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Abstract—We consider a multi-relay system where the best
single relay is selected to assist transmissions. We study the
performance bound of the system in the finite blocklength regime.
On the one hand, we extend Polyanskiy’s finite blocklength model
of a single-hop scenario to the considered relaying system and
derive the corresponding achievable throughput. On the other
hand, by employing a practical coding scheme, namely polar
codes, a finite blocklength performance bound attainable by a
low-complexity coding scheme is provided. Through simulation
and numerical investigations, we show the appropriateness of
the proposed bounds. Moreover, we evaluate both the achievable
performance with finite blocklengths and the performance of
polar codes in the best single relay scenario in comparison to
direct transmission.

Index Terms—best single relay, decode-and-forward, finite
blocklength regime, relaying, polar codes.

I. INTRODUCTION

Low-latency is one of the major concerns in the design of
future wireless networks. Increasingly both researchers and
designers of future wireless networks are interested in allowing
for wireless links to carry latency-critical traffic as relevant for,
e.g., haptic feedback in virtual and augmented reality, e-health,
autonomous driving, industrial control applications and cyber-
physical systems.

Common scenarios in these networks feature multiple nodes
densely deployed. Cooperative relaying significantly promotes
the transmission performance and greatly capitalizes on dense
node packings [1], [2], [3]. Consequently, the performance in
multi-node networks may be leveraged by applying relaying,
as each node may potentially act as a relay, e.g., via best
single relay (BSR) selection, assisting transmissions for peer
nodes [4], [5], [6]. However, the above studies of relaying and
the application of relaying in multi-node scenarios are under
the ideal assumption of communicating arbitrarily reliable at
rates close to Shannon’s channel capacity. They thus implicitly
assume an infinite blocklength (IBL) regime, which does not
allow for accurately assessing the performance in low-latency,
short blocklength scenarios.

In the finite blocklength (FBL) regime, the error probability
of the communication is not negligible. Early in 1962, the
normal approximation of coding rate is discussed [7]. More
recently, an achievable upper bound on the coding rate is
identified in [8] for a single-hop transmission system, taking
the error probability into account. The result of [8] has been

extended to Gilbert-Elliott Channels [9], as well as to quasi-
static fading channels [10], [11]. Recently, an achievable FBL
performance for relaying under a single relay scenario was
addressed analytically in [12], [13], [14], [15]. Furthermore,
bounds when using single relays with practical codes, e.g.,
polar codes (PCs), are discussed in [16]. In fact, PCs have
been considered in several relaying scenarios. In [17], PCs are
employed to devise coding schemes for decode-and-forward
(DF), as well as compress-and-forward relaying scenarios
assuming relay channels with orthogonal receivers. A DF re-
laying scenario without the assumption of orthogonal receivers
is addressed in [18], by implementing a Markov block coding
scheme proposed in [19] using PCs. Inspired by [17], PCs are
presented in an opportunistic cooperative DF relaying scenario
[20]. While these works exploit structural properties of PCs,
e.g., the subset property of the information bit index sets
in case of degraded channels as in [18], the relay scenarios
considered are, to the best of our knowledge, either two-hop
situations assuming a single-relay, or, as in [20] or [21], a main
link assisted by a two-hop side channel based on a single relay
network.

To the best of our knowledge, for low-latency, multi-node
scenarios with BSR, both the achievable performance bound
as well as practical bounds, i.e., performance achieved by
specific coding systems, have not been studied. We address
these problems by providing an analytical attempt to solve the
problem, and validate our results with simulations, employing
PCs as an example of a low-complexity coding system. On the
one hand, we derive the achievable performance bound based
on Polyanskiy’s FBL model. On the other hand, to support
our theoretical findings, a practical FBL performance bound
based on PCs is provided. The rest of the paper is organized
as follows. Section II describes the system model and briefly
introduces the theoretical background of the FBL regime, as
well as the relevant aspects of polar codes. In Section III, we
first derive the FBL performance of the system assuming static
channels, and subsequently extend the performance model to
a quasi-static channel fading scenario. Section IV presents our
numerical results. Finally, we conclude our work in Section V.

II. PRELIMINARIES

A. System Model
We consider a source S, a destination D and J DF relays Rj ,

where j ∈ J = {1, . . . , J}. This scenario is schematically
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Fig. 1. Example of the considered best single relay (BSR) network.

depicted in Figure 1. In general, the distances among relays
are significantly shorter than the distances between the source,
the relay group and the destination. The entire system operates
in a slotted fashion, where time is divided into transmission
periods of length 2m symbols. Thus, each transmission pe-
riod accommodates two phases of length m each, which are
referred to as broadcasting phase and relaying phase. In the
broadcasting phase, the source sends a data block to the relays.
After reception, if any relay decodes the block successfully,
such relay will be able to forward the data to the destination.
We refer to such relays as active relays. In the subsequent
relaying phase, one of the active relays, namely that with the
best channel to the destination, will be selected to forward the
data to the destination. We refer to this scenario as the BSR
network.

Channels are assumed to suffer from Rayleigh block-fading.
Hence, channels are constant during the duration of each
transmission period but vary from one period to the next.
We denote the instantaneous channel gains from the source
to relay Rj and from Rj to the destination by zS,j and zj,D,
j ∈ J . Due to the random Rayleigh fading, tha channel
gains follow exponential distribution with unit mean, i.e.,
E(zS,j) = E(zj,D) = 1. The instantaneous signal-to-noise
ratio (SNR) from the source to Rj and from Rj to the
destination are denoted by γS,j and γj,D. We consider a
homogeneous scenario where the average received SNRs of
all the links from the source to relays are the same, denoted
by γ̄S,R, while the same applies to the average SNR of the
links from relays to the destination, denoted by γ̄R,D. Both
the source as well as each of the relays is assumed to have
access to perfect channel state information (CSI).

These assumptions allows us to study the fundamental per-
formance of the considered multi-relay network, i.e., not for a
specific network topology. Therefore, we have γS,j = zS,j γ̄S,R

and γj,D = zj,Dγ̄R,D, j ∈ J . It is possible that multiple
relays decode the data packet from the source correctly and
become active relays, i.e., multiple candidates may be selected
to forward the data block in the upcoming relaying phase.
Then, by selecting the best active relay to forward the data,
the destination obtains a selective channel gain with the SNR
given by max

j∈Ja

{γj,D}, where Ja is the active relay set.

B. Blocklength-Limited Performance of Single-Hop Transmis-
sion Scenario with Perfect CSI

For additive white Gaussian noise (AWGN) channels, ref-
erence [8] derives a tight achievable bound for the coding rate
of a single-hop transmission. With blocklength m, block error

probability ε and signal-to-noise ratio (SNR) γ, the coding rate
in bits per channel use is given by

1

2
log(1 + γ)− log e

γ + 1

√
γ
γ + 2

2m
Q−1(ε) +

O(logm)

m
, (1)

where Q−1(·) is the inverse of the Q-function given by

Q(w) =
1√
2π

∫ ∞
w

e−t
2/2dt. (2)

In [22], [23], the above result has been extended to a
complex channel model with received SNR γ, where the
coding rate in bits per channel use is

r = R(γ, ε,m) ≈ C(γ)

√
V

m
Q−1(ε), (3)

where C(γ) is the Shannon capacity of the channel used. For
a known SNR, it is given by C(γ)=log2(1 + γ). Moreover,

V =

(
1− 1

1 + γ2

)
(log2 e)

2 (4)

is the channel dispersion [8, Def.1]. Hence, for a single hop
transmission with blocklength n and coding rate r, the block
error probability at the receiver is given by

ε = P(γ, r,m) ≈ Q
(√

m

V

(
C(γ)− r

))
. (5)

C. Polar Codes

Recently introduced by Arıkan [24], PCs answer a long-
standing, open question in information theory by provid-
ing a practical coding scheme which provably achieves the
symmetric capacity of any binary-input discrete memoryless
channel (B-DMC). Relying on channel polarization, PCs are
constructed explicitly targeting a specific design channel. To
do so, we may select an index set A ⊆ N for a PC based on the
probabilities of decision error under successive cancellation
(SC) decoding

Pe(Wm,i) =
∑

y′∈Ym×X i−1

1

2
min {Wm,i(y

′ | 0),Wm,i(y
′ | 1)} , (6)

which estimates

ûi = arg max
ui∈{0,1}

{
Wm,i

(
y, ûi−1

1 |ui
)}

(7)

based on a received block y and assuming i− 1 correctly es-
timated information bits ûi−1

1 . In the decisions, Wm,i denotes
the channel statistic of the (virtual) channels Wm,i,

Wm,i : {0, 1} → Ym × {0, 1}i−1, 1 ≤ i ≤ m, (8)

modelling these decisions, where Y denotes the output alpha-
bet of the basic channel W . As m → ∞, these polarize in
the sense that the fraction of decisions vanishes for which
Pe(Wm,i) does not approach either 0 or 1

2 .
Encoding and decoding using SC [24] is possible in quasi-

linear complexity of O(m logm), where m is the blocklength.
To increase the performance at short lengths, SC decoding has
been extended to SC list (SCL) decoding [25], [26], which runs
in O(L·m logm) with list size L, i.e., the number of candidate
prefixes maintained in each step of the decoding process.



III. ACHIEVABLE THROUGHPUT OF BSR AT FINITE
BLOCKLENGTHS

A. Achievable FBL Throughput on Static Channels

In the FBL regime, the transmission is not error-free even
with perfect CSI. According to (5), with coding rate r the
achievable error probability of the link from the source to
Rj is given by εS,j = P(γS,j , r,m). In other words, with
probability 1 − εS,j Rj will decode the data block correctly.
Hence, regardless of r, there is a positive probability that some
relays decode the data block successfully and can be active in
the relaying phase. Denote by na the size of the active relay
set Ja, i.e., Ja contains na active relays which decode the

data block correctly. Then, we have na =
J∑
j=1

xj , where xj

is a Bernoulli variable, i.e., xj ∼ Ber(1 − εS,j), indicating
if Rj is in Ja. Hence, the expected value of na is given by

E [na] =
J∑
j=1

(1− εS,j).

From Ja, the relay with the highest SNR of the link to
the destination is selected to achieve the highest reliability for
the second hop. Hence, the received SNR at the destination is
given by maxj∈Ja{γj,D}. The error probability of the second
hop is given by P

(
maxj∈Ja{γj,D}, r,m

)
. Therefore, the

expected overall error probability of the considered network,
i.e., transmission assisted by BSR, is given by

εBSR =
∑

Ja∈P(J )

{∏
j /∈Ja

εS,j

∏
n∈Ja

(1−εS,n)P
(

max
j∈Ja

{γj,D} ,r,m
)}
,

(9)
where P(J ) is the powerset of the relay set J . Thus, with cod-
ing rate r the expected FBL-throughput facing static channels
is given by

µFBL = (1− εBSR)
r

2
. (10)

Note that εBSR is a function of r as described in (5), hence
the maximal FBL-throughput is given by

µmax
FBL = max

r
{µFBL} . (11)

B. Achievable Average FBL Throughput on Fading Channels

In this section, we extend the above analysis to quasi-static
Rayleigh channels. Recall that the size of the forwarding
relay set, given by na, is a sum of Bernoulli variables, i.e.,
xj ∼ Ber(εS,j), j ∈ J . To the best of our knowledge, as of
now there is no accurate closed-form expression characterizing
the distribution of the sum variable na. In the following, we
propose an approximation for modeling the achievable FBL
performance. For all these homogeneous links from the source
to the relays, the expected error probability using the fading
channel are the same, which are given by ε̄S,R = EγS,j

[εS,j ],
j ∈ J . We write n̄a as the number of active relays based
on this expected error probability, where n̄a is binomially
distributed, i.e., n̄a ∼ Bin(J, ε̄S,R). According to [27], we
have

B (n̄a, J, ε̄S,R) =

(
J

n̄a

)
(1− ε̄S,R)

n̄a ε̄J−n̄a

S,R . (12)

We approximate the average FBL throughput by assuming n̄a

as the true number of active relays for each transmission
period, hence use an approximation based on treating the
expected error probability ε̄S,R as the instantaneous error
probability for each link of the first hop.

In the presence of Rayleigh fading, the probability density
function (PDF) of the fading gain z is given by f(z) = e−z .
Hence, the PDF of the received SNR of a second hop link
with average SNR γ̄R,D is given by

f(γ) =
1

γ̄R,D
e
− γ
γ̄R,D , (13)

whereas the cumulative density function (CDF) is

F (γ) = 1− e−
γ

γ̄R,D . (14)

Then, the CDF of the received SNR at the second hop
conditioned on n̄a, i.e., the optimal SNR among links from n̄a

active relays to the destination, is given by

Fmax |n̄a
(γ) =

(
1− e−

γ
γ̄R,D

)n̄a

, (15)

with PDF

fmax |n̄a
(γ) =

n̄a

γ̄R,D

(
1− e−

γ
γ̄R,D

)n̄a−1

e
− γ
γ̄R,D . (16)

Hence, the overall error probability conditioned on n̄a is

E
[
εBSR|n̄a

]
=

∫ +∞

0

fmax |n̄a
(γ)P (γ, r,m) dγ. (17)

Consequently, the average error probability over n̄a is given
in (18).

By construction, E[εBSR] is a function of the coding rate r.
For a given r, the average FBL-throughput then calculates to

µFBL = (1− E[εBSR])
r

2
. (19)

In particular, the achievable FBL-throughput is obtained at the
optimal choice of r. Then, the average of the achievable FBL-
throughput over fading is

µmax
FBL =

1

2
E
γ

[
max
r
{(1− E[εBSR])r}

]
. (20)

C. Throughput Bound of Polar Codes

While there are plenty of well-established choices for a
coding system, we opt for PCs for several reasons. By design,
PCs allow for a wide range of rates via fixing the number
of channel uses employed to convey information to an ar-
bitrary integer. Combined with an explicit upper bound on
the probability of block error under successive cancellation
(SC) decoding, but also to that of the same code under more
powerful, but still low-complexity decoders, this allows for
great flexibility for numerically evaluating our findings.

To construct the PCs used throughout this work, we employ
an optimized variant [28] of the construction heuristic [29].
Assuming an AWGN channel of SNR γ using binary phase-
shift keying and hard-decision at the receiver, we target the
equivalent binary symmetric channel during construction. We
then select index sets based on the approximated channel
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parameters Pe(Wm,i) as given in (6) such that the union bound
of block error

PPC
(
γ, r,m

)
≤
∑
i∈A

Pe(Wm,i) (21)

is minimized. During our experiments, r = |A|
m . Hence,

defining |A| will allow for m different rates r∈
{

1
m , . . . , 1

}
.

Note that by this approach, in addition to the construction
of a specific code instance used in simulations, we obtain
a theoretically justified, explicit upper error bound on the
performance of such code under SC decoding, which translates
to a lower bound on throughput under SC decoding. To obtain
a lower bound on the throughput of PCs in the BSR network,
we then employ the upper bound on PPC

(
γ, r,m

)
as in (21)

as P
(
γ, r,m

)
, and obtain the achievable FBL throughput as

in the previous sections.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present simulative and numerical results
to support our findings. We first validate our performance
models by simulations. In addition to that, we evaluate the
BSR performance in comparison to direct transmission in the
FBL regime. In the simulation and numerical analysis, we
consider an urban scenario, where distances of broadcasting,
relaying and direct links are set to 200m, 200m and 275m.
We set the transmit and noise power to 25 dBm and -85 dBm,
respectively. In addition, we utilize the well-known COST [30]
model for calculating the pathloss. Our system operates in a
very low SNR regime, thus motivating the application of relays
to enhance transmission reliability.

The results are shown in Figure 2, where simulative results
for PCs are based on a PC of length m = 512 and r = 3

4
under SC decoding as in [24], as well as SCL decoding with
a list size of L = 16 as in [25], [26]. The FBL simulative
results are obtained by applying Polyanskiy’s achievable error
probability at each single link and each randomly generated
channel realization.

We observe a very close match between the FBL simulations
and the proposed FBL analytical model, which indicates
that the employed approximation for the active relay number
in (12) is appropriate. In addition to that, the analytical
bound of PCs based on (21) is slightly lower and bounds the
simulative results, tightly for SC decoding. This is in line with
our model, as (21) provides an upper bound on the probability
of block error under SC decoding which in turn is as good as
SCL decoding with L = 1, and weaker for greater L.

Hence (21) provides a basis for an analytical lower bound
of PC throughput in a BSR network setting under each of
the three decoders employed. Moreover, as SCL decoding
helps to overcome the performance limitations of PCs at short
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Fig. 3. Throughputs in the best-single relay scenario with J=10 relays.

blocklengths and makes them comparable to other codes as
LDPC codes, cf. e.g., [26], we expect these results to be good
surrogates for the performance of other codes at equal lengths.

However, as we restrict modulation to binary signalling
in this work, we expect performance gains to be reaped by
considering higher-order modulations or SNR-adaptive modu-
lation schemes.

The average throughput of the considered BSR network with
Rayleigh fading is shown in Figure 3, where the blocklength is
varied. In the figure, the throughput at each channel realization
is obtained based on the optimal choice of coding rate and
the respective upper bound on the block error probability
under SC decoding given by (21). In addition, we investigate
BSR performance in comparison to the direct scheme, using
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Fig. 5. Throughputs of BSR vs. relay number. m = 512.

a doubled blocklength for the latter. Consequently, to have a
fair comparison, due to the two-hop setting the successfully
received bits are reduced by a factor of 1

2 to obtain the overall
throughput of BSR, while this does not apply to the single-hop
direct transmission.

Inspecting Figure 3, we note a performance loss (in compar-
ison to the Shannon capacity) when using either BSR or direct
transmission, which is due to the significantly limited block-
length. Furthermore, we note that even though the average
SNR of the direct link is comparable to the broadcasting and
relaying links (recall that they have comparable transmission
distance), with 10 relays the BSR scheme significantly outper-
forms the direct transmission scheme. On the other hand, the
limited power of PCs at such short lengths is exposed.

To further compare these schemes, we consider the fol-
lowing two perspectives on the results shown in Figure 3.
Perspective I: We consider throughput ratios of BSR over
direct transmission with respect to the Shannon capacity, FBL
throughput and PC throughput, respectively, given in Figure 4-
left. From the figure, the performance improvements by
applying BSR are far more prominent in the FBL regime than
in the IBL regime (BSR Shannon and Direct Shannon curves),

as both the ratios of FBL and PCs are higher than the ratio
of the Shannon capacity. In particular, for a system operating
with PCs applying BSR is more beneficial. Furthermore, BSR
helps most for short blocklengths. As a result, BSR poses a
valid strategy to overcome the performance impairments of
short codes in general, exemplified by PCs at short lengths in
this work.

Then, in Figure 4-right we consider Perspective II, for which
we normalize the BSR throughputs by the BSR Shannon
capacity and normalize the direct transmission throughputs
by that of the direct transmission, respectively. We observe
gains reaped by both BSR and direct transmission in the FBL
regime as well as in the IBL regime. Figure 4-right shows
that the performance gap between the Shannon curve and the
FBL/PC curve due to short blocklengths is more significant
for direct transmissions. This result is consistent with Figure
4-left. BSR is more beneficial than direct transmission in
the FBL regime, especially for the PCs employed and at
such short blocklengths. The advantages of applying BSR in
the FBL regime is in accord with our previous study [12],
[13], [14] of a single relay network. We further investigate
this performance advantage of relaying in the BSR network
with a variable number of relays J , which also covers the
single relay scenario, i.e., J = 1. Figure 5 shows maximum
throughputs using the optimal coding rate and corresponding
ratios obtained based on Perspective I. We also investigated
Perspective II for Figure 5 and observe well-matching results,
omitted here due to space considerations.

Inspecting Figure 5-left we note that deploying more relays
improves the performance of BSR in both the FBL regime and
the IBL regime. In addition, Figure 5-right also shows that the
gain of deploying more relays in the FBL regime (both FBL
achievable bound and the PC bound) is more significant than
in the IBL regime (Shannon bound). These results indicate that
the selective diversity gain of BSR is more beneficial for short
blocklength systems, an effect even more pronounced for PCs.
For the design of low-latency short blocklength systems, this
result suggests a large cluster size of nodes acting as relay
candidates. Moreover, for a network with a relatively large
number of relays, the diversity gains of BSR with respect to the
Shannon capacity, as well as that with respect to the achievable
bound in the FBL regime, increase slowly in the relay number
and converge. At the same time, PCs again significantly profit
from an increasing number of relays available.

We conclude the discussion by reiterating that the results
presented for PCs in Figures 3 to 5 are based on the upper
bound of block error under SC decoding, as it allows for
analytically bounding the performance, while for the SCL
decoder no sharper bounds exist. However, we expect the gaps
observed between the achievable FBL bounds and the PC
bounds to be less pronounced for more powerful decoders,
as well as when using codes with better short blocklength
performance.

V. CONCLUSION

We characterized the achievable FBL performance bound
for a BSR network and illustrated it employing PCs as an



example of a low-complexity coding system which greatly
profits from BSR-induced diversity gains. The appropriateness
of the bounds is validated by simulations. Our evaluation
suggests great benefits of BSR compared to direct transmission
in the FBL regime, especially for PCs in short blocklengths
scenarios. In comparison to the single relay network, hav-
ing more relay candidates is beneficial in both IBL and
FBL regimes. Moreover, the achievable performance in both
regimes is improved to a similar extent, while the impact on
the performance of short PCs is significant. To extend our find-
ings, future work will focus on the theoretical underpinnings of
the performance analysis model for FBL scenarios presented
here, as well as on different coding schemes in multi-node
scenarios with BSR and other multi-relay selection strategies.
In addition to that, the impact of imperfect or outdated CSI
on the system performance will be addressed.
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