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Abstract—In this paper we address a worst-case weighted sum
rate maximization problem for a full-duplex (FD) and point-
to-point (P2P) system. The effects of channel-state information
(CSI) error, as well as the signal distortion due to hardware
impairments are jointly taken into account. Due to the intractable
structure of the resulting problem, a weighted minimum mean
squared error (WMMSE) method is applied to cast the rate
maximization into a separately convex optimization problem,
which can be iteratively solved with a guaranteed convergence.
The provided rate maximization framework is also shown to
provide a converging minimum mean squared error (MMSE)
design as a special case. Moreover, a methodology to obtain the
least favorable error matrices is proposed by casting the resulting
non-convex quadratic optimization into a convex problem. The
achievable guaranteed (worst-case) rate is then numerically
studied, over different levels of CSI error intensity, transceiver
accuracy, and available transmit power.

I. INTRODUCTION

Full-Duplex transceivers are known for their capability to
transmit and receive at the same time and frequency, and
hence have the potential to enhance the spectral efficiency [1].
Nevertheless, such systems suffer from the inherent self-
interference from their own transmitter. Recently, specialized
cancellation techniques, e.g., [2]–[4], have demonstrated an
adequate level of isolation between Tx and Rx directions to
facilitate a FD communication and motivated a wide range
of related studies, see, e.g., [1], [5], [6]. A common idea of
such techniques is to subtract the dominant part of the self-
interference signal, e.g., the direct interference path or near-
end reflections, in the RF analog domain so that the remaining
signal can be processed for further interference reduction in the
baseband, i.e., digital domain. Nevertheless, such methods are
still far from perfect in a realistic environment due to i) aging
and inherent inaccuracy of the hardware (analog) components,
as well as ii) inaccurate knowledge of the self-interference
channel. In particular, a FD link is vulnerable to the CSI
inaccuracy at the self-interference path in environments with
a small channel coherence time, see [4, Subsection 3.4.1], [7,
Subsection V.C]. A good example of such challenge is a high-
speed vehicle that passes close to a FD device, and results in
additional reflective self-interference paths1. This may render
the self-interference cancellation module out of tune, and result
in degradation of link quality as a result of the increased
residual error.

1Since the object is moving rapidly, the reflective paths can not be accurately
estimated.

In order to combat this effect, the transceiver may adapt its
transmit/receive strategy to the expected nature of CSI inaccu-
racy, e.g., by directing the transmit beams away from the mov-
ing objects or operating in the directions with smaller impact
of CSI error. Moreover, the accuracy of the transmit/receiver
chain elements can be considered, e.g., by dedicating less
task to the chains with noisier elements. In this regard, a
widely used model for the operation of a multiple-antenna
FD transceiver is proposed in [8], where CSI inaccuracy as
well as the impact of hardware impairments are taken into
account. A gradient-projection-based method is then proposed
in the same work for maximizing the sum rate in a FD P2P
setup. Afterwards, a convex optimization design framework is
introduced in [9]–[11] by defining a price/threshold for the
self-interference power, assuming the availability of perfect
CSI and accurate transceiver operation. While this approach
reduces the design computational complexity, it does not
provide a reliable performance for a scenario with erroneous
CSI, particularly regarding the self-interference path [12].
Consequently, the consideration of residual self-interference in
a FD P2P system is further studied in [13]–[15] by maximizing
the system sum rate, in [16] by minimizing the sum mean-
squared-error (MSE), and in [17] for minimizing the total
power consumption under given rate constraints.

The aforementioned works focus on optimizing the average
system performance under CSI inaccuracy, where the first and
second order statistics of CSI error is known. Nevertheless,
they do not provide a guarantee for the instantaneous perfor-
mance, i.e., they focus on the average, and not the worst-case
performance optimization under CSI uncertainty. The consider-
ation of the worst-case performance becomes significant for the
scenarios where seamless and reliable connectivity is of high
priority, e.g., remote medical and sensitive automotive control
applications. In contrast, the worst-case rate maximization for
a half-duplex (HD) communication setup has been studied,
e.g., in [18], [19], following a deterministic representation of
the CSI error region, and extended in the context of multiple
antenna FD systems from the aspects of energy efficiency [20]
and sum rate maximization in a FD cellular system [21] with
perfect hardware assumptions2. Nevertheless, such studies have
not been yet extended for sum rate maximization in a FD bi-
directional setup.

In this paper we address a worst-case weighted sum rate

2In this model the channel matrices are not known, but located with a
sufficiently high probability within a known feasible region, see [22]–[24]
and references therein.



maximization problem for a FD and P2P system. In particular,
the effects of CSI error, as well as the signal distortion due
to hardware inaccuracies are jointly taken into account. In
Section II the system model, and the intended optimization
strategy is presented. Due to the intractable mathematical
structure of the resulting problem, a WMMSE-based optimiza-
tion method [25] is proposed in Section III, which results
in an iterative optimization with a guaranteed convergence.
The provided rate maximization framework is also shown to
provide a converging MMSE-based design as a special case.
Furthermore, a methodology to obtain the least favorable error
matrices are then proposed by casting the resulting non-convex
quadratic optimization into a convex optimization problem.
The achievable (worst case) rate is then numerically evaluated
in Section IV for different levels of CSI error, transceiver
inaccuracy, and the available transmit power.

A. Mathematical Notation:

Throughout this paper, column vectors and matrices are
denoted as lower-case and upper-case bold letters, respec-
tively. Mathematical expectation, trace, inverse, determinant,
transpose, conjugate and Hermitian transpose are denoted by
E{·}, tr(·), (·)−1 | · |, (·)T , (·)∗ and (·)H , respectively. The
Kronecker product is denoted by ⊗. The identity matrix with
dimension K is denoted as IK and vec(·) operator stacks the
elements of a matrix into a vector. 0m×n represents an all-
zero matrix with size m × n. ‖ · ‖2 and ‖ · ‖F respectively
represent the Euclidean and Frobenius norms. diag(·) returns
a diagonal matrix by putting the off-diagonal elements to
zero. �Ai�i=1,...,K denotes a tall matrix, obtained by stacking

the matrices Ai, i = 1, . . . ,K. R{A} represents the range
(column space) of the matrix A.

II. SYSTEM MODEL

We consider a MIMO and bi-directional communication
between two FD transceivers, where both communication
directions are accommodated on the same channel. Each
communication direction is realized with Ni transmit and Mi

receive antennas, where i ∈ D, and D := {1, 2} represents
the set of the communication directions, see Fig. 1. The
desired channel in the communication direction i is denoted as
Hii ∈ C

Mi×Ni where the self-interference channel from i to
j-th communication direction is denoted as Hji ∈ C

Mj×Ni .
All channels are assumed to follow a flat-fading model, where
the CSI is known erroneously. In this respect we follow the so-
called deterministic model [22], where the error matrices are
not known, but located within a known feasible error region.
This is written as

Hij = H̃ij +Δij , ‖DijΔij‖F ≤ ζij , i, j ∈ D, (1)

where H̃ij is the estimated channel matrix, Δij represents
the channel estimation error, and Dij � 0 and ζij ≥ 0
jointly define a feasible ellipsoid region for Δij . For further
elaboration on the used error model please see [22]–[24]. The
transmitted signal in the direction i is formulated as

xi = Visi︸︷︷︸
=:vi

+et,i, E
{‖xi‖22

} ≤ Pi, (2)

where si ∈ C
di ,Vi ∈ C

Ni×di ,vi ∈ C
Ni and Pi ∈ R respec-

tively represent the vector of the data symbols, the transmit

precoding matrix, the intended (undistorted) transmit signal,
and the maximum affordable transmit power. The number of
the transmited data streams in direction i is denoted as di,
and E{sisHi } = Idi . Moreover, the inaccurate behavior of the
transmit chain elements is modeled as an additional distortion
term et,i such that

et,i ∼ CN
(
0Ni×1, κidiag

(
E{viv

H
i }) ), et,i ⊥ vi, (3)

where ⊥ represents the statistical independence, and κi is
the transmit distortion coefficient, see [8, Section II.C] for
more elaboration. The received signal at the destination can
be consequently written as

yi = Hiixi +Hijxj + ni︸ ︷︷ ︸
=:ui

+er,i, (4)

where ni is the additive thermal noise with variance σ2
n,i,

ui ∈ C
Mi is the undistorted received signal, and the additive

distortion term er,i models the inaccuracies in the receive
chains such that

er,i ∼ CN
(
0Mi×1, βidiag

(
E{uiu

H
i }) ), er,i ⊥ ui, (5)

where βi is the receiver chain distortion coefficient, see [8,
Section II.D]. Please note that the distortion terms er,i and
et,i model the combined effects of the transmit and receive
chain inaccuracies, e.g., digital-to-analog and analog-to-digital
converter error, power amplifier noise, oscillator phase noise
and the automatic gain control noise at the respective chains.
Hence, unlike the thermal noise components, the variance of
the distortion terms are dependent on the power of the intended
transmit/receive signal at each antenna and play an important
role in a FD setup due to the strong self-interference path, see
[8], [26] and the references therein. The known part of the self-
interference signal, i.e, H̃ijvj , can be reduced at the receiver
side using the self-interference cancellation techniques, e.g.,
[2], [3]. This is written as

ỹi = HiVisi +wi, (6)

where ỹi is the received signal, after the self-interference can-
cellation, and wi ∈ C

Mi is the aggregate residual interference-
plus-noise signal for the communication direction i

wi = Hiiet,i +Hijet,j + er,i +ΔijVjsj + ni. (7)

Finally, the estimated data vector is obtained at the receiver as

s̃i = Ui
H ỹi, (8)

where Ui ∈ C
Mi×di is the linear receive filter. The achiev-

able communication rate in the direction i, i.e., the mutual
information between si and s̃i, is hence written as

Ii = Blog2

∣∣IMi +Σ−1
i HiiViV

H
i HH

ii

∣∣ , (9)

where B is the used bandwidth, Ii is the achievable rate, and
Σi represents the combined residual interference-plus-noise
covariance for the i-th communication direction. Please note
that the above formulation holds for the Gaussian distribution
of the desired, and residual interference signal terms, and
otherwise can be viewed as an approximation.



Figure 1. A full-duplex bi-directional system with multiple antennas. The communication quality suffers due to the additive white noise, i.e., ni, inaccuracies
of transmit and receive chains, i.e., et,i and er,i, as well as the CSI estimation error Δij , i, j ∈ {1, 2}.

A. Optimization Problem

Our goal is to maximize the weighted sum rate of the
system, corresponding to the worst-case feasible channel error
matrix, see (1). This is written as

max
V̄,Ū

min
Δ̄

∑
i∈D

νiIi (10a)

s.t. E
{‖xi‖22

} ≤ Pi, ∀i ∈ D, (10b)

‖DijΔij‖F ≤ ζij , ∀i, j ∈ D, (10c)

where X̄ := {Xi, ∀i ∈ D}, for X ∈ {V,U}, Δ̄ :=
{Δij , ∀i, j ∈ D}, and νi ∈ R represents the weight of the
communication rate.

III. WMMSE METHOD FOR WORST-CASE RATE

MAXIMIZATION

With the application of Vi,Ui as the transmit and receive
linear filters, the MSE matrix for the communication direction
i is written as

Ei : = E{(s̃i − si) (s̃i − si)
H}

=
(
Ui

HHiiVi − Idi

)(
Ui

HHiiVi − Idi

)H

+Ui
HΣiUi, (11)

where Σi is calculated as

Σi :=E
{
wiw

H
i

}
=κjHijdiag

(
VjV

H
j

)
HH

ij + βidiag
(
HijVjV

H
j HH

ij

)
+κiHiidiag

(
ViV

H
i

)
HH

ii + βidiag
(
HiiViV

H
i HH

ii

)
+ΔijVjV

H
j ΔH

ij + σ2
n,iIMi . (12)

Note that the above expression holds, as κi  1, βi  1, and
the terms including higher orders of κi and βi can be safely
ignored. The MMSE receive linear filter can be calculated as

Ummse
i =

(
Σi +HiiViV

H
i HH

ii

)−1
HiiVi, (13)

and the resulting MSE matrix is obtained as

Emmse
i =

(
Idi

+VH
i HiiΣ

−1
i HiiVi

)−1
. (14)

By recalling (9), we observe the following useful connection
to the rate function

Ii = −Blog2 |Emmse
i | , (15)

which facilitates the decomposition of rate function via the
following lemma, see also [27, Eq. (9)].

Lemma 1. Let E ∈ C
d×d be a positive semi-definite matrix.

The maximization of the term −log |E| is equivalent to the
maximization

max
E,W

− tr
(
WHEW

)
+ log

∣∣WWH
∣∣+ d, (16)

where W ∈ C
d×d is a positive semi-definite matrix.

Proof: The proof is obtained following [18, Lemma 2],
and decomposing the positive semi-definite matrix S ∈ C

d×d

as S = WWH .

By recalling (11) and (9), and utilizing Lemma 1, the
original optimization problem can be equivalently formulated
as

max
V̄

min
Δ̄

max
Ū,W̄

∑
i∈D

νi

(
log|WiW

H
i |+ di − tr

(
WH

i EiWi

))
(17a)

s.t. (10b), (10c) (17b)

where W̄ is a set containing Wi � 0, ∀i ∈ D. In order to
cast the objective into a simpler form we calculate

tr
(
WH

i EiWi

)
=

∥∥WH
i

(
UH

i HiiVi − Idi

)∥∥2
F

+
∑

l∈FNj

κj

∥∥WH
i UH

i HijΓlVj

∥∥2
F

+
∑

l∈FMi

βi

∥∥WH
i UH

i ΓlHijVj

∥∥2
F

+
∑
l∈FNi

κi

∥∥WH
i UH

i HiiΓlVi

∥∥2
F

+
∑

l∈FMi

βi

∥∥WH
i UH

i ΓlHiiVi

∥∥2
F

+
∥∥WH

i UH
i ΔijVj

∥∥2
F
+ σ2

n,i

∥∥WH
i UH

i

∥∥2
F

(18)

=
∑
j∈D

‖cij +Cijvec (Δij)‖22 , (19)

where

cii :=

⎡
⎢⎢⎢⎢⎢⎢⎣

vec
(
WH

i

(
UH

i H̃iiVi − Idi

))
⌊√

κivec
(
WH

i UH
i H̃iiΓ

l
Ni

Vi

)⌋
l∈FNi⌊√

βivec
(
WH

i UH
i Γl

Mi
H̃iiVi

)⌋
l∈FMi

σn,ivec
(
WH

i UH
i

)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (20)



Cii :=

⎡
⎢⎢⎢⎢⎣

VT
i ⊗ (

WH
i UH

i

)⌊√
κi

(
Γl
Ni

Vi

)T ⊗ (
WH

i UH
i

)⌋
l∈FNi⌊√

βiV
T
i ⊗ (

WH
i UH

i Γl
Mi

)⌋
l∈FMi

0Midi×NjMi

⎤
⎥⎥⎥⎥⎦ , (21)

cij
i �=j
:=

⎡
⎢⎢⎢⎣

⌊√
κjvec

(
WH

i UH
i H̃ijΓ

l
Nj

Vj

)⌋
l∈FNj⌊√

βivec
(
WH

i UH
i Γl

Mi
H̃ijVj

)⌋
l∈FMi

0didj×1

⎤
⎥⎥⎥⎦ , (22)

Cij
i �=j
:=

⎡
⎢⎢⎢⎣

⌊√
κj

(
Γl
Nj

Vj

)T

⊗ (
WH

i UH
i

)⌋
l∈FNj⌊√

βiV
T
j ⊗ (

WH
i UH

i Γl
Mi

)⌋
l∈FMi

VT
j ⊗ (

WH
i UH

i

)

⎤
⎥⎥⎥⎦ , (23)

such that Γl
K represents a square matrix with dimension K,

with all zero elements except of the l-th diagonal element equal

to 1, and cij ∈ C
d̃ij ,Cij ∈ C

d̃ij×MiNj where

d̃ii = (1 +Ni +Mi) d
2
i +Midi,

d̃ij = (1 +Nj +Mi) didj , ∀i, j ∈ D, i �= j.

In the above derivations, (18) is calculated by recalling (11)
and (12) and the known matrix equality [28, Eq. (516)],
and (20)-(23) are calculated via the application of [28,
Eq. (496), (497)]. Unfortunately, the problem (17) is still
intractable due to the joint inner and outer maximization.
Hence, we focus on maximizing the lower bound of the
objective following the max-min inequality, see [18, Eq. (12)].
This is written using the epigraph form as

max
V̄,Ū,W̄,τ̄

min
Δ̄

∑
i∈D

νi

(
log|WiW

H
i |+ di −

∑
j∈D

τij

)
(24a)

s.t. ‖cij +Cijvec (Δij) ‖22 ≤ τij , ∀i, j ∈ D,
(24b)

(10c), (10b), (24c)

where τ̄ := {τij , ∀i, j ∈ D}. By defining Δ̃ij := DijΔij ,

D̃ij := INj
⊗D−1

ij , bij := vec(Δ̃ij), and applying the Schur
complement lemma, the constraint (24b) is equivalently written
as [

0 bH
ij D̃

H
ijC

H
ij

CijD̃ijbij 0d̃ij×d̃ij

]
+

[
τij cHij
cij Id̃ij

]
� 0, (25)

where d̃ij is equal to the size of cij . Similarly, the constraint
(10c) can be written as ‖bij‖2 ≤ ζij .

Lemma 2. Generalized Petersen’s sign-definiteness lemma:
Let Y = YH , and X,P,Q are arbitrary matrices with
complex valued elements. Then we have

Y � PHXQ+QHXHP, ∀X : ‖X‖F ≤ ζ, (26)

if and only if

∃λ ≥ 0,

[
Y − λQHQ −ζPH

−ζP λI

]
� 0. (27)

Proof: See [29, Proposition 2], [30].

By choosing the matrices in Lemma 2 such that X = bij ,

Q =
[
−1, 01×d̃ij

,
]

and

Y =

[
τij cHij
cij Id̃ij

]
,P =

[
0MiNj×1, D̃H

ijC
H
ij

]
, (28)

the optimization problem in (24) is equivalently written as

max
V̄,Ū,W̄,τ̄ ,λ̄

∑
i∈D

νi

(
2log|Wi|+ di −

∑
j∈D

τij

)
(29a)

s.t.

⎡
⎣ τij − λij cHij 01×MiNj

cij Id̃ij
−ζijCijD̃ij

0MiNj×1 −ζijD̃
H
ijC

H
ij λijIMiNj

⎤
⎦ � 0,

(29b)[
Pi mH

m I∑
i∈D Nidi

]
� 0, ∀i, j ∈ D, (29c)

where λ̄ := {λij , ∀i, j ∈ D}, m := �vec (Vi)�i∈D, and the
constraint (29c) is the schur complement representation of the
power constraint (10b).

Note that (29) is not a jointly convex optimization problem.
Nevertheless, it is separately convex over the optimization
variables, see (20)-(23). This facilitates an iterative optimiza-
tion over separated variable sets, where in each iteration a
convex sub-problem is solved, see Algorithm 1. In this regard,
the maximization over V̄, Ū can be separately cast as a
general SDP, where the optimization over W̄ can be efficiently
implemented using MAX-DET algorithm [31]. Moreover, due
to the monotonic increase of the objective in each optimization
iteration the algorithm convergences to a stationary point, see
also [18, Section III] for arguments regarding convergence
and optimization steps for a problem with similar variable
separation.

A. Worst-Case MMSE Optimization as a Special Case

The proposed optimization framework provides a system
sum rate maximization design, where the rate functions are
re-structured using the WMMSE method. Alternatively, an
optimization problem for obtaining the optimal MMSE system
operation can be written as

min
V̄,Ū

max
Δ̄

∑
i∈D

μitr (Ei) , s.t. (10b), (10c), (30)

where the maximization over Δ̄ represents the worst-case
channel estimation error in the MMSE sense, and μi ∈ R rep-
resents the price of the estimation MSE at the communication
direction i. As it can be observed from (24), the defined MMSE
optimization (30) can be interpreted as the special case of (24)
by choosing νi = μi, and setting Wi = Idi

in the objective
and in the definitions of cij and Cij , ∀i, j ∈ D. As a result, a
similar iterative optimization can be employed where at each
step a convex sub-problem is solved over Ū and V̄. Note
that unlike the rate maximization case, where the max-min
inequality is employed to construct a lower bound of the rate
function, the provided framework acts on the exact value of the
MMSE value as the objective. Moreover, the utilization of the
MAX-DET algorithm is not necessary and all sub-problems
are presented as an SDP, due to the elimination of W̄ from
the optimization variables set.



B. Worst-Case Channel Error Matrices

The obtained design from (29) is intended to maximize
the worst-case weighted system sum rate, over the feasible
error region. On the other hand it is beneficial to obtain the
least favorable channel error matrices, as it provides guidelines
for the future channel estimation strategy, e.g., to reduce the
radius of the error feasible regions in the most destructive
directions. Moreover, it is a necessary step for cutting-set based
methods [32] that aim to reduce the design complexity by
iteratively identifying the most destructive error matrices and
incorporating them into the future design steps. In the current
setup, the worst-case channel error matrices are identified by
minimizing the rate function (10) within their feasible region.
Due to the intractable structure of such a rate minimization
problem, we focus on the modified objective in (24) where
the worst case error matrices can be obtained via the inner
minimization as

min
Δ̄

−
∑
i∈D

νitr
(
WH

i EiWi

)
, (31a)

s.t. ‖DijΔij‖ ≤ ζij , ∀i, j ∈ D. (31b)

Note that similar to the arguments in Subsection III-A, the
above formulation also represents the special case of the
MMSE design criteria, by setting νi = μi, and Wi = Idi , i ∈D. Due to the uncoupled nature of the error feasible set, and the
value of the objective function over Δij , i, j ∈ D, following
(19), the above minimization can be decomposed as

min
bij

− bH
ij D̃

H
ijC

H
ijCijD̃ijbij − 2Re{bH

ij D̃
H
ijC

H
ijcij} − cHijcij

(32a)

s.t. bH
ijbij ≤ ζ2ij , (32b)

where Re{·} represents the real part of a complex value. Note
that the objective in (32a) is a non convex function and can not
be minimized using the usual numerical solvers in the current
form. Following the zero duality gap results for the non-convex
quadratic problems [33], [34], we focus on the dual function of
(32). The corresponding Lagrangian function to (32) is hence
constructed as

L (bij , ρij) =

bH
ijAijbij − 2Re{bH

ij D̃
H
ijC

H
ijcij} − cHijcij − ρijζ

2
ij , (33)

where ρij is the dual variable and Aij := ρijI −
D̃H

ijC
H
ijCijD̃ij . Consequently, the value of the dual function

is obtained as

g (ρij) = −cHijCijD̃ijA
−1
ij D̃H

ijC
H
ijcij − cHijcij − ρijζ

2
ij ,
(34)

if Aij � 0, and D̃H
ijC

H
ijcij ∈ R{Aij}, and otherwise is

unbounded from below3. By applying the Schur complement
lemma, the maximization of the dual function is written using

3If one of the aforementioned conditions is not satisfied, an infinitely large
value of bij can be chosen in the negative direction of Aij , if Aij is not

positive semi-definite, or in the direction D̃H
ijC

H
ijcij in the complementary

null-space of Aij .
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Figure 2. Average convergence behavior of the proposed iterative method.
The proposed method converges to a stable point within fewer than 10
optimization iterations.

the epigraph form as

max
ρij≥0, φij

φij (35a)

s.t.

[
Aij −D̃H

ijC
H
ijcij

−cHijCijD̃ij −cHijcij − ρijζ
2
ij − φij

]
� 0,

(35b)

where φij ∈ R is an auxiliary variable4. By plugging the
obtained dual variable ρij into (33), and considering the fact

that −D̃H
ijC

H
ijCijD̃ij+ρ�ijI � 0 as a result of (35), the optimal

value of bij is obtained from (33) as

b�
ij =

(
−D̃H

ijC
H
ijCijD̃ij + ρ�ijI

)−1

D̃H
ijC

H
ijcij , (36)

where (·)� represents the optimality and the worst case Δij is

consequently calculated via vec(Δij) = D̃ijb
�
ij .

Algorithm 1 Iterative semi-definite-programming (SDP) framework
for worst-case sum rate maximization in a bidirectional FD system

1: � ← 0 (set iteration number to zero)
2: Vi,Ui ← 0, Wi ← Idi , i ∈ D (initialization)
3: repeat
4: � ← �+ 1
5: V̄, τ̄ , λ̄ ← solve SDP (29), with fixed Ū,W̄
6: Ū, τ̄ , λ̄ ← solve SDP (29), with fixed V̄,W̄
7: W̄, τ̄ , λ̄ ← solve MAX-DET (29), with fixed Ū, V̄
8: until a stable point, or maximum number of � reached
9: return

(
W̄, Ū, V̄

)

IV. SIMULATION RESULTS

In this section we numerically evaluate the resulting worst-
case sum rate of a FD P2P system, using the proposed design.
In this respect, we assume that Hii follows an uncorrelated
Reyligh distribution, with variance 0.01 for each element and

4Note that the semi-definite presentation in (35b) automatically satisfies
Aij � 0, and D̃H

ijC
H
ijcij ∈ R{Aij}.
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Figure 3. Guaranteed (worst-case) sum rate vs. transceiver inaccuracy
(κ = κi = βj , ∀i, j). Achievable worst case rate as well as the FD system
advantage suffers as the transceiver inaccuracy increases.
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(ζ = ζij , ∀i, j). Achievable rate suffers as the CSI error region expands.

Hij ∼ CN
(√

KR

1+KR
H0,

1
1+KR

INj
⊗ IMi

)
, i �= j. H0 is

matrix with all elements equal to 1 and KR is the Rician
coefficient. The results are then averaged over 100 channel
realizations. Unless otherwise is stated we use the following
values to define our default setup: Nj = Mi = 4, KR = 1,
Pi = 1 [Watt], κi = βj = 0.001, σ2

n,i = 0.001 [Watt], Dij =
I, νi = 1, ζij = −15 [dB], ∀i, j ∈ D.

In Fig. 2 - Fig. 5 the worst-case (WC) achievable sum
rate is numerically evaluated. In this respect, ’Scenario 1’
represents the proposed design in Section III. ’Scenario 2’,
’Scenario 3’, and ’Scenario 4’ represent a simplified sum-rate
maximizing approach, by (respectively) ignoring the impact
of distortion signals, i.e., assuming κ = β = 0, the impact of
CSI inaccuracy, i.e., assuming ζ = 0, and jointly ignoring the
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Figure 5. Guaranteed (worst-case) sum rate vs. maximum transmit power
(P = Pi, ∀i). Achievable rate is dominated by the effects of CSI error, and
transceiver inaccuracy for high power regime.

impacts of chain imperfections and CSI errors. Scenario 2 is
adopted from the proposed design in [17], where Scenario 4 is
previously studied in [10], [11]. Finally, ’Scenario 5’ represents
the achievable WC sum rate for the HD setup [18].

In Fig. 2 the average convergence behavior of the proposed
iterative method is depicted. As it is observed, the convergence
is obtained within 3-10 optimization iterations, which verifies
the efficiency of the proposed iterative algorithm in terms of
the required computational effort. Moreover, it is observed
that such convergence behavior remains relatively constant for
different levels of transceiver accuracy.

In Fig. 3 the obtained guaranteed (worst-case) system sum
rate is evaluated for different values of transceiver inaccuracy.
It is observed that while the achievable performance in all
scenarios degrade as κ = β increases, the performance of
the FD system is more sensitive to the distortion intensity,
compared to the HD system, due to the strong self-interference
path. The gain of the proposed design (’Scenario 1’) is
particularly observable as the chain inaccuracy increases.

In Fig. 4 the obtained guaranteed (worst-case) system sum
rate is evaluated for different values of channel error intensity.
Similar to Fig. 3, it is observed that the proposed robust design
provides a margin of gain as the CSI error radius increases.

In Fig. 5 the impact of the maximum transmit power is
observed on the achievable (worst-case) system sum rate. It
is observed that for a low power system, where the system
performance is dominated by the effect of noise, a significant
gain is obtained via the proposed FD setup. Nevertheless,
the gain obtained by the proposed robust design is marginal.
Conversely, in a high power regime where the system perfor-
mance is dominated by the effect of distortion signals and CSI
inaccuracy, the application of a robust design strategy becomes
crucial.



V. CONCLUSION

While the application of bi-directional FD communica-
tion paradigm presents a potential for improving the spectral
efficiency, such gains may be limited due to the imperfect
self-interference cancellation. In this regard, the impact of
inaccurate CSI estimation, as well as the common hardware
inaccuracies play the dominant role. In this work we have
presented a multi-convex optimization framework, for a worst-
case sum rate maximization problem. The presented method
provides a higher margin of robustness, compared to the previ-
ously presented designs in terms of worst-case performance. In
particular, the observed gain increases as the CSI error region
expands, or as the transceiver accuracy decreases.
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