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Abstract—The paper proposes a fast multi-target detection
technique based on simultaneous sensor data fusion for a binary
wireless sensor network in a pre-deployed configuration. The
synchronous binary sensors are circularly arranged in an area
with the sink node on the central axis such that the line-of-
sight communication dominates. All the binary sensors employed
for detecting rapidly changing targets are similar, transmit
simultaneously and operate on the same narrow frequency band
without any specific ID assigned by a central control unit or the
sink node, where the latter is affected by additive white Gaussian
noise (AWGN). Each sensor is assumed to cover a previously
known zone for target detection and it has no cooperation with
other sensors. The proposed communication model including the
channel estimation process and the devised distributed power
allocation method, is mathematically described and the conducted
simulations comprehensively confirm the good performance of the
model with respect to the channel estimation and equalization
errors at the transmitter and the AWGN power at the receiver.

I. INTRODUCTION

Binary wireless sensors have potential applications in fail-

ure/threat detection and surveillance. The binary output of

such sensors which is either 0 or 1 can be exploited for

energy conservation in case of target absence. In other words,

no signal is transmitted when there is no detected target.

The binary wireless sensor networks (BWSNs) as a subgroup

of wireless sensor networks (WSNs) are typically resource-

limited in terms of energy and computational capacity. There-

fore, similar to the WSNs, the signal processing algorithms

for such systems should be specifically designed to meet

their constraints. Among these constraints, the power con-

sumption is the most stringent restriction which should be

addressed as long as the main functionality of the system is

not compromised. Since BWSNs use binary decision, they

are good candidates for applications that involve threat or

target detection. Sensor networks for surveillance applications,

and in particular, for detection, are investigated in many

papers covering a plethora of system designs with a wide

class of objectives and constraints for specific applications. In

[1], a distributed vector estimation for power-and bandwidth-

constrained WSNs is considered, where the fusion center

reconstructs the unknown vector by a linear estimation, and

in [2], a computationally efficient localization scheme was
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Fig. 1. A circular deployment of binary wireless sensors and the sink node
somewhere on the 3D locus of points equidistant from the binary sensors to
ensure a dominant line-of-sight propagation for all sensors.

proposed based on an iterative classification problem. The

power allocation for sensor networks is also the topic of many

papers, usually aiming at minimizing the detection error with

respect to a global or local power budget [3], [4]. A WSN

deployed for target detection might also be interpreted as a

localization system, where the location of the sensors and

their coverage areas are known. In some scenarios of target

detection, the data from all sensors should be decoded instantly

at the receiver side, i.e., in one single instant, the data from

all sensors should be transmitted to the resource limited sink

node which is typically equipped with a single omnidirectional

antenna. In such scenarios, the alternative conventional routing

and relaying schemes to gather the information at the sink

node, result in relatively huge delays in the target detection

and subsequently the tracking capability of the system as the

data from each sensor should be combined with other sensors’

data in some way and the location of sensors which detected a

target should also be fused into the data being sent to the sink

node during the relaying process. Apart from the fast detection

and tracking capability, the short communication time in

such target-detection wireless systems minimizes the usage

of the occupied frequency band and thereby the interference

with other wireless applications in the system. The other

advantage of a short communication interval is that the channel

characteristics remain approximately constant over one data-

block length and therefore the detection improves as a result

of more accurate channel estimation. This paper introduces

a specific design of a WSN where the sensors are deployed

in known positions, i.e., along the circumference of a circle,

and the fusion center or the sink node reconstructs the binary



data of all sensors at the same time, thereby reducing the

target detection delay to only one time-slot, which is the

least possible delay. This fast detection technique can be used

for studying the behavior of specific particles or substances

undergoing experiments such as intense electromagnetic exci-

tations, immense accelerations caused by chemical or nuclear

reactions, accurate shockwave pattern acquisition, gunshot

detection and periphery protection, rather than conventional

target detection applications which might be conducted using

other methods. For the mentioned applications, a very limited

bandwidth which does not interact with the natural behavior

of the phenomenon or the system is chosen and all sensors

operate over this frequency. This also facilitates the replace-

ment of sensors as they are all of the same type in terms of

frequency and antenna pattern. Generally speaking, one way of

achieving a fast transmission scheme in such BWSNs might be

the assignment of different carrier frequencies to each sensor

node as in frequency division multiplexing (FDM) which also

play the role of a localization tag for pre-deployed sensor

nodes. However, this is not always possible as sensors are

typically of the same type and operate on the same frequency

band. Furthermore, this approach occupies several times more

bandwidth during the sensor transmission phase and therefore

the interference with sources outside the network can result in

false alarms. In this paper, we assume that all sensors use

the same carrier frequency, but can transmit with different

powers occasionally and the sink node at the receiver is a

simple single antenna receiver. There is a wide variety of

algorithms proposed for target detection or tracking using

BWSNs. However, due to the high applicability of BWSNs,

they are different in terms of their objectives and constraints. In

[5], a distributed energy efficient algorithm for target tracking

with BWSNs has been introduced, where the target location,

velocity and trajectory are estimated in a distributed and asyn-

chronous manner. In [6], a binary sensor model is proposed

for tracking a moving object, where the binary information of

each sensor is determined depending on whether the object

is moving toward the sensor or away from it. In this work,

the binary information of sensors is determined based on the

target’s presence or absence in the sensing range of each sensor

and the objective is to simultaneously decode all sensors’ data

while the BWSN is subjected to the constraints summarized

as follows. All sensors including the sink node, are similar,

equipped with a single antenna for communication inside the

BWSN, operate on the same narrow frequency band for both

transmission and reception, and each sensor Si covers a known

zone for target detection denoted by Zi, where depending on

the BWSN deployment, Zis may or may not be disjoint. The

binary sensors are distributed over an area without any cooper-

ation and there is no specific ID data or code assigned to them

by a central unit in order to be sent within the data packets for

distinguishing at the sink node. Also after obtaining the fastest

data fusion solution as the first priority, an optimal power

allocation scheme in terms of minimum power consumption

subject to a uniform energy consumption distribution among

the sensors is expected to be devised. The major contributions

of this work are proposing an instantaneous multi-sensor data

fusion technique for non-cooperative binary sensors and a

new distributed power allocation technique based on energy

consumption and an appropriate digital modulation.

II. PROPOSED BWSN SYSTEM MODEL

Figure 1 shows the deployment of the proposed BWSN

model where the n binary sensors which detect the target(s)

are placed on a supposed circle in the area of interest and the

sink node is located anywhere on the vertical line crossing the

center. The proposed communication scheme in this work is

based on a combination of distributed beamforming (DBF),

code division multiple access (CDMA) and superposition

modulation (SM). Since the model in Figure 1 is basically

a multiple-input single-output (MISO) scenario, the commu-

nication from the binary sensors to the sink node in instant

d ∈ N can be modelled as rd = hT (wd ⊛ bd) + nd where

scalars rd, nd ∈ R and vectors h := [h1, h2, · · · , hn]
T , wd :=

[w
(d)
1 , w

(d)
2 , · · · , w(d)

n ]T , bd := [b
(d)
1 , b

(d)
2 , · · · , b(d)n ]T ∈ Rn

denote the received signal at the sink node, the additive white

Gaussian noise (AWGN), the channel coefficients, the SM

weights and the binary signal vector in instant d, respectively,

and ⊛ indicates the Hadamard product. Also for the sake

of compactness throughout this paper, we define the set Fj
i

for any i, j ∈ Z , i ≤ j as Fj
i := {i , i + 1 , · · · , j}. It

is noteworthy that though the system model is the same as

a conventional MISO, the configuration is quite different as

the transmitter antennas are distributed and cannot cooperate

with each other. If the channel state information (CSI) is not

available at the transmitter side, at least n time-slots within a

data block should be assigned to pilots for channel estimation

at the receiver side. Apart from the long transmission time for

pilots and channel occupation, the result of channel estimation

and subsequently the data detection will not be accurate for

two reasons. The first reason is that assuming the same trans-

mission time for every symbol, the channel coherence degrades

with the length of data block and this issue drastically affects

the performance of channel estimation in a block fading model.

The second reason is that the pilot symbols pk, k ∈ F
mp

1 ,

where k denotes the time index and mp is the number of pilot

symbols, should at least have a linearly independent subset of

size n such as {pij | {ij}nj=1 ⊆ F
mp

1 } within the data block

of length nd so that the channel estimation becomes reliable

enough at the receiver side. This is not always practical as

the binary sensors are distributed over an area without any

cooperation and designing such pilots therefore needs to be

pre-planned. Note that this requirement is mainly for the de-

correlation of individual channel gains and distinguishing them

at the receiver, but for de-noising the AWGN component, more

pilots should be sent. This is of course when the least squares

(LE) algorithm with enough bit-resolution is employed for

the channel estimation at the sink node. If low-complexity

adaptive filtering algorithms such as SM-NLMS and BEA-

CON in [7] and SM-AP in [8], [9] with partial updates are

performing the channel estimation, then the correlation of the

pilots defined by the inner product pT
i pj should be considered,



as these values determine the extent of the linear dependency

which strongly influences the performance of such adaptive

filtering algorithms. Thus, in order to achieve the fastest

convergence in such algorithms, orthogonal pilots should be

employed, i.e., pT
i pj = 0 for appropriate i and j values

(i 6= j). As a consequence of this part, for our proposed

model, we use the CSI at the transmitter by sending a few

pilot symbols from the sink node. Thus, due to the short

communication time, the channel can be considered reciprocal

for both transmission and reception. Denoting these scalar pilot

symbols by pk for k ∈ F
mp

1 and the corresponding received

scalar signal at the binary sensor Si, i ∈ Fn
1 , by z

(i)
k , the

channel values can be simply estimated by LE at the binary

sensors as ∀i ∈ Fn
1 : ĥi =

∑mp

k=1 z
(i)
k pk/

∑mp

k=1 p
2
k or just

by averaging as ĥi =
∑mp

k=1 z
(i)
k /mp when pk = 1 for every

k ∈ F
mp

1 . This approach also comes with other advantages.

In a resource constrained BWSN, the binary sensors involved

in target detection can wait for transmission until they receive

the incoming pilots from the sink node. This eliminates the

inessential signal transmission and preserves energy for the

sensors. In other words, the sink node reads the simultaneous

sensors data whenever it requires. This training-first approach

is also useful when energy is transferred to the sensors over

this wireless link before they transmit data. In addition to

the simple and accurate channel estimation and unconstrained

pilot design, another advantage of this approach is the fact that

the whole number of pilots transmitted from the sink node

will be used to denoise the AWGN of binary sensors and not

to decorrelate different channels. In spite of all these, as we

will see in the following, the main reason for using CSI at

the transmitter is to allow the incorporation of superposition

modulation. Defining wd := βv	

d ⊘ ĥ where

v	

d := [ρmod(d,n), ρmod(1+d,n), · · · , ρmod(n−1+d,n)]T

is the cyclic amplitude allocation vector with ρ ∈ F∞

2 in this

paper, ĥ := [ĥ1, ĥ2, · · · , ĥn]
T is the estimated channel vector

with entries derived before as ĥi, ⊘ denotes the Hadamard

matrix division, and β is a known parameter to all binary

sensors and the sink node, which is used to avoid very high

signal amplitudes as in zero-forcing channel equalization, the

received signal at the sink node rd can be expressed as follows

rd = hT (βv	

d ⊘ ĥ⊛ bd) + nd

= β(hT ⊘ ĥT )(v	

d ⊛ bd) + nd (1)

≈ β[1, . . . , 1]v	

d ⊛ bd + nd

= β
n∑

i=1

ρmod(i−1+d,n)b
(d)
i + nd

= β(b
(d)
tn−1

, b
(d)
tn−2

, . . . , b
(d)
t0

)ρ + nd (2)

where for every j ∈ Fn−1
0 ,

tj := arg
i∈F

n
1

[mod(i− 1 + d, n) = j] .

In Equation (2), the number shown as (b
(d)
tn−1

, b
(d)
tn−2

, . . . , b
(d)
t0

)ρ

represents the decimal
∑n

i=1 ρ
mod(i−1+d,n)b

(d)
i in a base-ρ

(ρ ∈ F∞

2 ) system. The value of β ≤ 1 is merely for practical

purposes where the Hadamard division v	

d ⊘ ĥ returns high

transmission amplitudes which cannot be achieved. In such

cases, an appropriate β < 1 scales down the range as long as

the signal-to-noise ratio (SNR) at the receiver is not drastically

compromised. The value of
√
L2 +R2 with L and R defined

in Figure 1 is the major factor for choosing β as |hi|2
for the line-of-sight (LOS) communication is proportional to

1/(
√
L2 +R2)γPL , where γPL is the path-loss exponent.

A. Differences with CDMA, DBF and SM

In a CDMA system, several transmitters simultaneously

share the same communication channel and frequency band

using different codes. These codes are then used at the receiver

side in order to exploit each user’s data. Analogously, in

a superposition modulation scheme, the serial binary input

data is paralleled and the resultant data streams are mapped

onto binary antipodal symbols using binary phase-shift key-

ing (BPSK) modulation. These symbols are then weighted

according to a defined mathematical model and finally add

up to generate the output data symbol. The major difference

between our proposed model for the BWSN and CDMA is

the fact that the BWSN is very resource limited compared to

the CDMA system, it is distributed, and there is no spreading

sequence or spread spectrum involved here. On the other hand,

the proposed BWSN model is not directly adaptable to the

bijective SM modulation, as the former is a totally distributed

model without any cooperated processing whereas the latter

includes a summation module to perform the superposition of

weighted symbols, as discussed in [10]. It is noteworthy that

neglecting the summation module, the non-bijective mapping

SM modulation is outside the scope of this paper as in this

case, the targets detected by the sensors cannot be uniquely

distinguished in one time slot. Another similar yet different

technique is DBF. With the aid of BF, the SNR at the receiver

can be maximized while the interference with other users

at different locations is significantly suppressed. The term

distributed here indicates that unlike the conventional arrays,

the transmitter antenna arrays are not deployed in a uniformly-

spaced manner such as in a linear array and there is no

information about other antenna elements which are mounted

on separate sensors at any sensor, though the sensors are

still assumed to be synchronized. In sensor networking, DBF

is sometimes modeled as a relay channel as discussed in

[11], or is performed in a multi-hop communication system

where there is also a direct channel between the source

and destination. In the recent case, since the complete CSI

knowledge is not available at each individual sensor, or there

is no centralized control with access to complete CSI, a

suboptimal solution is used for beamforming in order to

avoid very high overhead [12]. In our BWSN model, rather

than interference suppression via sidelobe reduction of array

antennas, or serving the receivers at different locations with

high SNRs which cannot be optimally implemented with DBF

due to partial CSI knowledge, the purpose is to serve a pre-



deployed receiver in order to construct a signal constellation by

the superimposed waves. In other words, despite this (MISO)

scenario in our model is often employed for spatial diversity,

and the fact that the typical number of antenna requirement

for a good error performance in spatial multiplexing is not met

here, a spatial multiplexing scheme is performed.

B. A Discussion on Power Allocation

As discussed earlier, our BWSN model obeys the same rules

governing the WSNs. Therefore, an efficient distributed power

allocation plan should be devised capable of operating on

individual binary sensors without accessing to any information

from a centralized control unit. Considering the facts that the

binary sensors have limited power and computational capacity,

the detection data in the proposed model is carried on the

signal amplitude, and the very fast target detection capability

should not be compromised, the importance of the power

allocation algorithm is more highlighted. To fulfill all these

constraints, we proposed a cyclic power allocation algorithm

which, by virtue of function mod(.) in v	

d , equally distributes

the total energy among the sensors over every n sequential

time slots. This approach exploits the only assumption we

made for our model which is the synchronicity of the binary

sensors for simultaneous transmissions. In addition, as dis-

cussed before, all sensors only transmit when they receive the

pilots from the sink node and analogous to the on-off keying

(OOK) digital modulation, although the transmission is implic-

itly requested by sending pilots from the sink node, the binary

sensors with no detected targets still do not participate in

transmission due to their zero amplitudes in vector bd, which

in turn makes the power consumption plan more efficient.

These new strategies for power allocation are accomplished by

the devised v	

d ⊛bd and using CSI at the transmitter. Defining

the final transmit amplitudes as random variables Xi, i.e.,

[X1 X2 · · · Xn]
T
:= βv	

d ⊘ ĥ⊛ bd,

denoting the temporal average by 〈.〉, the ensemble average

by E[.], the presence and absence of target Ti by ∃Ti and

∄Ti, respectively, and assuming E[1/ĥi] and Pr(∃Ti) are

independent of time which is indexed by d, the following

relations hold for the average power consumption of the ith

sensor

〈E
[
X2

i

]
〉 = 〈E

[
X2

i |∃Ti

]
Pr(∃Ti)〉+ 〈E

[
X2

i |∄Ti

]

︸ ︷︷ ︸

=0

Pr(∄Ti)〉

=

〈

E

[

β
ρ2mod(i−1+d,n)

ĥi

]

Pr(∃Ti)

〉

= β
〈

ρ2mod(i−1+d,n)
〉

E

[
1

ĥi

]

Pr(∃Ti) (3)

=
β

n

(
n∑

d=1

ρ2mod(i−1+d,n)

)

E

[
1

ĥi

]

Pr(∃Ti) (4)

=
β

n

ρ2n − 1

ρ2 − 1
E

[
1

ĥi

]

Pr(∃Ti), (5)

where Equation (4) is obtained from Equation (3) con-

sidering the periodic property mod(i − 1 + d + n, n) =
mod(i− 1 + d, n). Note that as a result of OOK scheme

at the transmitter, in relations above, the non-negative term

〈E
[
X2

i |∄Ti

]
Pr(∄Ti)〉 is minimized to zero, which in turn

satisfies a definite condition of minimizing the total average

power, as 〈E
[
X2

i |∃Ti

]
Pr(∃Ti)〉 and 〈E

[
X2

i |∄Ti

]
Pr(∄Ti)〉

have mutually exclusive events. Thus, as shown by Equa-

tion (5), the deterministic term of average power, i.e., β
n

ρ2n
−1

ρ2−1 ,

is independent of the sensor’s index i, which means that the

deterministic global power is equally distributed among all

sensors and therefore, the lifetime of the network in terms of

detection integrity is maximized.

III. SIMULATIONS

In this section, the performance of a BWSN with n = 3
binary sensors for target detection is analyzed where ρ = 2
and σ2

n = 1. Also as discussed before, β < 1 is only

for practical implementation and in the simulations, we can

set β = 1 if the same SNR range is considered. Figure 2

illustrates how the bits assigned to the in-phase quadrature

(I-Q) signal constellation for decoding at the sink node shift

over time in module n = 3. In conventional constellations, the

decoding bits are assigned such that any two adjacent points

have the minimum Hamming distance in order to improve

the reliability via error correction algorithms. Here, since the

uniform energy consumption distribution is one of the design

constraints, and the whole vector bd should be decoded in

one time slot, the Hamming distance varies when all of the

2n constellation points are considered for detecting n targets.

Apart from these, in our BWSN, there is no cooperation

between the sensors in order to perform any pre-coding before

transmission. Note that in the basic model proposed here, the

quadrature component is not used. Figure 3 depicts the cyclic

amplitude allocation for this simulation. According to this

figure, the amplitudes are assigned such that a Sudoku-like

matrix forms. This matrix guarantees a bijective modulation

scheme for uniquely detection of up to n targets, as well as

a statistically uniform energy consumption for each sensor

when the random variables Xi, i ∈ Fn
1 , associated with the

appearance of each target Ti are i.i.d. The γ value in this

figure is the threshold for a reliable decoding at the receiver.

In other words, for transmission in any instant d, the minimum

amplitude allocated to each sensor, i.e., ρ0 = 1, should not fall

behind this threshold. Figure 4 shows the actual probability

that a target Ti exists at the detection range of sensor Si, i.e.,

the probability of Xi which is denoted by PrTi

A , for different

values of noise power σ2
n, where Xis are i.i.d with a uniform

probability mass function (PMF). The uniform PMF can be

seen from the fact that by averaging over 2 × 105 iterations,

for each sensor and for any σ2
n, we have PrTi

A (σ2
n) ≈ 0.5.

The performance evaluation in this section is based on this

worst case scenario described in Figure 4. In fact, there is no

a priori information about the targets at the sink node and

a maximum likelihood detection is employed for evaluation.

In order to show the effect of a channel estimation error
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Fig. 3. An illustration of cyclic amplitude allocation for constellation shaping
in a BWSN with n = 3 binary sensors and ρ = 2. The incorporation of

channel equalization ⊘βĥ is not shown here.

Fig. 4. Pr
Ti
A

(σ2
n) denotes the actual probability that a target Ti exists at the

detection range of sensor Si for different values of noise power σ2
n.

on the detection performance of the proposed model, the

error of channel estimation should be first modeled and then

incorporated into the term hT ⊘ ĥT in Equation (1). For the

sake of simplicity, we assume that all channel coefficients are

the same, i.e., h = [h, h, · · · , h]T , where h 6= 0. Thus, ĥ can

be expressed as ĥ = h + e with e := [e1, e2, · · · , en]T and

therefore

hT ⊘ ĥT =

[
1

1 + e1/h
,

1

1 + e2/h
, · · · , 1

1 + en/h

]

.

Casting the ei
h

values into one vector, the normalized chan-

nel estimation error (NCEE ) can be defined as NCEE :=
[ e1
h
, e2

h
, · · · , en

h
]T . Considering the NCEE as a random vector,

its distribution depends on the channel estimation algorithm.

Here, due to the similarity of sensors and for simplicity, we

assume ei
h

are i.i.d., and therefore we re-define NCEE as the

random variable representing the distribution or value of each

Fig. 5. The probability of error free detection versus the noise power σ2
n

where NCEE is Gaussian distributed.

Fig. 6. The probability of error free detection versus the noise power σ2
n

where NCEE is uniformly distributed.

Fig. 7. The probability of error free detection versus the noise power σ2
n and

the exact value of NCEE . Here, ∆min = −0.06 and ∆max = 0.06.

of them. In order to have a comprehensive performance eval-

uation, we model NCEE as a normal distribution, a uniform

distribution, and a constant deviation from the actual value h
as follows. In Figure 5, the error free detection probability

versus the noise power of the receiver σ2
n is shown, where the

random vector NCEE is normally distributed with mean zero

and variance σ2, denoted by N (0, σ2). As expected, for the



zero value of σ2
n and NCEE = 0, the performance is error free

and by increasing the noise power or the variance of NCEE ,

the performance degrades correspondingly. In Figure 6, the

same evaluation is conducted, but where NCEE is uniformly

distributed in the interval (a, b), a, b ∈ R, denoted by U(a, b).
The reason for considering a uniform distribution is the fact

that with such a distribution, each entry of NCEE is upper

bounded by b and lower bounded by a. This is contrary to

any Gaussian distribution with a non-zero variance, which

was explored in Figure 5. The degradation trend of the

system’s performance in Figure 6 is similar to that of Figure 5,

except that for a uniform distribution U(−σ, σ), the amount of

degradation is typically less than that of an equivalent normal

distribution N (0, σ2), which is due to the bounded error char-

acteristic in U(−σ, σ). In Figure 7, the probability of error free

detection is plotted in three dimensions as a function of σ2
n and

α
h

, where α is the value of all individual channel estimation

errors, i.e., e = [α, α, · · ·α]T . In fact, the surface in Figure 7

demonstrates the conjoint effect of the noise power and the

actual value of NCEE , which is α
h

here, on the system’s

reliability. The important conclusion drawn from this figure

is the fact that neglecting the effect of noise power, i.e., for

σ2
n = 0, the communication is error free for NCEE between

∆min = −0.06 and ∆max = 0.06. In other words, for a

reliable target detection, the NCEE deviation of the proposed

model with n = 3, ρ = 2 and ei = α for every i ∈ Fn
1 , should

not exceed 6%. In Figure 6, the performance of the curve

associated with the case NCEE ∼ U(−0.04, 0.04) compared

to the case NCEE = 0 justifies this result, considering the

fact that 0.04 ∈ (∆min,∆max).

IV. CONCLUSION

A fast multi-target detection technique for a binary wireless

sensor network was proposed where the binary sensors in the

detection area are arranged on a circle with the single antenna

sink node on the central axis equidistant to the sensors such

that the dominant LOS communication is guaranteed. As in

a resource-constrained WSN, an efficient distributed power

allocation algorithm was proposed for the BWSN model and

it was shown that at any instant, the data of the whole n
sensors observing n targets can be simultaneously decoded at

the sink node, despite all sensors transmit at the same time and

on the same narrow frequency band, and have no cooperation

with each other. The most important achievement of this fast

detection scheme is that all data for one time-slot is live,

and there is no computationally costly coding or decoding

scheme involved to achieve that, which in turn accelerates the

decoding at the fusion center. As a result, the phenomenon

can be tracked accurately as there is no data loss induced by

sensors transmitting in different time slots. The appropriate

channel estimation scheme was proposed and the effects of

the normalized channel estimation error in conjunction with

the AWGN of the receiver on the detection performance was

investigated in detail by the conducted simulations. Due to the

simultaneous detection in one time slot, the proposed model

minimizes the multi-target detection time in a pre-deployed

distributed BWSN subject to the single narrow band frequency

constraint and uniform energy consumption distribution.
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