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Abstract—This paper introduces a multi-level cooperative
scheme for autonomous vehicles, using the sensors equipped on-
board and a communication scheme with the deployed infras-
tructures. The proposed model focuses on the communication
elements, delving into the cooperative aspect between the network
components. The first level of the proposed scheme is composed
of a multi-sensor data fusion framework using the measurements
obtained from the vehicle on-board sensors, in order to detect
obstacles in front of the vehicle. The obstacle detection is
based on a liner regression fusion rule, which combines the
obtained features from several sensors. Once the decision is taken,
the vehicle responds consequently using implicit coordination
and bringing the network to an uncertain status. Hence, the
second level consists on achieving a stable network by applying
explicit coordination between the vehicles and the deployed
infrastructures. The third level controls the entire network from
a centralized perspective using long-range communication links.
Using the knowledge obtained from the centralized network,
optimization can be achieved using a coordination scheme based
on communication. To finalize, the theoretical framework is
simulated under realistic conditions obtaining promising results,
in terms of obstacle avoidance and network coordination.
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I. INTRODUCTION

Autonomous vehicles have been attracting a lot of attention
in recent years as a viable technology to reduce the number
of casualties on the road [1]. To achieve this goal, the car
manufacturers have to equip their vehicles with different
autonomous mechanisms involving different kind of sensors.
Nowadays, most of the modern cars are equipped with a
driving assistance which helps the driver [2]. However, the
future aim is to achieve a fully automated or high automated
car. According to the SAE International Standard J3016 [3], a
fully automated car is such with no human interaction while the
rest of cars are also autonomous. Therefore, a fully automated
car must have knowledge about the surrounding environment
and should also be able to obtain and share information about
the general traffic status.
The main goal is to obtain a global perception of the envi-
ronment. For this purpose, different technologies have been
developed involving communication between vehicles (V2V)
and also to different infrastructures deployed alongside the
road (V2I) [4]. Using V2V communication, local information
is exchanged using short-range links to obtain knowledge of
the vehicles surroundings. Since V2V communication acquires
only local information, due to its short-range, V2I plays the
role of extending their electronic horizon [5]. By combining

both communication schemes, a general cooperative scheme
among vehicles and infrastructures can be achieved [6].
However, the two previously mentioned communication
schemes are not sufficient to completely sense the vehicle
surroundings. Hence, and in addition to the obtained knowl-
edge from different communication technologies, a widely
used concept to perceive the near environment is to equip
the vehicle with a large number of sensors. These sensors
constitute the active safety system of each vehicle in order to
bring integrity to the system [7]. Since the information coming
from all sensors has a widely different nature, it is important
to implement signal processing techniques to rapidly obtain
the information. For this purpose, the vehicles in this paper
are characterized by multi-sensor data fusion centers. Many
different studies have focused their effort in obstacle detection
using image recognition [8], however, this paper focuses solely
on radio-wave technologies.
The main goal of this paper is to introduce a theoretical
framework for autonomous vehicles, focusing on the active
safety by presenting an obstacle avoidance framework involv-
ing a cooperative scheme. For this purpose, the aforementioned
sensors, equipped on-board, aim to detect different unexpected
obstacles in the trajectory of the vehicle, such as pedestrian,
road obstacles or other vehicles. Many collision avoidance
studies have been done under the perspective of system control
[9], [10], however, in this paper, the collision avoidance
along with the coordination scheme, are considered under the
communication scope. This paper is organized as follows; the
system model architecture is presented in Section II. In Section
III, the different coordination schemes are analyzed. Finally,
Section IV presents the simulation results and the paper is
concluded in Section V.

II. PROPOSED NETWORK MODEL

The hierarchical vehicular network proposed is divided
into three different levels as depicted in Fig.1. The first
level is formed by the on-board sensors of each individual
vehicle which main task is to detect unexpected obstacles
in front of the vehicle that may lead to a collision. The
sensors feed their data to a fusion center in order to mix all
the different obtained features and produce a more reliable
decision. The majority of accidents due to an unexpected object
are caused by pedestrians [11], which up until now, are not
equipped with a localizer, so they are invisible to the network.
Therefore, it is required to equip the autonomous vehicles
with a set of sensors to avoid any collision with pedestrians.
Since pedestrians will most likely remain immobile before an
accident [12], the autonomous vehicle will make an evasive



Fig. 1: General Network Framework

maneuver to avoid the pedestrian which is performed under
the basis of an implicit coordination scheme, taking the sur-
rounding scenario in consideration. The second level is the
ad-hoc network formed by the autonomous vehicles. which
are equipped with communication systems enabling V2V and
V2I communication. This level handles the network state
after an unexpected event, i.e., a vehicle making an evasive
maneuver, using explicit coordination. In order to perform
explicit coordination, firstly the vehicles and infrastructures
exchange information updating their state and secondly, inform
the network about any change in the network. The upper level
focuses on long range communications, i.e., communication
between the infrastructures themselves. Due to this long range
communication, the global perception of the network can be
extended, allowing different optimization schemes, such as
vehicle routing or traffic jams avoidance.

III. COOPERATIVE VEHICULAR COORDINATION SCHEME

The first part consists on sensing the close range envi-
ronment using the on-board sensors of the car. After mixing
the features in the data fusion center, a decision is made
whether an obstacle is detected or not. The second part uses
explicit coordination between the cars to update the status of
the network and inform about any unexpected event. The last
part is used to extend the range of perception of each vehicle,
i.e., using the deployed infrastructures, the vehicles acquire
knowledge of the entire network. In the following subsections,
the aforementioned coordination schemes are explained in
detail.

A. Data Fusion Center Model

The features obtained from the N different sensors are
first preprocessed and synchronized in time and space, using
the external information obtained from the RSU as depicted
in Fig. 2. It is noteworthy that external information from
the RSU is required since the sensor network forms part of
a mobile system, namely, the vehicle, making the obtained
features relative to the mobile position. Therefore, the use of
information from the RSU is needed to anchor the obtained
information. Once the information is anchored, it is relevant
to the entire network. Once all the features obtained from
the sensors are synchronized in time and position, xi(t) is
obtained where {xi1(t), xi2(t), . . . , xik(t)} with k ∈ {1, . . .m}
are the different lectures obtained from each individual sensor
i ∈ {1, . . . , N}. In order to perform the sensor fusion, these
features are modeled as rays using a ray-tracing algorithm,

Fig. 2: Sensor Network Scheme

PIROPA [13], to obtain a realistic model. Using an optical
physic model is possible to simulate the features from short
and long range detection system as shown in Fig. 3.

Fig. 3: Obstacle Detection Block Diagram

The main advantage of our modeling is that shooting rays
in all directions allows us to detect many different obstacles,
rather than a single ray detecting the obstacle, increasing
the reliability of the decision. Moreover, since the vehicle
is equipped with N sensors, the final decision is determined
after mixing all the individual decisions in the fusion center,
increasing the accuracy.
The idea of obstacle detection relies on the correlation be-
tween the scatterers bounced from the same object. Using
the assumption that the speed of the obstacles relative to the
vehicle speed is nearly zero, the delay between the different
echoes remains constant. Therefore, by applying a linear
regression model to the different samples, xi(t), obstacles can
be detected. The obstacle detection equation is as follows:

τ (t) = xi(t) + ∆ε (1)

where τ (t) is the delay value from the different rays reaching
the sensor at each time instant t, and ∆ε is the term used
to simulate the noise inherent to the sensor receiver. At this
point, all the different features are grouped in terms of the
same delay τ , obtaining the potential obstacles in front of the
vehicle. However, this decision is not reliable based solely on
a time instant t, since the obstacle has to be persistent in the
sensor readings, i.e., the obstacle must be detected in sequential
time instants. For this purpose, it is assumed that the obstacle
is relatively static, where the obstacle speed is negligible in
comparison with the vehicle speed. Therefore, in the fusion
center a linear regression technique [14] is applied to estimate
the delay

τ̂ (t+ 1) = τ (t) + β(t) (2)

where ∆δ = 0 due to the previous static assumption. In the
case of the linear regression terms β, they are calculated using
the following formula:

β(t) =
v(t)

c
·∆t (3)

where v(t) is the speed of the car, c is the speed of light and ∆t
is the time difference between two consecutive reads. There-
fore, by applying these coefficients, it is possible to estimate



the grade of certainty obtained by the obstacle detector.
The obstacle detection problem turns into a sequential de-
tection using the Neyman-Pearson Test [15] with the aim
of minimizing the probability of missing detection PMi . We
assume that the different observations τ (t) are independent,
making the sequential detection likelihood ratio as follows

Λ(τ (t)) =
P (τ |H1)

P (τ |H0)
=

N∏
i=1

P (τi|H1)

P (τi|H0)
(4)

at this point, it is needed to determine the threshold η0 and η1,
in terms of missing detection PM and false alarm probability
PF . Hence, we define them as PF = α1 and PM = α2. In
consequence, the sequential test is implemented as

Λ(τ (t)) ≥ H1 (5)
Λ(τ (t)) ≤ H0 (6)

B. Implicit Coordination Scheme

If all the network members are considered, the number
increases greatly making infeasible the coordination of all the
members using a communication scheme due to the delay.
Therefore, a different coordination approach has to be devel-
oped for safety maneuvers where the delay is critical.
Implicit coordination is used to describe the kind of coordina-
tion which does not require exchange of information, but it is
based on the shared knowledge between the network members
[16]. Coordination is needed when the network members
cannot act independently from the rest, and in this case, it is
obvious that the safety of all the vehicles is a team coordination
effort. Implicit coordination uses the shared knowledge of the
network, which is defined as the combination of the local
knowledge, information obtained by the on-board sensors, and
the exchanged information with the rest of the network. This
shared knowledge helps to anticipate the actions of the rest
of the vehicles in the network. The general framework of the
implicit coordination scheme is represented in Fig. 4.

Fig. 4: Implicit Coordination Scheme Block Diagram

In order to perform the implicit coordination, the following
information is extracted:

Ω ≡ road positions (7)
U ≡ occupied positions (8)
~v := {p(t), s(t), h(t)} (9)
Y ≡ obstacle positions (10)

where Z is the set of valid future positions for the vehicle
defined as:

Z ≡ Ω− {U ∪ Y} (11)

However, the vehicle can only move to a restricted number of
positions zi ∈ Z , which are in function of the speed, position
and direction, i.e., the vehicle vector state ~v. Therefore, after
estimating all the possible future positions, the coordination
scheme clusters them, in order to reduce the complexity. For
each obtained cluster, the center of gravity, speed and direction
of the car are used to select the optimal next position. The im-
plicit coordination scheme stated here considers only the state-
information stored in the vehicle and the state-information of
the obstacle estimated by the on-board sensors. Therefore, the
vehicle and the obstacle are in conflict [17], if there exist t ≥ 0
such that

‖(p+ tv)− (p̂i + tv̂i)‖ ≤ Dth (12)

being p0 and v0 the position and velocity of the vehicle,
respectively. p̂i is the estimated position of the obstacle and v̂i
the estimated speed which is considered zero. Hence, if the set
of positions Z defined in Eq. (11) with the parameters p, v and
p̂i fulfill the safety criterion in Eq. (12) there is no required
evasive maneuver.

C. Explicit Coordination Scheme

The explicit coordination concept implies the coordination
of the network elements using communication protocols in
order to improve the network cognition. The main benefit
of the communication between the vehicles and the different
infrastructures is to extend the electronic horizon, due to the
short-range of communication obtained with the vehicular
communication technology 802.11p [18]. This is the main
reason why deploying the infrastructures alongside the road
improves the range of network communication. In order to
accomplish optimal coordination, three different layers are
implemented:

1) V2V communication: between the cars which are in the
same cluster and in a short-range. Using the V2V scheme,
the vehicles share their local knowledge. In order to per-
form the communication, a similar framework as the one
introduced in [19] is used, where the vehicles are clustered
based in their similarity using spectral clustering. The
vehicles share their knowledge using a beacon:

mi(t) := (pi(t), vi(t), hi(t)),

where p(t) is the absolute car position, v(t) is the current
speed and h(t) is the heading of the vehicle. The main
application of V2V is to share the local knowledge of
cars in the same cluster, in order to obtain the complete
knowledge of their surroundings.

2) V2I communication: between several cars and the
infrastructure they belong to. This method of coordination
is an extension of the V2V communication scheme shown
before. The shared knowledge contained in the beacons
is, in this case, sent to the RSUs which store all the
information from the nodes. Hence, the RSUs play the
role of a Data Center Unit (DCU) while the vehicles
serve as sensors of a bigger network. Applying this



knowledge, each RSU manages a single cluster where
many cars are included. As shown in [19], the best way
of managing the clusters is to select one or many different
head-clusters using the information stored in the beacons.

3) I2I communication: between different infrastructures
using a long-range communication protocol, namely
LTE. The last communication scheme aims to spread
the information among the different network elements
obtaining a fully connected network. The final application
of the I2I scheme is to optimize the traffic routing using
all the gathered information.

IV. SIMULATION

In this section, the proposed model is simulated under
realistic conditions using a real-world scenario. The scenario
is simulated using 2 LTE eNodeB and a maximum of 50
vehicles, simultaneously. The simulation has been performed
using SUMO [20] software in order to create the mobility
scenario, and VEINS [21] to simulate the communication
network.
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Fig. 5: Obstacle at 22 meters

As shown in Fig. 5, the detection of an obstacle occurs when
Eq. (1) is fulfilled, i.e., there is a constant delay in the obtained
features. In addition, by using several sensors for the same
obstacle detection, the final detection is more accurate. Using
concepts from radar detection, the estimated distance is:

d̂i =
c · ˆ̄τ

2
=

3 · 108m
s · 1.5 · 10−7s

2
≈ 22.5 m

where c is the speed of light, since electromagnetic waves are
used. ˆ̄τ is the estimated mean delay for the obtained features
of all the sensors and the obtained distance is divided by 2, due
to the used radar concept, i.e., the delay contains the reflection
of the wave. As shown in Fig. 5, there are two different set of
points where the delay is constant fulfilling Eq. (1). Therefore,
it is needed to observe if the obstacle is persistent in time,
in order to detect it correctly and also to avoid false alarm
detections.
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Fig. 6: Comparison of different obstacle detection methods

The next step is to compare the obstacle detection algorithm
with real measurements. In Fig. 6., a static obstacle is placed
in front of a vehicle driving at a constant speed of 30 km/h.
In the one hand, the results show that the estimation done
using the ray-tracing algorithm is quite accurate, but it suffers
from noise in the measurements and from the dependency in
the non-variability of the scenario. On the other hand, the
estimation using linear regression show a better match with
the real measurements, but in contrast, it has the dependency
of required the vector state of the vehicle ~v at every time
instant. The mean square error for both methods is:

σobs−det = 0.2061 (13)

σlin−reg = 0.0550 (14)

Finally, the exchange of local information between the vehicles
in the same cluster is simulated in Fig. 7. This cluster is formed
by vehicles with similar v(t), h(t) and p(t) during 400 seconds
in a urban scenario. The simulation parameters are as follows:

TABLE I: Communication Parameters

Parameter Value
V2I using LTE 2.4 GHz

V2V using 802.11p 5.9 GHz
V2I beacon frequency 1 s
V2V beacon frequency 0.1 s
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The simulation exhibits a high number of beacons successfully
delivered to the vehicles. This high number of beacons allow
to have an updated local information exchange. Moreover, in
further studies, it will be interesting to obtain the optimal rate
of sent beacons, in order to not collapse the network with
unnecessary information.

V. CONCLUSION

Autonomous vehicles are an emergent technology within
the few next years will be a reality in our daily life. In this
paper, a communication framework for vehicular networks is
proposed focusing on the cooperation among all the network
elements. The proposed framework is divided in three lay-
ers; the first one sensing the close-range environment and
implementing an obstacle/pedestrian avoidance mechanism.
This active safety mechanism is simulated using a ray-tracing
algorithm, emulating the close range radar systems, displaying
great results in terms of accuracy with a reasonable amount
of sensors. The second layer involves an explicit coordination
scheme where the vehicles share their local knowledge in order
to extend their electronic horizon. The simulations show that
the network has enough information to perform the coordina-
tion scheme in a reasonable time, showing the feasibility of
the proposed framework. The last layer is used to share the
high level knowledge using LTE links between the RSUs in
order to optimize the traffic routing. Applying this concept,
the re-routing of the traffic is greatly improved. To sum up,
the proposed multi-level network performs well-enough and it
brings a new concept to vehicular networks such as the share
of knowledge in order to obtain a multi-cooperative network.
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