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Abstract

In this paper, we consider an edge computing network supporting ultra-reliable low latency communications (URLLC) operating
with finite blocklength codes. We derive the end-to-end (E2E) reliability, while both the delay violation probability and the decoding
error probability are considered. In addition, we propose an optimal system design to minimize the E2E error probability by
optimally setting the target decoding error probability for preserving blocklength/time for each transmission link. In particular,
we solve the corresponding optimization problem by proving its convexity. Via simulations, we validate our analytical mode. In
addition, we evaluate the considered network, and characterize the impact of delay constraint, target decoding error probability
and packet size on the E2E reliability of the considered edge computing network.
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I. INTRODUCTION

Future wireless networks are expected to support emerging traffic with diversified performance attributes, in order to promote
the initiatives including massive machine-type communications (MTC) and Internet of Thing (IoT). Different from conventional
throughput-oriented wireless communications, a range of new applications (such as industrial automation, augmented & virtual
reality, and remote control) need to be supported ultra-reliable and low-latency communications (URLLC) [1], [2]. In particular,
in such MTC URLLC networks, ultra-low end-to-end (E2E) latency may need to be as short as 1 milliseconds or even less.

On the other hand, it is known that edge computing introduces to future wireless MTC networks an efficient means of
processing data in not the remote clouds or data centers but at local computing nodes [3]. In particular, processing data at edge
computing nodes actually provides a near real-time service and also reduces the data packet size that needs to be sent to the
remote receiver [4], [5]. Hence, deploying edge computing nodes for MTC devices exactly satisfies the demand of URLLC.
However, prior studies on edge computing are conducted under the ideal assumption of communicating arbitrarily reliably at
Shannon’s channel capacity achieved when the coding blocklength grows with no bound. In other words, these results only
hold in the so-called infinite blocklength (IBL) regime, i.e., code blocks have unbounded lengths. These results are likely also
accurate for scenarios with finite but significantly long blocklengths. However, they do not reflect the performance in URLLC
applications where the blocklengths are quite short due to the low latency requirements.

It is more accurate to incorporate finite blocklength (FBL) coding assumptions into the analysis when low-latency applications
are considered, especially for the network supporting URLLC. In such FBL regime, the data transmission is no longer arbitrarily
reliable. Especially when the blocklength is short, the error probability (due to noise) becomes significant even if the data coding
rate is selected below the Shannon limit. Taking this into account, an accurate approximation of the achievable coding rate under
the FBL assumption for an additive white Gaussian noise (AWGN) channel was derived in [6], [7] for a single-link transmission
system. Subsequently, the initial work for AWGN channels was extended to quasi-static fading channels [8]–[10] as well as
cooperative networks [11], [12], non-orthogonal multiple access networks [13], [14] and QoS-constrained networks [15], [16].
To the best of our knowledge, the FBL performance of an edge computing network has not been addressed. Nevertheless,
recently in [17] the delay distribution of transmissions via an edge computing network is studied in the FBL regime, while
the computing time is ignored. However, the general FBL reliability model and reliability-oriented design for edge computing
networks is missing, especially when the delay constraint and the computing time cost are taken into account.

In this paper, we study a URLLC edge computing network operating with FBL code. The contributions of this paper can
be further detailed as follows:

i. We derive the E2E reliability of the edge computing network, while both the delay violation probability and the decoding
error probability are considered.

ii. The E2E reliability is maximized by optimally choosing the target decoding error probability. In particular the convexity
of the considered optimal optimization problem is proved.

iii. Via simulations, we validate our analytical mode. In addition, we provide characterizations for the impact of the error
probability, packet size and delay constraint on the FBL performance.



The remainder of the paper is organized as follows: In Section II, we describe the system model and briefly provide the
background on the FBL regime. In Section III, we study the E2E delay-constrained error probability of the considered edge
computing network. Then, we propose an optimal design in Section VI to minimize the E2E error probability. We provide our
simulation results in Section IV and finally conclude the paper in Section V.

II. PRELIMINARIES

In this section, we first describe the system model and subsequently briefly review the FBL performance model for a
single-link transmission.

A. System model

We consider a simple edge computing network with a sensor node, an edge computing node and a control terminal/unit,
as shown in Fig. 1-a. The entire system operates in a slotted fashion, where time is divided into frames. The frame structure
is provided in Fig. 1-b, where each frame contains three phases. In the first phase with length m1 (in symbols), the data
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Fig. 1. The considered system topology and frame structure.

generated/obtained at the sensor is transmitted to the edge computing node via an uplink (UL). Subsequently, in the second
phase with length n (in symbols) the edge computing node processes the data (if the data is decoded correctly). We assume that
the computing time cost n is randomly distributed with a probability density function (PDF) fN (n). Finally, in the last phase
with length m2 (in symbols) the edge computing nodes transmits the computed result, i.e., a control order, via a downlink
(DL) to the control terminal. Denote the sum length of these three phases by M , we have M = m1 +n+m2. By Ts we denote
a symbol length in time, then the time duration of a frame is expressed by Tf = MTs. Different from a two-hop relaying
network, the packets transmitted in the UL and DL of the considered edge computing network are different. In particular, these
two packets are more likely to have different sizes. We express the sizes of the data packets transmitted via the UL and DL
by D1 and D2. Hence, the data coding rates of the UL and DL are given by D1

m1
and D2

m2
in bits per symbol.

Channels are assumed to have random behaviors. In particular, we consider a Rayleigh quasi-static fading model, i.e., the
channel fading remains the same within each frame and varies independently from one frame to the next. We express by z1

and z2 the random channel gain of the instantaneous UL channel and DL channel, receptively. Hence, the PDF of zi, the
gain due to Rayleigh fading, is given by the exponential distribution: f(z) = e−z . Then, the instantaneous signal-to-noise
ratios (SNR) of UL and DL are given by γi = ziγ̄i, i = 1, 2, where γ̄i is the average SNR of the link and is influenced by
the corresponding path-loss, transmit power, noise and so on. Instantaneous channel state information (CSI) is assumed to be
available at the sensor and edge computing node.

Finally and most importantly, the network is expected to support URLLC transmissions. In particular, we assume that the
transmission reliability of the transmission via either the UL or the DL should be guaranteed, i.e., the target decoding error
probability should be lower than a threshold ε∗ ≤ 0.1. According to the instantaneous CSI, the system preserves the lengths of
m1 and m2 while guaranteeing the target decoding error probability. Moreover, the E2E transmission is required to be finished
within a hard delay deadline S in symbols. In other words, the delay constraint is violated if the required E2E frame length
is longer than the deadline, i.e., M = m1 + n+m2 > S.

B. Finite blocklength codes

The FBL performance of a single link transmission is analyzed in [6], [7] under an AWGN channel. In particular, with
blocklength m, SNR γ and error probability ε the coding rate r (in bits per symbol) is shown to have the following asymptotic
expression:

r = R (γ, ε,m) ≈ log2 (1 + γ)−
√
V (γ)

m
Q−1 (ε) , (1)



where V (γ) = γ(γ+2)

(γ+1)2 log2
2e and Q (x) =

∫∞
x

1√
2π
e−t

2/2dt.
Form (1), the (block) error probability is given by:

ε = P (γ, r,m) ≈ Q

(
log2 (1 + γ)− r√

V (γ)/m

)
. (2)

In this paper, we apply the above approximations for investigating the finite blocklength performance of the considered
edge computing network. As these approximations have been shown to be accurate for a sufficiently large value of m [7], for
simplicity we will employ them as the rate and error expressions in our analysis.

III. DELAY-CONSTRAINED ERROR PROBABILITY OF THE EDGE COMPUTING NETWORK

In this section, we characterize the impact of the transmission blocklength m1 and m2 and computing cost n on the overall
error probability. The minimal blocklength cost (in terms of symbols) of reliably transmitting the data packet via each of the
two links is subject to the channel SNR. In particular, for either the UL or the DL in each frame, based on the corresponding
instantaneous SNR, the minimal blocklength cost satisfying the target decoding error probability ε∗ can be determined. In
particular, according to (2) the error probability of either the UL link or the DL link with packet size Di, SNR γi and
blocklength mi is given by εi = P

(
γi,

Di
mi
,mi

)
, where the P function is defined in (2). Note that we consider a reliable

transmission where the decoding error probabilities of UL and DL are lower than 0.1 and therefore are definitely lower than
0.5. Hence, in order to guarantee the target decoding error probability ε∗, the minimal blocklength (cost) m∗i of each link is
required to satisfy ε∗ = P

(
γi,

Di
m∗
i
,m∗i

)
. According to (2), we then have

m∗i − βi
√
m∗i −

Di

log2 (1 + γi)
= 0 , (3)

where βi = Q−1 (ε∗)
log2e
√

1−(1+γi)
−2

log2(1+γi)
. Equation (3) is a quadratic equation with respect to

√
m∗i . Therefore, we can obtain√

m∗i and thus m∗i by solving (3), where m∗i represents the minimal blocklength for link i (recall that i = 1 indicates the UL,
while i = 2 presents the DL). In particular, m∗i is calculated by

m∗i =
Di

log2 (1 + γi)
+

1

2
β2
i + βi

√
Di

log2 (1 + γi)
+

(
βi
2

)2

. (4)

It is clear that m∗i is a function of γi and βi and that βi is a function of γi. In other words, m∗i is actually a function of γi.
We denote this function by g(·), i.e., m∗i = g(βi). Then, the corresponding inverse function is expressed as βi = g−1(m∗i ).
Based on the PDF of the channel gain fZ (z), the CDF of m∗i is then given by

pi = Fm∗
i

(m, γ̄i)

=

∫
zi∈Ωi

fZ (zi) dzi =

g−1(mi)/γ̄i∫
0

fZ (zi) dzi ,
(5)

where Ωi = {zi : m∗i (ziγ̄i) ≤ m}. Value pi indicates the probability that the transmission of the ith link can be finished within
m symbols. Then, the PDF of m∗i of either UL or DL with average channel gain γ̄i is

fm∗
i

(m, γ̄i) =
∂Fm∗

i
(m)

∂m
=

p
(
g−1(m)
γ̄i

)
γ̄i
∂g(g−1(m))

∂m

. (6)

Then, the system determines the blocklength mi, i = 1, 2 of the two links according to the minimal blocklength costs m∗i ,
i = 1, 2. Note that the channels of the two hops are i.i.d., hence the blocklength cost mi, i=1, 2, are i.i.d.

Recall that the computing time cost n is also randomly distributed with a PDF fN (n). Then, the PDF of M is

fM (m) = fm∗
1

(m, γ̄1)⊗ fm∗
2

(m, γ̄2)⊗ fN (m) . (7)

We obtain the CDF of M , which is given by

FM (m) =

m∫
τ=0

fM (τ)dτ. (8)

Here, we treat M as a continuous random variable for approximation and will show the appropriateness of the approximation
via simulations in Section V.



Finally, based on the CDF of M , for given total E2E delay constraint S (in symbols), the probability that the E2E transmission
can be finished within the delay constraint is given by

pd = FM (S) . (9)

Hence, the average delay violation probability (over fading) is given by 1 − pd. Recall that the decoding error probability at
either UL or DL is ε∗ ≤ 10−1, then the decoding error probability of the E2E transmission is 2ε∗ − (ε∗)2 ≈ 2ε∗. Combining
this decoding error probability with the average delay violation probability, the average overall E2E error probability can be
finally obtained, which is given by

εtot = 1− pd + 2ε∗ − (1− pd) · 2ε∗

= 1− pd + 2ε∗pd .
(10)

So far, we have derived the delay-constrained E2E reliability of the considered edge computing network. In the next section,
we will follow the obtained model and propose an optimal design for the network.

IV. OPTIMAL DESIGN FOR MAXIMIZING THE E2E RELIABILITY

According to (10), the (average) E2E error probability εtot is actually a function of ε∗ and pd. Note that pd is also influenced
by ε∗. This actually allows us to minimize εtot by selecting the value of ε∗. The optimization problem can be expressed as

min
ε∗

εtot (11)

Next, we provide the following key proposition for solving the problem.

Proposition 1. For the considered edge computing system operating with FBL codes, the average overall error probability
εtot is convex in the target error probability ε∗.

Proof: According to (10), we have ∂εtot

∂ε∗ = (2ε∗ − 1)∂pd

∂ε∗ + 2pd and ∂2εtot

∂2ε∗ = (2ε∗ − 1)∂
2pd

∂2ε∗ + 2∂pd

∂ε∗ . In the following, we
prove the proposition by showing ∂2εtot

∂2ε∗ ≥ 0.
According to (9) and (7), we have ∂pd

∂ε∗ = ∂p1

∂ε∗ ⊗ fm2
(S)⊗ fN (S), where p1 and p2 are introduced in (5) as the probabilities

that the UL (DL) can be finished within S symbols. We first show that the condition ∂2p1

∂2ε∗ (2ε∗−1)+2∂p1

∂ε∗ ≥ 0 holds in
the considered system. According to the Rayleigh channel fading model, the probability that UL can be given by p1 =
+∞∫

γ∗
1/γ̄1

e−z1dz1 = e−γ
∗
1 /γ̄1

γ̄1
, where γ∗1 is the SNR threshold for making the transmission reliable (guaranteeing ε∗). Obviously,

γ∗1 is a function of ε∗. Then, the first and second derivatives of p1 with respect to ε∗ are given by ∂p1

∂ε∗ = − 1
γ̄2

1

∂γ∗
1

∂ε∗ e
−γ∗1
γ̄1 and

∂2p1

∂2ε∗ = 1
γ̄2

1
e

−γ∗1
γ̄1

(
1
γ̄1

(
∂γ∗

1

∂ε∗

)2

− ∂2γ∗
1

∂2ε∗

)
.

Recall that ε∗ = P
(
γ1,

D1

m∗
1
,m∗1

)
. Then, we have Q−1 (ε) =

√
m1

log2e

log2(1+γ1)−D1
m1√

γ1
2+2γ1

(1+γ1)2

. Hence, the first derivative of Q−1 (ε∗)

with respect to ε∗ is given by

Q̇−1(ε∗)=

√
m1

log2e

log2e− 1

(γ2
1+2γ1)

(
log2(1 + γ1)− D1

m1

)
√
γ2

1 + 2γ1

∂γ∗1
∂ε∗

. (12)

On the other hand, according to the definition of the Q-function, we have another expression of this derivative

Q̇−1 (ε∗) = −
√

2πe
(Q−1(ε∗))

2

2 < 0 . (13)

In other words, the right side of (12) is negative. Thus, we have 1− 1

(γ2
1+2γ1)

(
log2(1 + γ1)− D1

m1

)
> 0 as γ2

1 + 2γ1 >

log2 (1 + γ1) > log2 (1 + γ1) − D1

m1
for γ1 > 0. Hence, ∂γ∗

1

∂ε∗ < 0 holds. Moreover, regarding the second order derivative, the
following relationship holds:

γ̄1
∂γ∗1
∂ε∗

= γ̄1
−
√

2πe
(Q−1(ε∗))

2

2

√
m1

log2e

1− 1

(γ2
1+2γ1)

(
log2(1+γ1)−D1

m1

)
√
γ2

1+2γ1

<− 2γ̄1

√
γ2

1 + 2γ1

m1
· e

m1
2 (1+γ1)2

(
log2(1+γ1)−D1

m1

log2e
√
γ2
1+2γ1

)2

� − 2 . (14)



Based on (12) and (13), we obtain the following two expressions for the second derivative of Q−1 (ε∗):

Q̈−1 (ε∗) =

√
m1

log2e

log2e− 1

(γ2
1+2γ1)

(
log2(1 + γ1)− D1

m1

)
√
γ2

1 + 2γ1

∂2γ∗1
∂2ε∗

−
√
m1

log2e

log2e− 1

(γ2
1+2γ1)

(
log2(1+γ1)− D1

m1

)
(γ2

1 + 2γ1)
3
2

(
∂γ∗1
∂ε∗

)2
,

Q̈−1 (ε∗) =2πQ−1 (ε∗) e(Q
−1(ε∗))

2

, .

where Q̈−1 (ε∗) > 0 due to the fact that Q−1 (ε∗) > 0 for all the ε∗ ≤ 0.1 < 0.5. Recall that 1− 1

(γ2
1+2γ1)

(
log2(1 + γ1)− D1

m1

)
>

0, thus it is easy to conclude ∂2γ∗
1

∂2ε∗ < 0 from the above two expressions.

Further, we obtain ∂2p1

∂2ε∗ (2ε∗ − 1) + 2∂p1

∂ε∗ = 1
γ̄2

1
e−

γ∗1
γ̄1

(
1
γ̄1

(
∂γ∗

1

∂ε∗

)2
− ∂2γ∗

1

∂2ε∗

)
(2ε∗−1)− 2

γ̄2
1

∂γ∗
1

∂ε∗ e
− γ

∗
1
γ̄1 . Note that ∂γ

∗
1

∂ε∗ < 0. Hence,

we have that ∂2p1

∂2ε∗ (2ε∗ − 1) + 2∂p1

∂ε∗ is larger than 1
γ̄3

1
e−

γ∗1
γ̄1

((
∂γ∗

1

∂ε∗

)2

− 2γ̄1
∂γ∗

1

∂ε∗

)
, which is further lager than a positive value

1
γ̄3

1
e−

γ∗1
γ̄1

((
∂γ∗

1

∂ε∗

)2

+ 4

)
as γ̄1

∂γ∗
1

∂ε∗ � −2 according to (14). Therefore, the condition ∂2p1

∂2ε∗ (2ε∗ − 1) + 2∂p1

∂ε∗ ≥ 0 holds.

Finally, we have

∂2εtot

∂2ε∗
= (2ε∗ − 1)

∂2pd
∂2ε∗

+ 2
∂pd
∂ε∗

= (2ε∗ − 1)
∂2p1

∂2ε∗
⊗ fm2

(S)⊗ fN (S)

+ 2fm1
(S)⊗ fm2

(S)⊗ fN (S)

=

(
∂2p1

∂2ε∗
(2ε∗−1)+2

∂p1

∂ε∗

)
⊗ fm2

(S)⊗ fN (S) .

Note that the PDFs fm2
(S) and fN (S) are non-negative. ∂2εtot

∂2ε∗ ≥ 0 as condition ∂2p1

∂2ε∗ (2ε∗−1)+2∂p1

∂ε∗ ≥ 0 holds. Hence,
∂2εtot

∂2ε∗ ≥ 0 and εtot is convex in ε∗.

Therefore, the E2E delay-constrained reliability (combining both the delay violation probability and the decoding error
probabilities) of the considered edge computing network can be optimized by choosing an appropriate target decoding error
probability, i.e., the optimization problem in (11) can be solved efficiently [18].

V. NUMERICAL RESULTS

In this section, we resort to Monte Carlo simulations to confirm the accuracy of our analytical model and evaluate the
network performance. In the simulations, we consider the following parameterization. First, we set the average SNRs of the
two links to 20 dB, while 15 dB is also considered in Fig. 2. In addition, without being specifically noted, the default setups
for delay constraint and the packet sizes are S = 2000 symbols, D1 = 400 bits and D2 = 40 bits. Moreover, we consider
a Poisson distributed computing time cost n (in symbols) with an average value n̄, while the default setup of n̄ is n̄ = 100
symbols.

To start with, we study the impact of the target decoding error probability on the average E2E overall error probability.
The results are provided in Fig. 2 where different average SNR setups are considered. It can be observed that the overall
error probabilities are convex in the target decoding error probability, which confirms the analytical results in Proposition 1.
Moreover, although the packet size of the UL is set to be significantly higher than the one of the DL, it makes no big difference
by setting the average SNR of either the UL or DL a bit higher, i.e., increasing the SNRs at different links actually introduces
a similar improvement on the E2E reliability performance.

Next, we evaluate the impact on the packet sizes of UL and DL transmissions on the optimal E2E error probability (achieved
by choosing the optimal target decoding error probability). The results are provided in Fig. 3. As expected, the overall error
probabilities are increasing in the packet sizes. Moreover, the E2E transmission is more reliable when the control information
D2 is less or the delay constraint is loose.

Finally, we investigate the relationship between the available E2E reliability and the computing cost n. When the delay
constraint is loose, the impact of n is not considerable if the average computing cost is less half of the delay constraint.
However, when the delay constraint is stringent, the impact of computing cost becomes significant, i.e., the slop of the curve
with S = 1000 symbols is quite steep. This indicates a guideline to improve the E2E reliability of ultra low latency service
by deploying more powerful computing nodes or providing higher priority at the computing node than other services with
relatively longer loose latency constraint.



VI. CONCLUSION

In this paper, we have investigated the E2E reliability performance of an edge computing network with quasi-static fading
channels. The E2E error probability is derived in the FBL regime. Moreover, we have proposed an optimal design to minimize
the E2E error probability by choosing the optimal target decoding error probability. Via numerical analysis, first we have
validated our analytical model. We have also observed that the E2E reliabilities are convex in the target decoding error
probability and are increasing in the packet sizes and computing time cost. Future work will focus on extending the current
model to scenarios with multiple computing nodes and multiple control terminals.
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Fig. 2. The E2E reliability performance at different average SNR setups. In the simulation, we set delay constraint to S = 2000 symbols and computing
cost to n = 100 symbols.
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Fig. 4. The impact of average computing cost on the reliability. In the simulation, we set SNRs to 20 dB.


