proposed, which shows the feasible boundaries for both power
reduction and achievability of a certain lifetime. Then, a practical
approach is shown, which is nearly optimal and fits sufficiently
together with the theoretical approach. Finally, selected results
are visualized to show the performance of the new methods and
to discuss the power consumption of the entire sensor network.

I. INTRODUCTION

Due to the rise of Internet of things (IoT) and certain
applications in 5th generation wireless systems (5G), sensor
networks for various applications are drastically gaining
importance. Since large-scale sensor networks usually utilize
cheap and weak sensor nodes (SN), a complex signal
processing within each SN is not applicable. Thus, mostly
amplify-and-forward techniques are considered to relay an
observed signal at each SN to a centralized unit, e.g., a fusion
center. The task of the fusion center is then to perform a pow-
erful processing with the aid of all transmitted signals in order
to increase the reliability of the individual and independent
observations. Several publications show that this reliability
increases as the transmission power of each SN does.
Naturally, the question arises how to guarantee for a minimum
signal quality at the fusion center and simultaneously enable an
energy-aware sensor network. Especially for sensor networks
with huge number of SNs this question becomes essential,
because the overall power consumption can drastically be
reduced which will consequently prolong the network lifetime.

In this paper, we consider a common sensor network, which
is used for sensing applications, i.e., target signal detection,
localization, classification, and tracking. Figure 1 shows the
target emitter, the sensing channel, independent and distributed
SNs, the communication channel, and a fusion center. This
scenario is well-investigated in many publications and will also
serve as our framework in the present paper. The authors in [1]

Fig. 1. A distributed sensor network.

have considered a sensor network composed of microsensors
and have described general architectural and algorithmic ap-
proaches to enhance the energy awareness of wireless sensor
networks. In [2] a cluster-based approach and a centralized
routing protocol is used to improve the network lifetime. A
theoretical upper bound for the network lifetime is investigated
in [3], which is in practice not achievable. A further notable
publication is [4] in which different heuristics are used for life-
time maximization. The corresponding optimization problems
are subsequently solved by numerical methods. In contrast, an
analytical solution in closed-form to the power allocation prob-
lem is presented for several power constraints in [5], which
improves the work [6]. This investigation is later extended in
various ways in [7]–[14] and [15]. In the present paper, we also
aim to extend our previous works and will answer to the ques-
tion: ‘Which amount of energy resources are needed to achieve
a given lifetime in sensor networks?’ This question is rarely in-
vestigated in the past, because of its mathematical challenges.

In the present paper, we first introduce briefly the system
model and formulate a power minimization problem for a
given lifetime under several power constraints. Subsequently,
the optimization problem is rewritten to show its convex
nature and to enable its computation by standard numerical
methods. Although the considered optimization problem is of
theoretical nature and is in addition computationally intensive
to solve, it provides sharp lower and upper bounds for the
network power consumption and its lifetime, respectively.
Second, we develop a practical method with less computation
effort in order to achieve nearly optimal solutions to the power
minimization problem for realistic scenarios. Finally, selected
numerical results are visualized to show the performance of
the new methods and to discuss the power consumption of



the entire sensor network.

Mathematical Notations:

Throughout this paper, we denote the sets of natural, real
and complex numbers by N, R and C, respectively. Note that
the set of natural numbers does not include the element zero.
Moreover, R+ denotes the set of non-negative real numbers.
Furthermore, we use the subset FN ⊆ N, which is defined
as FN := {1, . . . , N} for any given natural number N . We
denote the absolute value of a real or complex-valued number
z by |z|. The expected value of a random variable v is denoted
by E [v]. Moreover, the notation V ? stands for the value of
an optimization variable V where the optimum is attained.

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

In this paper, we use an extension of the system model that
is described in [5]. The extended system model is depicted in
Figure 2 and is briefly presented in the following.

We assume a discrete time system and denote the index of
each observation process by l ∈ FL, where L ∈ N describes
the lifetime of the sensor network. Hence, the network under
consideration can only perform L consecutive observations
with optimal performance and will be out of use afterwards.
We consider a sensor network consisting of K ∈ N inde-
pendent and spatially distributed SNs which receive random
observations in each observation process. If a target signal
rl ∈ C with R := E [|rl|2] and 0 < R <∞ is present, then the
received power at the SN Sk is a part of the emitted power
from the actual target. Each received signal is weighted by the
corresponding channel coefficient gk,l ∈ C and is disturbed
by additive white Gaussian noise (AWGN) mk,l ∈ C with
Mk := E [|mk,l|2] <∞. We assume that the coherence time
of all sensing channels is much longer than the whole length
of the observation process. Thus, the expected value and the
quadratic mean of each coefficient during each observation
step can be assumed to be equal to their instantaneous values,
i.e., E [gk,l] = gk,l and E [|gk,l|2] = |gk,l|2. Furthermore, the
channel coefficients as well as the disturbances are assumed to
be uncorrelated and jointly independent. The sensing channel
is obviously wireless.

All SNs continuously take samples from the disturbed
received signal and amplify them by uk,l ∈ R+ without any
additional data processing. Thus, the output signal and the
expected value of its transmission power are described by

xk,l := (rlgk,l +mk,l)uk,l , k ∈ FK , l ∈ FL , (1)

and

Xk,l := E [|xk,l|2] = (R|gk,l|2 +Mk)u
2
k,l , k ∈ FK , l ∈ FL ,

(2)
respectively. The local measurements are then transmitted to
a fusion center which is placed at a remote location. The data
communication between each SN and the fusion center can be
either wired or wireless. In the latter case, a distinct waveform
for each SN is used to distinguish the communication of dif-
ferent SNs and to suppress inter-user (inter-node) interferences

Fig. 2. System model of the distributed sensor network.

at the fusion center. Hence, all K received signals at the
fusion center are pairwise uncorrelated and are assumed to be
conditionally independent. Each received signal at the fusion
center is also weighted by the corresponding channel coef-
ficient hk,l ∈ C and is disturbed by additive white Gaussian
noise nk,l ∈ C with Nk := E [|nk,l|2] <∞, as well. We also
assume that the coherence time of all communication channels
is much longer than the whole length of the observation
process. Thus, the expected value and the quadratic mean of
each coefficient during each observation step can be assumed
to be equal to their instantaneous values, i.e., E [hk,l] = hk,l
and E [|hk,l|2] = |hk,l|2. Furthermore, the channel coefficients
as well as the disturbances are assumed to be uncorrelated and
jointly independent.

The noisy received signals at the fusion center are weighted
by vk,l ∈ C and combined together in order to obtain a single
reliable observation r̃l of the actual target signal rl. In this
way, we obtain

yk,l :=
(
(rlgk,l+mk,l)uk,lhk,l+nk,l

)
vk,l , k ∈ FK , l ∈ FL ,

(3)
and hence,

r̃l :=

K∑
k=1

yk,l = rl

K∑
k=1

gk,luk,lhk,lvk,l

+

K∑
k=1

(mk,luk,lhk,l + nk,l)vk,l .

(4)

Note that the fusion center can separate the input streams
because the data communication is either wired or performed
by distinct waveforms for each SN.

In order to obtain a single reliable observation at the fusion
center, the value r̃l should be a good estimate of the present
target signal rl. Thus, the amplification factors uk,l and the
weights vk,l should be chosen such as to minimize the average
absolute deviation between r̃l and the true target signal rl. The
corresponding optimization program is elaborated in the next
section.



III. POWER AND LIFETIME OPTIMIZATION

In this section, we first introduce the power minimiza-
tion problem and subsequently develop its solution. Since
the corresponding optimization problem is non-convex in
its general form, we solve it by subsequent applications of
the Lagrangian multipliers method with equality constraints,
Karush-Kuhn-Tucker (KKT) conditions, and straightforward
usage of mathematical analysis, see [16, pp. 323–335] and [17,
pp. 243–244].

A. The Optimization Problem

As mentioned in the last section, the quantity r̃l should be a
good estimate for the present target signal rl. In particular, we
aim at finding estimators r̃l of minimum mean squared error
in the class of unbiased estimators for each rl.

The estimate r̃l is unbiased simultaneously for each rl if
E [r̃l − rl] = 0, i.e., from equation (4) we obtain the identity

K∑
k=1

gk,luk,lhk,lvk,l = 1 , l ∈ FL . (5)

This identity is our first constraint in what follows. Note that
the mean of the second sum in (4) vanishes since the noise
is zero-mean. Furthermore, we do not consider the impact of
both random variables gk,l and hk,l as well as their estimates in
our calculations because the coherence time of both channels
is assumed to be much longer than the target observation time.
Note that equation (5) is complex-valued and may be separated
as

K∑
k=1

uk,l|vk,lgk,lhk,l| cos(ϑk,l + φk,l) = 1 , l ∈ FL , (6)

and
K∑

k=1

uk,l|vk,lgk,lhk,l| sin(ϑk,l + φk,l) = 0 , l ∈ FL , (7)

where ϑk,l and φk,l are the phases of vk,l and the product
gk,lhk,l, respectively.

The average power consumption of each node is approx-
imately equal to its average output power Xk,l, if the input
signal is negligible in comparison to the output signal and
if the nodes have smart power components with low-power
dissipation loss. We assume that equality between Xk,l and
the average power consumption of each node is ensured. In
the present work, we assume that the average output power-
range of each SN is limited by Pmin ∈ R+ and Pmax ∈ R+

with 0 ≤ Pmin < Pmax. The lower limit Pmin denotes the min-
imum power which is needed to guarantee the awareness and
presence of the SN while the upper limit Pmax denotes the
maximum allowed transmission power per SN due to power
regulation standards or due to the functional range of the
integrated circuit elements. In addition, each SN is usually
powered by weak energy supplies, e.g., batteries, such that
the operation time of the kth SN is limited by an available
power budget Pk,l,bud ∈ R+. Note that l = 0 describes the
time point in which each SN has a full-power budget while

after each observation process the new power budget Pk,l+1,bud
is equal to Pk,l,bud −Xk,l, with Xk,0 = 0 for all k ∈ FK . In
this way, the sensor network operates under the constraints

Pmin ≤ Xk,l ≤ Pmax

⇔ Pmin ≤ (R|gk,l|2+Mk)u
2
k,l ≤ Pmax , k ∈ FK , l ∈ FL ,

(8)

and
L∑

l=1

Xk,l ≤ Pk,0,bud

⇔
L∑

l=1

(R|gk,l|2 +Mk)u
2
k,l ≤ Pk,0,bud , k ∈ FK (9)

In order to guarantee for a certain signal quality at the fusion
center, the mean squared error E [|r̃l − rl|2] should not exceed
a given maximum value Vmax ∈ R+. By using equation (4)
and the identity (5) we may write the next constraint as

E
[
|r̃l−rl|2

]
=

K∑
k=1

(
Mku

2
k,l|hk,l|2+Nk

)
|vk,l|2 ≤ Vmax , (10)

which must hold for all l ∈ FL.
The objective is now to minimize the overall power con-

sumption of the sensor network for a given lifetime L, i.e.,

P ?
over := minimize

uk,l,vk,l

K∑
k=1

L∑
l=1

Xk,l

= minimize
uk,l,vk,l

K∑
k=1

L∑
l=1

(R|gk,l|2 +Mk)u
2
k,l . (11)

In summary, the optimization problem is to minimize the
overall power consumption in (11) with respect to uk,l and
vk,l, subject to constraints (6), (7), (8), (9) and (10). Note that
the optimization problem is a signomial program, which is
a generalization of geometric programming, and is thus non-
convex in general, see [18].

In order to avoid misunderstandings, we mention that the
minimization of the overall power consumption for any given
lifetime L is in general not equivalent to the maximization of
the lifetime for a corresponding given overall power Pover,
since the lifetime is of discrete nature while the power
consumption is usually continuous. However, the solution
difference between both optimization methods is at most only
a single count in the lifetime and hence can be neglected in
practice. Since the mathematical description of the lifetime
maximization needs considerably more effort than the overall
power minimization, we thus investigate the minimization of
the power consumption in order to obtain insight for the
maximization of the network lifetime.

B. Theoretical and Practical Solutions
For the sake of brevity, we define two new quantities αk,l

and βk,l by

αk,l :=

√
|gk,l|2
Mk

and βk,l :=

√
Nk(R|gk,l|2 +Mk)

Mk|hk,l|2
. (12)



TABLE I
VALUES OF FIXED PARAMETERS FOR ALL PLOTS.

Parameter: R E[|gk,l|2] E[|hk,l|2] Mk Nk Pmin

Value: 1 1 1 1 1 0

Since the above optimization problem is closely related to an
optimization problem considered in [15], a first optimization
over vk,l leads to the problem

minimize
Xk,l

K∑
k=1

L∑
l=1

Xk,l (13a)

subject to Pmin ≤ Xk,l ≤ Pmax , k ∈ FK , l ∈ FL , (13b)
L∑

l=1

Xk,l ≤ Pk,0,bud , k ∈ FK , (13c)

K∑
k=1

Xk,lα
2
k,l

Xk,l + β2
k,l

≥ V −1
max , l ∈ FL , (13d)

where equation (2) for the relation between uk,l and Xk,l

is used. It is easy to show that problem (13) is a convex
optimization problem, see [5], and it can be solved by standard
convex optimization tools.

The solution of (13) yields the overall power consumption
P ?

over and all allocated powers X?
k,l for a given lifetime L,

signal quality Vmax, minimum and maximum allowed trans-
mission powers Pmin and Pmax, and power budgets Pk,0,bud.
However, this solution in advance needs the knowledge about
all channel realizations gk,l and hk,l and all noises mk,l

and nk,l, which are mostly unknown at the starting time
of the sensor network. Nevertheless, the solution of (13)
provides theoretical limits for the overall power consumption
P ?

over and the network lifetime L, and furthermore, it enables
comparisons of more practical methods. To provide a more
realistic method, we highlight the following heuristic.

One possible approach is to optimize the power consump-
tion per observation time. This means that at the beginning of
the lth observation process, a relaxed version of (13) is solved
which neglects the impact of all upcoming observation steps.
The relaxed version of (13) for the lth observation process is
described by

minimize
Xk,l

K∑
k=1

Xk,l (14a)

subject to Pmin ≤ Xk,l ≤ Pmax , k ∈ FK , (14b)
Xk,l ≤ Pk,l,bud , k ∈ FK , (14c)
K∑

k=1

Xk,lα
2
k,l

Xk,l + β2
k,l

≥ V −1
max . (14d)

The solution of the relaxed optimization problem (14) is
well-investigated and even solved analytically in closed-form
in [15], cf. also [5]. Since this solution is available in closed-
form, the computation of the power allocation needs less effort
and can simply be performed on-line for each observation

TABLE II
DEFAULT PARAMETER VALUES FOR ALL PLOTS.

Parameter: K L Pmax Pbud Vmax

Default value: 100 100 0.36 1.2 1.2

process. However, due to the relaxation of (13), the solution
of (14) is only a suboptimal solution. If we denote the
suboptimal solution of (14) by P̃ ?

over with the suboptimal
powers X̃?

k,l, then the inequality

P̃ ?
over =

L∑
l=1

( K∑
k=1

X̃?
k,l

)
=

L∑
l=1

minimize
Xk,l

K∑
k=1

Xk,l (15)

≥ minimize
Xk,l

K∑
k=1

L∑
l=1

Xk,l =

L∑
l=1

K∑
k=1

X?
k,l = P ?

over (16)

obviously holds. This relation simply shows that due to the
shortage of information, a sensor network which is optimized
stepwise will consume more power and thus will have a
shorter lifetime in comparison to an overall optimization
by (13). Another difference is the development of the available
power budget Pk,l,bud over the time. Recall, that for each
observation process, the new available power budgets must
be updated as Pk,l+1,bud = Pk,l,bud − X̃?

k,l while in contrast
for an optimization by (13) the development would be
Pk,l+1,bud = Pk,l,bud−X?

k,l. Fortunately, we will see later that
both developments converge together in many scenarios. The
convergence speed is certainly a function of all parameters,
especially dominated by Pmin, Pmax, Pk,0,bud and Vmax.

It is self-evident that both optimizations (13) and (14) repre-
sent two extreme cases for a variety of optimization methods.
Based on the optimization method in (14), other heuristics can
be proposed to gain a better performance. For example, the
optimization in (14) can be extended by a robust method, in
which information about the channel states and noise values of
upcoming observation steps is not needed. Another approach
is to extend (14) by channel and noise estimation methods,
e.g., based on Kalman filtering, in order to obtain sufficient
information about the unknown parameters of upcoming ob-
servation steps. These and other smart optimization methods
will lead to an improved performance at the cost of more
complexity in comparison with the method proposed in (14).
The investigation of these methods is devoted to future works.

IV. VISUALIZATION AND NUMERICAL RESULTS

In order to evaluate the performance of both optimization
problems (13) and (14), we perform four simulations in
the same scenario and for the same network. For all four
simulations the values given in Table I are kept constant.
Especially, all channel and noise realizations remain the same
in all simulations to simplify subsequent comparisons. These
realizations are drown randomly from independent Gaussian
distributions. The available power budget Pk,0,bud is assumed
to be equal for all SNs and thus denoted by Pbud. Figure 3
shows simulation results with parameter values given in
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Table II and these results serve as references for all other
figures. In all other figures the change of only one of the
parameters Pmax, Pbud or Vmax is shown. The specific new
value of the changed parameter is noted in the legend of the
corresponding figure. In each legend three other values are
given. The first value is the actual observation process lact
that shows in which observation step the power distribution
within the sensor network is illustrated. The second and
third values are defined by ρsum :=

∑lact
l=1

∑K
k=1X

?
k,l/P

?
over

and ρdiff :=
∑lact

l=1

∑K
k=1(X̃

?
k,l − X?

k,l)/P
?
over, respectively.

The value of ρsum describes the amount of P ?
over in percent,

which is already consumed by the network at the observation
step lact by utilization of the optimization (13). The value
of ρdiff reflects the percentage of P ?

over, which is additionally
consumed at the observation step lact due to utilization of the
suboptimal optimization (14). Hence, the absolute value of ρdiff
should be as small as possible for describing an accurate fit of
the suboptimal solution to the global one. The index of all SNs
is shown on the abscissa of each plot. In each figure, the sum∑lact

l=1X
?
k,l of consumed powers for each SN is visualized in a

blue bar. These bars together show how the power distribution
over the SNs is, where a uniform distribution over all SNs is
preferential. In addition, the differences

∑lact
l=1 X̃

?
k,l−X?

k,l are
depicted in red bars. In contrast to the blue bars, the red bars
show how both theoretical and practical methods fit together,
where smaller deviations of each bar from zero is more favor-
able. Moreover, the captions include the minimum achieved
values P ?

over and P̃ ?
over for each simulation. Furthermore, the

expected number of active SNs in each observation step is
stated in the caption, where for both optimization methods (13)
and (14) the same number always results in our simulations.

In each figure, three states of the network lifetime are pre-
sented. The most upper, the ones in the middle, and the most
lower illustrations represent the power distribution after lact =
10, lact = 50, and lact = 100 observation cycles, respectively.
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Fig. 4. Decreasing Vmax worsens the lifetime, the power consumption, and
the convergence speed between both optimization results. Both minimum
overall power consumptions, and the expected number of active SNs in
each observation step are equal to P ?
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respectively.

In Figure 3, we observe that by utilization of the suboptimal
optimization (14) the overall power consumption is slightly
increased form P ?

over = 44.12 to P̃ ?
over = 44.20. This small

increment of the power consumption depends on the specific
values of the parameters Pmax, Pbud and Vmax and is in practice
negligible for most scenarios. Additionally, it is visible from
the few red bars that both optimization methods fit sufficiently
together. These observations are generally valid and they can
be verified by the aid of all other figures.

Figure 4 shows the variation of Vmax and its impact on the
performance of both optimization methods. This parameter has
the most impact on the performance. Both the number of active
SNs and the overall power consumption highly fluctuate with
the variation of Vmax.

In Figure 5 the performance change of both optimization
methods over the parameter Pbud is depicted. The available
power budget has the least influence on both the number of
active SNs and the overall power consumption. The reason
is that either the available power budget is large enough to
achieve the given lifetime or it is too small such that the
corresponding optimization problem becomes infeasible.

Figure 6 illustrates the effect of Pmax on the performance.
As expected, the lifetime is increasing in Pmax while the
power consumption is decreasing. Thus, any limitation of the
transmission power by Pmax and/or by Pmin has always a
negative effect on the performance of sensor networks.

In conclusion, the overall power consumptions P ?
over and

P̃ ?
over are monotonically decreasing in the parameters Pmax,
Pbud and Vmax while the lifetime L is an increasing function
of these parameters. Another important observation is that
by decreasing Pbud or Vmax, while the other parameters are
kept constant, the value of ρdiff increases. This shows that the
stepwise optimization by (14) converges slower to the global
solution by (13). The reason behind this statement is that
the gap between the solutions (13) and (14) increases since
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sharper constraints are to handle, especially by the relaxed
optimization method. Conversely, decreasing Pmax, while the
other parameters are kept constant, will result in a decreased
ρdiff which in turn shows the increased convergence speed of
the solution by (14) to the global one by (13). The fact behind
this is that by decreasing Pmax the power allocation engages
more SN and the activation of SNs is more distributed.

Since the evaluation of (13) is highly computation inten-
sive, we unfortunately were not able to simulate networks
with larger values of L, that are more relevant in practice.
Furthermore, a sensitivity analysis of both lifetime and power
consumption under variation of other network parameters is
also important and will be investigated in future works.

V. CONCLUSION

Power consumption and lifetime are pronounced features
of sensor networks. This paper provides a theoretical and a
practical method for minimizing the power consumption for
any given lifetime. Both methods provide deep insight into the
distribution of power among the sensor nodes over the time.
Comparisons of both methods are performed via extensive
simulations. Especially, it is shown that a power allocation
by the practical method sufficiently converges to the power
allocation performed by the aid of the theoretical method.
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