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ABSTRACT
A novel distributed event-triggered communication for multi-agent
systems is presented. Each agent predicts its future states via an
artificial neural network, where the prediction is solely based on
own past states. The approach is therefore scalable with the num-
ber of agents. A communication is triggered if the discrepancy
between actual and predicted state exceeds a threshold. Numerical
results show that this approach reduces the communication effort
remarkably compared to existing methods.
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1 INTRODUCTION
In multi-agent systems, distributed agents cooperate in order to
accomplish tasks that are beyond the capabilities of each individual.
An agent can be defined as an entity which is able to sense and act
in an environment. Compared to a single complex agent, a whole
system of simple agents is often more robust, scalable and cost
efficient. Applications can be found in areas such as robotics and
transportation systems. Another example is the formation control
for micro satellite swarms, see Figure 1. The technology of those
swarms has made significant progress recently, and installations
are already possible [1]. Agents are often equipped with low com-
puting power and capability-limited communication modules. Due
to a large number of agents and limited communication ranges, a
centralized controller is considered as unpractical. Thus, agents
have to be controlled decentralized.
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Figure 1: Satellites in a formation flight with a line commu-
nication topology.

Group tasks can often be formulated as consensus problems. In
order to reach consensus, see [9], agents have to exchange informa-
tion. The communication topology defines which agents can talk
to each other. Based on information transmitted from neighbors,
an agent can update its state.

Communication over wireless networks offers flexibility and
thus, is used in many applications. Current topics such as Industry
4.0 and the Internet of Things (IoT) introduce a significant number
of agents to wireless communication networks. The challenge with
an increasing number of users lies in the limited communication
resources. How limited communication resources effect consensus
problems has been investigated in [3]. In order to save communica-
tion resources and energy, communication needs to be efficient.

The communication triggering condition needs to minimize the
number of transmissions and also leads to the completion of the
group task. The trade-off of a reduced communication is in general
a consensus error and slower convergence.

The communication can be triggered periodically. Disadvan-
tage of this method is an unnecessary exchange of information if
the agent’s state has not changed. Alternatively, it may be event-
triggered. An event is triggered whenever the discrepancy between
the agent’s current and last broadcasted state exceeds a threshold.
As shown in [4, 7, 8, 10], an event-triggered approach decreases the
number of transmissions.

In biological groups, e.g., swarms, individuals have predictive
mechanisms. Based on bio-inspired prediction mechanisms, [15–
17] presented a decentralized predictive consensus protocol which
reduces communication costs. An event-trigger where each agent
estimates all other agents’ states has been proposed in [12, 13].

Contribution: In this paper, we propose a novel distributed and
event-triggered communication method. Solely on its past states,
an agent predicts its future states, independently of its neighbors.
This supports independence of negative scaling effects with an in-
creasing number of agents. As a prediction mechanism, we propose
an artificial neural network. A communication is triggered if the
discrepancy between actual and predicted state exceeds a threshold.
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Figure 2: Scenario: Communication layers and systemmodel

When an agent broadcasts, it transmits not only its current state
but also its predictions. Thus, in future time instants, neighbors
can update their state using those predictions and consequently
the communication frequency reduces.

Paper structure: Section 2 contains the theoretical foundations
of consensus problems, communication trigger conditions and pre-
diction mechanisms. In Section 3, numerical results for different
communication trigger conditions on the example of a formation
control are presented. As predictive mechanisms, linear extrapo-
lation and artificial neural networks are compared. Section 4 con-
cludes the paper.

2 PRELIMINARIES
Consider a multi-agent system with an agent as a node ni ∈ V
in a communication graph G = (V ,E). We denote by V the set
of all nodes in the system V = {1, 2, ...,n} and by E the set of all
edges in the multi-agent system E ⊆ V × V . The neighbors of
agent i are denoted by Ni = {j ∈ V : (i, j) ∈ E} . If agent i with
node ni communicates with an agent j with node nj , we call the
corresponding connection edge ei j ∈ E [9]. The dynamics of N
homogeneous agents are described by:

xi (k + 1) = Axi (k) + Bui (k)
yi (k) = Cxi (k), i = 1, . . . ,N ,

(1)

where xi (k) ∈ Rn is the current state, xi (k + 1) is the state at the
next time instant, ui ∈ Rp is the control input, yi ∈ Rq is the
measured output, A ∈ Rn×n is the state matrix, B ∈ Rn×p is the
input matrix and C ∈ Rq×n is the output matrix [5]. Figure 2 shows
a block diagram of the multi-agent system.

A distributed consensus protocol is defined by [6]:

ui (k) = cK
N∑
j=1

ai j (xj (k) − xi (k)), i = 1, . . . ,N , (2)

where c > 0 is the coupling gain, K ∈ Rp×n is the feedback matrix
and ai j is the (i, j)-th entry of the adjacency matrix. How to deter-
mine c and K is given in [5].

Extension to formation control: Let H = (h1, h2, · · · , hN) ∈ Rn×N

describe a formation structure, where hi ∈ Rn defines the coor-
dinate of agent i . Then, hi − hj is the relative formation vector

between agents i and j. The proposed consensus protocol can be
transformed into a formation control problem for agent i described
by:

ui (k) = cK
N∑
j=1

ai j (xi (k) − xj (k) − hi + hj ). (3)

In [5], it is shown that agents achieve a formation H, if ∥xi (k) −
hi − xj (k) + hj ∥ → 0, for k → ∞,∀i, j = 1, . . . ,N . With x̃i (k) =
xi − hi , i = 1, · · · ,N and (3), (1) can be modified to [6]:

xi (k + 1) = Ax̃i (k) + c
N∑
j=1

li jBKx̃j (k) + Ahi , (4)

where li j is the (i, j)-th entry of the Laplacian matrix L.

Communication-trigger : The consensus protocol depends on the
state of agent i and all other agents it is connected to. In order to
find out the other agents’ states, communication is necessary. A sim-
ple method is the periodic time-triggered communication. Agents
communicate in constant intervals. In between, agents calculate the
consensus update based on the last received value. A disadvantage
of this method is an unnecessary communication if an agent’s state
has not changed. An event-triggered communication is based on a
threshold δ . The trigger condition is defined by [4]:

δ < ∥xi (k) − xi (b)∥, (5)

where xi (k) is the current state of agent i and xi (b) its last broad-
casted state with b < k . Only if the state difference exceeds δ , a
broadcast is triggered. This assures broadcasts only if new informa-
tion is available.

With a state predictor, an agent could broadcast its state pre-
diction besides its current state. The goal is to predict all val-
ues x̂i (k + 1), x̂i (k + 2), · · · , x̂i (k + hp ) up to a prediction horizon
hp ∈ N . A prediction is based on the current and past states of an
agent. The Signal History Length (SHL) defines the depth of past
states used for the prediction. The new trigger condition can be
rewritten as:

δ < ∥xi (k) − x̂i (k)∥, (6)

where x̂i (k) is the predicted state. Each agent predicts and evaluates
its own state. A communication is triggered when the difference of
prediction and actual value at a time instant exceeds the threshold δ .

Prediction mechanisms: A common prediction mechanism is the
one-step ahead prediction, where multiple-inputs of past values
are mapped to a single-output value for the next time instant k + 1.
For multi-step ahead predictions there are various strategies. In
a direct approach, multiple-inputs of past values are mapped to a
single-output value for the time instant k + hp . In many cases, an
output vector of all values is of interest. Therefore, a multiple-input
multiple-output model can be used. Another method is an iterative
usage of the one step-ahead prediction by feeding back the output
as an input for the next prediction. For long prediction horizons
this method suffers from error accumulation [2].

A simple direct multi-step ahead predictor for the state xi of an
agent i is a linear extrapolation:

x̂i (k + hp ) = xi (k) + hp · (xi (k) − xi (k − 1)). (7)
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Figure 3: Iterated prediction with a single one-step ahead ar-
tificial neural network.

Since the extrapolation is linear, this method is only useful for short
prediction horizons. In order to make long term predictions, more
advanced methods are needed.

A comparative study of multi-step ahead predictions using ma-
chine learningmethods such as multiple linear regression, recurrent
neural networks and a hybrid of a hidden Markov model with multi-
ple linear regressions was made in [2]. A nearest neighbor approach
was suggested in [11] and decision trees were applied in [14].

Artificial neural networks (ANN) can be used for one-step ahead
predictions. Based on the assumption that sufficient prior data
is available, an ANN can be trained. The signal history length
SHL defines the dimension of the input to a feed-forward network
xi (k),xi (k − 1), · · · ,xi (k − SHL). Target is the value at the next
time step x̂i (k + 1).

The trained network can make a one-step ahead prediction for a
set of observed values. In order to make a multi-step ahead predic-
tion x̂i (k + j), 1 ≥ j ≥ hp for all states up to a prediction horizon
hp , an ANN with hp output nodes can be trained. Another way is
to iteratively use a one-step ahead prediction network as shown in
Figure 3. This method offers a flexible way to predict all values for
variable hp without a retraining process.

Whenmultiple agentswant to use the same transmissionmedium,
the access needs to be controlled. Therefore, in the medium access
control (MAC)-layer which is shown in Figure 2, slots get scheduled.
Time-division multiple access (TDMA) allocates each transmitter a
slot defined by a time period. Carrier-sense multiple access with
collision avoidance (CSMA/CA) allows a more flexible slot schedul-
ing.

Figure 4 shows an event graph for an event-based communica-
tion of four agents and the resulting channel access with TDMA
(upper row) versus CSMA/CA (lower row). With TDMA, each agent
has a predefined slot at each time instant. However, this might be
unnecessary if an agent has no information to transmit. This is the
case of agent 1 at time step k + 1 and k + 2. With CSMA/CA, the
slots get scheduled individually, since agents who need to transmit
compete for slots. For example at time step k + 1, solely agent 2
and 4 need to transmit, and thus, just two slots are used. The other
slots remain free.

3 NUMERICAL RESULTS
In this section, numerical simulation results are illustrated, where
we used MATLAB as a simulation environment. A system of 6

Figure 4: Event graph and the resulting channel access. The
latter shows the slots scheduledwith TDMA (upper row) ver-
sus CSMA/CA (lower row).

agents and a line communication topology is considered. The state
of the i-th agent is defined by the position and the velocity in x- and
y-direction. All states are initialized by zero. Goal for the agents is
to reach a circle formation. It is a time discrete space with 300 time
instants chosen. All agents update themselves at each time instant
with no time delay.

In a first simulation, the communication between agents was
triggered periodically at every second time instant, as it can be seen
in Figure 6. In total, 900 communication events happened. Figure 5
shows the formation flight. Due to the unfavorably line topology,
the agents converge slowly.

During this simulation with a periodic communication, different
event-triggered methods were tested passively. All event-triggered
methods received the same input, meaning the trajectories of Fig-
ure 5, but communication events were only logged in a file and not
broadcasted. Figure 7 shows the logged events based on an event-
triggered communication as in Equation (5) with δ = 0.1. With
around 350 events in total, this is already a significant reduction in
comparison to the periodic trigger. Figure 8 and 9 are showing the
event-triggered approach with an additional state prediction via
linear extrapolation and an ANN. The total number of communi-
cation events is around 200 in the case of linear extrapolation and
around 100 in the case of an ANN. Both predictions were based on
an prediction horizon hp = 25.

The training data for the ANN, meaning velocities of agents,
was collected during several formation control cycles with random
communication topologies and formations and a permanent com-
munication. The latter ultimately means that the signals are smooth.
The training dataset contained 53100 signals. Each signal holds six
values. The first five are considered as the input and the sixth as
the target. The MATLAB neural network toolbox was used to train
the ANN ahead of operation.

A crucial variable using event-based communication with state
prediction is the prediction horizon hp , which influences the to-
tal number of communication events. Figure 10 shows how the
number of events declines with an increasing hp . Both state pre-
diction approaches outperform the regular event-trigger, which is
independent from hp . The ANN approach reduces the communi-
cation events most, especially for a large hp . It can also be seen
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Figure 5: Formation control of 6 agents with a line topology
and a periodic communication.
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Figure 6: Communication events of agents for a periodic
communication.

that the number of events stops declining at hp ≈ 10 for the linear
extrapolation and at hp ≈ 25 for the ANN approach. This can be
explained by the trajectories of the agents which can be linearly
approximated just for short intervals.

A second simulation considered event-triggered communication.
Figure 11 shows the formation flight for an event-trigger with
δ = 0.1. The trajectories are noisy in comparison to the ones in
Figure 5. This is a result of the reduced communication. Since the
ANN from the first simulation was trained with smooth velocity
signals, it fails to make predictions on noisy signals. Thus, it had to
be retrained with a noisy dataset. Also, linear extrapolations from
noisy signals fail. Therefore, a moving average filter is smoothing
the signals in advance. The trajectories of the formation flight
using an event-triggered communication with state prediction look
similar to Figure 11 and are therefore not plotted.

Figure 12 shows how the depth of the prediction horizon influ-
ences the total number of communication events. All triggers were
tested separately. It can be seen that the total number of events
for all three methods is significantly higher than in the passive
trigger test. This is due to the fact that the triggers now effect the
formation flight. Also, the number of events stagnates at a lower
prediction horizon. Qualitatively, the ANN approach still performs
best.
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Figure 7: Communication events of agents for an event-
triggered communication.
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Figure 8: Communication events of agents for an event-
triggered communication with linear extrapolation and
hp = 25.
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Figure 9: Communication events of agents for an event-
triggered communication with an ANN and hp = 25.

4 CONCLUSION
In this paper, a novel distributed event-triggered communication is
presented. Artificial neural networks allow agents to predict future
states solely on own past states. This approach is independent of
other agent’s states. Thus, the method is scalable with the num-
ber of agents. The results show that a distributed state prediction
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Figure 10: Number of communication events for different
passively tested triggers, varying prediction horizons and a
constant δ .
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Figure 11: Formation control of 6 agents with a line topology
and an event-triggered communication with δ = 0.1.

5 10 15 20 25 30 35

Prediction Horizon

580

600

620

640

660

680

700

C
o
m

m
u
n
ic

a
ti
o
n
 E

v
e
n
ts

Linear Extrapolation

Event-Triggered

Neural Network

Figure 12: Number of communication events for different
triggers, varying prediction horizons and a constant δ .

can reduce the communication effort. Trade-off is an error in the
consensus. Although the communication frequency reduces, the
data-packages sent are due to the prediction hp -times larger. Cur-
rently, methods to compress those data-packages are investigated.
Future research will address this issue and compare the state of the
art prediction methods with the presented novel approach.
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