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Abstract—The detection and classification of faulty conditions
in power systems is a task of crucial importance for a reliable
operation. Recently, the use of high-resolution synchronized pha-
sor measurements has been proposed by several researchers for
fault detection and classification. Unlike the proposed approaches
available in the literature, the central idea in this work is to
leverage the delay information of phasor measurement streams
to enable a faster recognition of faulty operation. In this work,
therefore, we focus on the effect of the communication network
delays on the fault detection time, and propose a novel training
technique for fault detection and classification which takes
delayed measurements into consideration. The performance of
the proposed approach is verified using simulated power system
data, where artificial neural networks are used for fault detection
and classification.

Index Terms—power system, fault detection, fault classifica-
tion, machine learning, artificial neural network

I. INTRODUCTION

The power generation, transmission, and distribution sys-
tems are the key enablers of the modern economy and our
sophisticated daily lives. Their reliable operation is not only
crucial to prevent economical losses due to outages but also to
keep all vital services, such as health care and communication,
available night and day. In 2003, around 50 million people in
North America were affected by one of the greatest blackouts
of the history causing an estimated economical loss between 4
and 10 billion USD to the US economy. The lack of situational
awareness on the network was identified as the primary cause
of the sequence of events leading to this blackout [1]. This
conclusion triggered an unprecedented effort of modernization
and development towards a smart grid which incorporates
sophisticated measurement and communication infrastructures
in a wider scale to ensure a real-time monitoring and an online
optimization of the power system. Similarly, the increasing in-
tegration of renewable energy brought about the requirements
of enhanced state-information into the distribution network
level. A tangible result of this development is the ongoing
deployment of phasor measurement units (PMU) and wide
area measurement systems (WAMS).

The high resolution data provided by PMUs open up new
possibilities also for the detection and classification of anoma-
lous operating conditions. On the one hand, the synchronized
and time-stamped measurements from PMUs make it possible
to observe and compare network voltages which accurately
reflect the actual system state at the measurement time. On

the other hand, the analysis of these data is a challenging task.
Therefore, the application of machine learning-based tech-
niques on PMU data has been recently proposed by numerous
researchers and continues to attract more attention [2]–[5]. A
review of fault detection and classification techniques can be
found in [6].

Artificial intelligence-based protection of power systems is
not entirely new and already dates back to at least early 1990s,
see for example [7] and [8]. However, the advance of high
resolution and time-stamped PMU measurements brings up
new opportunities for designing and realizing reliable systems
based on data analytics. For example, a classification method
based on decision trees is proposed in [2] where real PMU data
from a network operator is used. Similarly, simulated voltage
phasor values from a PMU-only state estimator are used to
train a classification and regression tree in [3]. Both works
show the potential and accuracy of detection and classification
techniques based on machine learning. Furthermore, it is
shown in [5] that an artificial neural network (ANN) can be
reliably used for fault detection on power transmission lines.

One significant conclusion from the analysis of real network
data in [2] is that faulty events leave detectable impacts
in the signals of multiple PMUs which are located in the
neighborhood of the fault position. Therefore, the usage of
measurements across the whole grid offers a potential for in-
creasing the accuracy of correct detection and classification as
stated in [2]. Having said that, the training methods proposed
in [2] and [3] use synchronized measurements at the steady
state after the fault occurred. However, the communication
delays in WAMS and the processing delays at the phasor data
concentrators (PDC) result in different delays in the arrival
of measurements from different PMUs in a data management
center, the so-called super PDC (SPDC). Furthermore, the
failure of one or several PMUs can result in outdated informa-
tion. With this motivation in mind, we propose a new training
method for machine learning-based detection and classification
schemes under consideration of communication delays. In this
way, the system condition will be trained as faulty as soon
as the first measurement, which is recorded after the fault,
arrives at the SPDC. In the present paper, hence, we investigate
the potential and applicability of this approach to improve the
detection and classification time.

The rest of this paper is structured as follows. We start with
a brief discussion of WAMS and its operation along with a
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Fig. 1. Hierarchical network architecture of a WAMS. The PMUs send the
phasor measurements, that are time-stamped by the GPS signal, to a SPDC
over intermediate PDCs [9].

note on the potential of using communication network metrics
in situational awareness applications. Next, the fault types
in power systems and their detection are briefly introduced,
as well as the concepts of ANNs. In Sec. IV, we present
the proposed training scheme along with the details of the
simulations. Finally, we discuss the results of the simulation
study and conclude the paper with final remarks.

II. WAMS OPERATION AND COMMUNICATION DELAYS

A WAMS consists of i) PMUs, which measure the voltage
and current phasor values available at the system nodes where
they are installed, ii) several PDCs, and iii) a SPDC. The
IEEE Standard for Synchrophasor Data Transfer for Power
Systems [9] postulates a hierarchical transmission of sensor
data from PMUs to PDCs as shown in Fig. 1, where a
preprocessing of the data takes place such as a time alignment
and a consistency check [10]. The network may also have
multiple layers of PDCs, where the data are hierarchically
aggregated and sent to higher layers. The measurement data
from a larger part of the network are aggregated in the central
unit SPDC to execute energy management functions such as
a state estimation.

As further specified in the related standard for data concen-
trators [11], for each time stamp, the PDCs align and combine
the received measurements. In this way, the measurements
belonging to a single time stamp are filled into a single
data packet and forwarded to the SPDC. In this task, the
PDC waits for each time stamp a certain amount of time,
referred to as wait time, before sending the packet. Hence, the
measurements experiencing a larger communication delay than
the wait time will not be available at SPDC with this packet.
Moreover, the standard discusses and allows the deactivation
of time alignment for time-critical applications, in which all
measurements are forwarded to the SPDC without a wait time.
Therefore, the observation of the system state will consist
of measurements with different, but known delays. The state
estimation function can also make use of this information by
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Fig. 2. A possible observation of two PMU streams, which originate from
different PMUs. A fault causes detectable changes (illustrated by a change of
color) in signal patterns at time t0, whereas the changes are observed at time
t0 + d1 and t0 + d2 at SPDC for Stream 1 and 2, respectively.

assigning weights to different measurements in the estimation
process based on their delay, for example with a weighted
least squares estimator [12]. Therefore, the output of the state
estimator inherently contains information about the network
delays. An illustration of the delayed arrival of measurements
is provided in Fig. 2 for two measurement streams which
originate from different PMUs. Note that the pattern changes
in the signals, which are illustrated by a change of color at
t0 due to a fault, are observed at the SPDC with delays of d1
and d2, respectively. In addition to the available measurement
values, the information of the delays is also available due to
the time stamps. The central idea of this work is to investigate
the potential of leveraging this information in order to detect
the system disturbances in a faster and reliable manner.

In fact, the potential use of time information included in
measurements has recently been proposed by the Data Mining
Initiative of Electric Power Research Institute (EPRI) [13]. In
its published data analytics case ”Sequence of Outage Events
Replay” the description of the case states [14]:

”In response to a fault or a series of faults on an
electrical distribution circuit, tens if not hundreds
of distribution devices report their status to system
operators for the purpose of managing the outage.
Timing information that can be used to chronicle
the system response is present in the data, but it
is generally not leveraged - resulting in missed
opportunities to analyze the dynamic response of the
distribution system.”

The core motivation of this work is, therefore, closely linked
to the idea which is identified and put forward by EPRI.

III. POWER SYSTEM FAULTS, DETECTION AND
CLASSIFICATION

An electrical utility system is vulnerable to short circuit
faults which can be caused by lines contacting each other
or the ground due to lightning, vegetation, wind, earthquakes
etc. [15]. These faults are categorized, with an approximate
percentage of occurrences, mainly as single phase-to-ground
faults (SPG, 70% - 80%), phase-to-phase-to-ground faults
(DPG, 17% - 10%), phase-to-phase faults (PP, 10% - 8%)
and three-phase faults (3PH, 3% - 2%) [15].



The fault detection and classification techniques make use of
the changes in the current and voltage signals in case of a fault.
The methods vary from hand-coded expert-defined rules based
on certain thresholds to artificial intelligence-based techniques,
such as ANNs, support vector machines, and fuzzy decision
systems [2], [6]. Several features and transformations of the
signals have been proposed and used for detection purposes
like Fourier and wavelet transforms [6].

Although the protection of critical lines and system buses is
ensured with local protection equipment like relays and circuit
breakers, the data made available by PMUs offer the potential
to increase the understanding and situational awareness in an
energy management center as also proposed in [3] using the
output of a PMU-only state estimator for fault detection and
classification.

In this context, the approaches in [2] and [3] use decision
trees, and [16] employs support vector machines for this pur-
pose. Although the results presented in these works are promis-
ing, these approaches assume, as discussed above, complete
presence of all the measurements in perfect synchronization.

In the scope of this work, we have experimented with two
fault detectors for the output of a PMU-only state estimator:
one based on ANN and the other based on support vector
machines. Due to the observed superior performance of ANN
and space limitations, we confine our discussion and results to
fault detection and classification with ANNs in the following.
Further work is ongoing for a comparison of different machine
learning-based techniques for power system fault detection and
classification.

A. Artificial Neural Networks

In pattern recognition and classification applications, ANNs,
in particular the feed-forward back-propagation multilayer
perceptrons (MLPs), have been widely used due to their
outstanding performance [17]. As indicated in its name, an
MLP consists of one or more hidden layers other than the
input and the output layers. Each hidden layer has a non-linear
activation or transfer function leaving the classifier capable of
extracting the important features in the input data.

Based on the supervised back-propagation learning method,
the MLP classifier utilizes a set of N ∈ N labeled input feature
vectors, referred to as a training set, to adjust the weights of
the neurons in its hidden layers. A training set T with N
input-target pairs can be written as

T = {(xn,yn) ∈ RM × {0, 1}K | n = 1, . . . , N}, (1)

where xn ∈ RM is the input feature vector,
yn = [yn1, . . . , ynK ] is the target output vector which
refers to target class of the corresponding input vector xn,
and K denotes the number of possible target classes. The
target yn is an all-zero vector except ynk = 1 corresponding
to the kth class to which xn belongs, where k ∈ {1, . . . ,K}.

In the current work, the input feature vector xn ∈ RM is
the output of the state estimator which consists of the per unit
voltage magnitudes as well as the voltage angles of all the
system buses. Note that, for a fault detection problem, K is

Fig. 3. The topology of the IEEE-13 bus test feeder [19]. A fault detector and
classifier for the line between 671 and 692 is implemented and investigated.
The PMUs shown in black and white boxes are assumed to send their data
to different PDCs. A failure of black PMUs is also simulated.

equal to 2, referring to the occurrence of a fault or a normal
operation. On the other hand, in case of fault classification, K
is equal to the number of fault types vector yn to represent
possible faults, for example, SPG phase 1 (SPG1), DPG phases
1-2 (DPG12) etc.

In the training of ANN, the back-propagation approach
updates the weights via the gradient descent method such that
a certain cost function is minimized as further input vectors
are introduced in the training. In this work, the utilized cost
function during the training phase is the cross entropy, which
is defined for the set Θ = {W(`) | ` = 1, . . . , L} of weights
for L ∈ N number of hidden layers as

J(Θ) = −
N∑

n=1

K∑
k=1

ynk log ŷnk(Θ), (2)

where W(`) ∈ Rr`×r`−1 is the weight matrix of the hidden
layer `, which has r` number of neurons, and ŷnk(Θ) is an
estimate of ynk, such that ŷnk(Θ) = f(Θ,xn). In this content,
f(.) denotes the trained MLP model for either fault detection
or classification problems.

Based on our experiments, a MLP classifier with three
hidden layers each with 20 neurons has provided better per-
formance given the training set. The softmax transfer function
has been utilized at the output layer, whereas the hyperbolic
tangent sigmoid transfer function is used as the activator in
the hidden layers. For a comprehensive treatment of ANNs,
please refer to [17], [18].

IV. PROPOSED TRAINING SCHEME AND SIMULATIONS

This section presents the details of the proposed training
scheme and its verification by simulation results. For the
validation of the presented concept, we have carried out sim-
ulations of the IEEE 13-bus test feeder using the open source
distribution system simulator OpenDSS [20] and generated the
data for normal and faulty state conditions in a similar manner
which is used in [21] and [22]. In the scope of this work, we



aim to design a fault detector and a fault classifier for faults
on the line between the buses 671 and 692. We use the neural
network toolbox of MATLAB for this purpose. The topology
of the test network is shown in Fig. 3. The fault resistances
are simulated as 1 Ω and 5 Ω. The normal and faulty state
conditions are simulated under various load conditions, where
the voltage and current phasor measurements are governed
by zero-mean additive white Gaussian noise with an SNR
of 30 dB. In order to generate the impact of the delayed
measurements as illustrated in Fig. 2, measurement streams
which consist of the shifted versions of the actual measurement
values are generated. The measurements are then fed into a
weighted least-squares estimator which delivers the estimates
for the complex voltage phasors of all system buses [12].
The weighted least-squares state estimation is executed each
milisecond with the available measurements at the SPDC.

Furthermore, in order to check the applicability of the
proposed training approach, we generate two sets of data. The
first set includes the output data of the state estimator when
synchronized measurements for each time instance are used
as the input feature and the corresponding system state as
the target class, e.g. normal or faulty state in the training
of the detector and the target fault type in the training of
the fault classifier. In the second set, on the other hand,
the measurements from different PMUs are assigned random
communication delays drawn from a uniform distribution with
the support [dmin, dmax]. In this way, training and test data sets
are saved, which are generated by considering various load
situations, various delay profiles, and fault resistances. The
estimated system state at the output of the state estimator,
resulting from the shifted measurements, are fed into the
training as input feature vectors, where the system state is
marked as faulty starting from the time instance at which the
first measurement recorded just after the fault arrives at the
SPDC in case of fault detection. Obviously, the detection of
any fault is possible only after this moment. The trained neural
network is then provided with test cases with various delay
profiles in order to check their performance in terms of fault
detection time and classification accuracy.

V. RESULTS & DISCUSSION

Fig. 4 and Fig. 5 illustrate the cumulative distribution func-
tion (CDF) of the fault detection time over all test cases (9000
test cases for each curve) for both considered training methods
when the PMU communication delay interval [dmin, dmax] is
[10,80] and [10,180] ms, respectively. We define the detection
time td as the duration between the occurence of the fault and
the detection of the fault by the detector at the SPDC. The
faulty operation is detected in all test cases successfully. The
curves without markers show the results for the training with
delayed data, whereas the curves with markers illustrate the
training with the synchronized data. Furthermore, the dotted
lines show the results for the cases when the PMU data
originating from black PMUs are lost due to a PDC failure,
see Fig. 3. Note that the stepwise CDF plots are due to the
time step of state estimation, which is equal to 1 ms.
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Fig. 4. CDF of the fault detection time in 9000 test cases when the
communication delays are between 10 and 80 ms. Training the detector under
consideration of time delays has the potential to improve the fault detection
time compared with the training with synchronized data. Furthermore, in case
of a PDC failure the degradation is relatively low in the proposed method.
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Fig. 5. CDF of the fault detection time in 9000 test cases when the
communication delays are between 10 and 180 ms. The improvement is
relatively more due to the higher variation in communication delays, see also
Fig. 4

Referring to Fig. 4, we read that in 90% of all cases, the
faulty condition is detected in less than 20 ms when the fault
detector is trained under consideration of the delayed arrival of
measurements, compared with only 20% of cases detected in
less than 20 ms when trained with synchronized measurements.
Similarly, we observe a considerable improvement in the tail
of the distribution, i.e. in the maximum detection time.

Fig. 5 leads to similar conclusions with a relatively more
significant improvement due to the larger variation of PMU
delays in this case. When trained with delayed measurements,
the detection time is less than 37 ms in 90% of all cases,
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Fig. 6. Classification accuracy in percentage for all fault types when the
communication delays are between 10 and 180 ms, see also Fig. 4. The last
row in white background shows the correct classification rate for each type.

compared to a maximum detection time of 100 ms in 90% of
all cases when trained with the synchronized measurements.

Moreover, in both figures, the degradation due to the loss of
PMU data in failure cases, presented in dotted curves, is lower
in the proposed training approach. Therefore, it can be said
that the proposed approach is more robust in case of failures
in the communication network.

Finally, Fig. 6 presents the classification accuracy of the
implemented fault classifier in the form of a confusion matrix.
The percentages of correct classification are shown along with
the confusion rates for each fault type over all time instances
which are detected as fault by the implemented fault detector.
The white-colored last row in Fig. 6 reveals the rate of correct
classification between 99.4% and 99.8% for all fault types.

VI. CONCLUSION

In this work, we have investigated the problem of fault
detection and classification in power systems considering
the communication network delays of phasor measurements.
Unlike the available works in literature so far, which assume
the presence of synchronized measurements in the detector
and classifier, our proposed approach enables the detection
and classification of faulty operations with the arrival of one
or a part of impacted measurements. Therefore, the detection
can be performed faster and reliably, also in case of failure
or loss of some PMU measurements. The validity of the
proposed approach has been verified through simulated data
and the use of ANNs in detection and classification. Future
work will consider the verification of the implemented method
using real network or real-time simulation data. In addition,
a comparison study of several machine learning techniques in

terms of performance, complexity, and training time for power
system fault detection and classification is under preparation.
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