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Abstract—We study the problem of secure transmission over a
Gaussian multi-input single-output (MISO) two receiver channel
with an external eavesdropper under the assumption that links
connecting the transmitter to three receivers may have unequal
strength statistically. In addition to this, the state of the channel to
each receiver is conveyed either perfectly (P ) or with delay (D) to
the transmitter. Let S1, S2, and S3 be the channel state information
at the transmitter (CSIT) of user 1, user 2, and eavesdropper,
respectively. The overall CSIT can then alternate between eight
possible states, i.e., (S1, S2, S3) ∈ {P,D}3. We denote by λS1S2S3

the fraction of time during which the state S1S2S3 occurs; and,
focus on a two state topological setting of strong v.s. weak links
with symmetric alternating CSIT, λPDD = λDPD. For this setting,
we establish an inner bound on the Generalized Secure Degrees
of Freedom (GSDoF) region with different topology states. The
encoding scheme sheds light on the usage of both resources, i.e.,
alternating — topology and CSIT; and, show that as opposed to
coding independently over different states, joint encoding across the
CSIT and topological states, enables strictly better secure rates.

I. INTRODUCTION

Transmission of information over a wireless channel is partic-

ularly sensitive to eavesdropping, due to the inherent openness of

the medium. Wyner in [1], introduced a basic wiretap channel and

showed that by utilizing the randomness of the wireless channel,

the confidential information can be securely sent to the legitimate

receiver. The wiretap channel introduced by Wyner has attracted

significant attention in the research community and is extended

to a variety of multi-antenna [2] and multi-users setting [3]–

[5]. Due to the difficulty in characterizing the complete secrecy

capacity region, a number of recent contributions have focused on

characterizing the approximate capacity of these networks. The

approximate capacity is measured by the notion of secure degrees

of freedom (SDoF), that captures the asymptotic behavior of

secure data rates in high signal-to-noise ratio (SNR) regime [6],

[7]. In these models, generally it is assumed that the CSI which

is available at the receivers is conveyed in a timely fashion to

the transmitter. In practice, due to the random fading experienced

by the feed back link, the quality of CSI that is available at the

transmitter can vary over time. This lack of precise and varying

quality of CSI may lead to information leakage. Towards this

direction, building on [8], Yang et al. in [9] study the two-user

MIMO broadcast channel where strictly causal CSI (delayed) is

provided to the transmitter from both receivers. For this model the

authors characterize the SDoF region. Zaidi et al. in [10] study

the two-user MIMO X-channel with asymmetric feedback and

delayed CSIT, and characterize the complete sum SDoF region.

In [11] and [12], the authors studied the MISO broadcast and

 

 

Fig. 1. Multi receiver wiretap channel, where the link power exponent to —
receiver 1 is A1 ∈ {1, α}, receiver 2 is A2 ∈ {1, α} and eavesdropper is
A3 ∈ {1, α}, where 0 ≤ α ≤ 1.

multi-receiver wiretap channel, respectively, and assume that CSI

conveyed by the receivers can vary over time.

In mobile networks due to mobility, communication links are

subjected to different topological effects, e.g., jamming, path loss,

interference, which can influence the channel in an asymmetric

manner. A fundamental issue with DoF (SDoF) analysis is that

it ignores the diversity of links strength and implicitly assumes

that all non-zero channels are equally strong, irrespective of the

magnitude of channel coefficients. The GDoF metric, introduced

by [13], [14], solves this limitation by taking diversity of links

strength into account. In [15], Chen et al. study a two-user MISO

broadcast channel by considering the two state topological setting

of strong v.s. weak links and assume that CSI conveyed by both

receivers can vary over time. For this model the authors establish

bounds on the GDoF region.

In this work, we consider a Gaussian multi-receiver wiretap

channel which consists of three nodes — a transmitter and three

receivers as shown in Figure 1. The transmitter is equipped

with three antennas and each receiver is equipped with a single

antenna. The transmitter wants to reliably transmit message W1

to the receiver 1 and message W2 to the receiver 2 and wishes to

conceal them from the eavesdropper. In investigating this model

we assume that, 1) each receiver knows the perfect instantaneous

CSI; and, is allowed to convey either the instantaneous (P )

or past delayed (D) CSI to the transmitter, with both of them

being perfect; and, 2) links connecting three receivers may have

different strength, statistically. We restrict our attention to the two

state topological setting of stronger (Ai = 1) v.s. weaker (Ai = α)

links ∀ i; thus, the topology and CSIT of this network is allowed

to alternate between eight possible (A1, A2, A3) ∈ {1, α}3 and

(S1, S2, S3) ∈ {P,D}3 states, respectively. For this general

model, we focus our attention on the symmetric alternating
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— CSIT and topology setting — where the time spend in

state (P,D,D) with topology state (1, α, α) and (D,P,D) with

topology state (α, 1, α) are equal. For this setting, we establish an

inner bound on the GSDoF region. The encoding scheme sheds

lights on how to carefully utilizes the topology of the network and

quality of CSIT. We show that as opposed to coding independently

over states and topology, jointly encoding across them, provide

strictly better secure rates. The setting that we study in this work

can be used to better understand the connection between topology

and CSIT for the general class of K-user models.

II. SYSTEM MODEL AND DEFINITIONS

We consider a multi-receiver wiretap channel as shown in

Figure 1. In this model, the transmitter is equipped with three

antennas and each of the receiver is equipped with a single

antenna. The transmitter wants to send message W1 ∈ W1 =
{1, . . . , 2nR1(A1,ρ)} to receiver 1, and message W2 ∈ W2 =
{1, . . . , 2nR2(A2,ρ)} to receiver 2, and wishes to conceal both

messages from the eavesdropper.

As mentioned before, due to random fluctuations of the wireless

medium, the variance of the channel coefficients may vary over

time. This induces two classes of links, where few links are

stronger than others statistically. We denote Ai ∈ {1, α} be the

link power exponent from the transmitter-to-receiver 1, 2, and

eavesdropper, ∀i ∈ {1, 2, 3}, respectively, 0 ≤ α ≤ 1. Then,

based on the topology of the network, the model can be classified

into eight possible states, (A1, A2, A3) ∈ {1, α}3. The channel

input-output relationship at time instant t is then given by

yt =
√

ρA1,thtxt + n1t (1a)

ýt =
√

ρA2,t h́txt + n2t (1b)

zt =
√

ρA3,tgtxt + n3t, t = 1, . . . , n (1c)

where x ∈ C3×1 is the channel input vector, h ∈ H ⊆ C1×3

is the channel vector connecting receiver 1 to the transmitter,

h́ ∈ H ⊆ C1×3 is the channel vector connecting receiver 2

to the transmitter and g ∈ G ⊆ C1×3 is the channel vector

connecting eavesdropper to the transmitter. The parameter ρ is

subject to input power constraint and the channel output noise ni

is assumed to be independent and identically distributed (i.i.d.)

white Gaussian noise, with ni ∼ CN (0, 1) ∀i. For the sake of

conciseness, we normalize the channel input vector, ||xt||2 ≤ 1,

then the average received signal-to-noise ratio (SNR) for each

link at time instant t is given by

Eht,xt

[
||
√

ρA1,thtxt||2
]
= ρA1,t

E
h́t,xt

[
||
√

ρA2,t h́txt||2
]
= ρA2,t

Egt,xt

[
||
√

ρA3,tgtxt||2
]
= ρA3,t .

Let St = [ht h́t gt]
T as the channel state matrix and St−1 =

{S1, . . . ,St−1} captures the collection of channel state matrices

over the past (t − 1) symbols, where S0 = ∅. Furthermore, at

each time instant t, the past states of the channel matrix St−1

are known to all nodes. However, the instantaneous states ht, h́t,

and gt are known only to receiver 1, receiver 2, and eavesdropper,

respectively.

Information transmission over the wireless channel is partic-

ularly sensitive to the nature of CSIT. In this work, we assume

that the receiver can feed back the CSIT with infinite precision.

Although, there are numerous forms of CSIT, we focus our

attention on two of them as follows.

• Perfect CSIT: denoted by ‘P’, refers to those instances in

which the transmitter has perfect knowledge of the instanta-

neous CSI.

• Delayed CSIT: denoted by ‘D’, refers to those instances in

which at time t, the transmitter has perfect knowledge of

only the past (t − 1) channel states. Furthermore, at time

instant t, the current channel state is independent of the past

(t− 1) channel states.

Let S1 denotes the CSIT state of user 1, S2 denotes the CSIT

state of user 2 and S3 denotes the CSIT state of the eavesdropper.

Then, based on the availability of the CSIT, the model that we

study (1) can be classified into any of the following eight states

(S1, S2, S3) ∈ {PPP, PPD,PDP, PDD,DPP,DPD,

DDP,DDD}. (2)

We denote λA1A2A3

S1S2S3
be the fraction of time state S1S2S3 occurs

with A1A2A3 topology state, such that

∑

(S1,S2,S3)∈{P,D}3

(A1,A2,A3)∈{1,α}3

λA1A2A3

S1S2S3
= 1. (3)

For simplicity of analysis, we assume that λPDD = λDPD ,

i.e., the fractions of time spent in states PDD and DPD
are equal. We refer (S1, S2, S3, A1, A2, A3) be the state in

which the model chooses (S1, S2, S3) ∈ {P,D}3 with topology

(A1, A2, A3) ∈ {1, α}3. In this work, we focus our attention on

the case (λ1αα
PDD, λα1α

DPD) = (12 ,
1
2 ), where the model is allowed to

alternate between (P,D,D, 1, α, α) and (D,P,D, α, 1, α) states

equal fractions of communication time.

Definition 1: A rate pair (R1(A1, ρ), R2(A2, ρ)) is said to be

achievable if there exists a sequence of codes such that

lim sup
n→∞

Pr{Ŵi 6= Wi} = 0, ∀ i ∈ {1, 2}. (4)

Definition 2: A GSDoF pair (d1(A1), d2(A2)) is said to be

achievable if there exists a sequence of codes satisfying following

1) Reliability condition:

lim sup
n→∞

Pr{Ŵi 6= Wi} = 0, ∀ i ∈ {1, 2}, (5)

2) Perfect secrecy condition:

lim sup
n→∞

I(W1,W2; z
n, Sn)

n
= 0, (6)

3) and communication rate condition:

lim
ρ→∞

lim inf
n→∞

log |Wi(n, ρ,Ai)|
n log ρ

≥ di(Ai), ∀ i ∈ {1, 2}.
(7)

Due to the space limitations, some proofs in this work are only

outlined or omitted. Detailed proofs are provided in [16].
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III. MAIN RESULTS

In this section, we establish an inner bound on the multi-receiver

wiretap channel, where (λ1αα
PDD, λα1α

DPD) = (12 ,
1
2 ).

Theorem 1: An inner bound on the GSDoF region of the multi-

receiver wiretap channel with alternating CSIT and topology state,

(λ1αα
PDD, λα1α

DPD) = (12 ,
1
2 ), is given by the set of all non-negative

pairs (d1, d2) satisfying

(18 + 18α)d1 + (6 + 16α)d2 ≤ (3 + 3α)(3 + 2α) (8a)

(6 + 16α)d1 + (18 + 18α)d2 ≤ (3 + 3α)(3 + 2α). (8b)

Proof: The region in (8) is characterized by the corner points

(3+2α
6 , 0), (0, 3+2α

6 ) and the point
( (3+3α)(3+2α)

2(12+17α) , (3+3α)(3+2α)
2(12+17α)

)

obtained by the intersection of line equations in (8). The achiev-

ability of the two corner points (3+2α
6 , 0), (0, 3+2α

6 ) follow by

the coding schemes developed, in [9], where 2α/3 GSDoF is

achievable; and, in [12] where 1 GSDoF is achievable, equal

fractions of communication time. The achievability of the point
( (3+3α)(3+2α)

2(12+17α) , (3+3α)(3+2α)
2(12+17α)

)
is provided in subsection III-A.

Remark 1 (Synergistic benefits of alternating CSIT and topol-

ogy): We observe that the sum GSDoF in Theorem 1 can be

larger than the one obtained by fixed topology and CSIT state

setting. For fixed topology and CSIT setting, i.e., λ1αα
PDD = 1 and

λα1α
DPD = 1, the sum GSDoF is given by 1 [12]. By using these

fixed states equal fractions of communication time, the set-up that

we study in Theorem 1 is equivalent to it, in the sense that the

time duration for stronger and weaker links and CSIT states are

equal. The sum GSDoF with fixed topology and CSIT is given

by

GSDoF =
1

2
× 1

︸︷︷︸

λ1αα
PDD= 1

2

+
1

2
× 1

︸︷︷︸

λα1α
DPD= 1

2

=
1

2
≤ (3 + 3α)(3 + 2α)

12 + 17α
︸ ︷︷ ︸

(8)

(9)

which is smaller than Theorem 1.

A. Coding scheme using alternating CSIT and topology

Before proceeding to the formal proof of the coding scheme, we

first provide an auxiliary scheme which will be useful to establish

the results in this work.

Theorem 2: An inner bound on the GDoF region of the two-

user MISO broadcast channel with alternating CSIT and topology,

(λ1α
PD, λα1

DP ) = (12 ,
1
2 ) is given by the set of all non-negative pairs

(d1, d2) satisfying

2αd1 + 2(3 + 2α)d2 ≤ (1 + α)(3 + 2α) (10a)

2(3 + 2α)d1 + 2αd2 ≤ (1 + α)(3 + 2α). (10b)

Proof: The region in (10) is characterized by the cor-

ner points (1+α
2 , 0), (0, 1+α

2 ) and the point (3+2α
6 , 3+2α

6 ) ob-

tained by the intersection of line equations in (10). The GDoF

pairs (1+α
2 , 0), and (0, 1+α

2 ) are readily achievable by sending

one symbol to each receiver. The achievability of the point

(3+2α
6 , 3+2α

6 ) is provided in Appendix I.

Remark 2 ( GDoF Gains with Topological Diversity): The-

orem 2, provides an inner bound on the GDoF region of the

two user MISO broadcast channel with symmetric alternating —

topology and states, where each receiver observes a strong link

half of the duration of communication time and model alternates

between (P,D) and (D,P ) states. We note that sum GDoF in

Theorem 2, can be larger than the one obtained by a similar

model with alternating CSIT and fixed topology state. For fixed

setting, i.e., λ1α
PD/DP , in [15, Theroem 8], the authors established

an inner bound on the GDoF region of alternating CSIT model

with fixed topology given by

GDoF =
(2 + 3α)(1 + α)

2(1 + 2α)
︸ ︷︷ ︸

Sum GDoF(λ1α
PD/DP

)

≤ 1 +
2α

3
︸ ︷︷ ︸

Sum GDoF (10)

(11)

which is clearly smaller than the sum GDoF of Theorem 2. This

result shows the benefits of topological diversity.

We now provide some coding schemes that provide the main

ingredients to establish the inner bound in Theorem 1. The

following schemes achieve the sum GSDoF of
(3+3α)(3+2α)

(12+17α) .

1) S1 – using (P,D,D, 1, α, α) and (D,P,D, α, 1, α) states

for
(
15+19α
24+34α ,

9+15α
24+34α

)
fractions of time, (d1, d2) =

( (3+3α)(3+2α)
2(12+17α) , (3+3α)(3+2α)

2(12+17α)

)
GSDoF is achievable.

2) S2 – using (P,D,D, 1, α, α) and (D,P,D, α, 1, α) states

for
(

9+15α
24+34α ,

15+19α
24+34α

)
fractions of time, (d1, d2) =

( (3+3α)(3+2α)
2(12+17α) , (3+3α)(3+2α)

2(12+17α)

)
GSDoF is achievable.

The achievability of the corner point
( (3+3α)(3+2α)

2(12+17α) , (3+3α)(3+2α)
2(12+17α)

)
in Theorem 1 follows by using S1

and S2 schemes equal fractions of communication time.

1) S1 — Coding scheme using (P,D,D, 1, α, α)
and (D,P,D, α, 1, α) states: We now show that by

using(P,D,D, 1, α, α) and (D,P,D, α, 1, α) states

for
(
15+19α
24+34α ,

9+15α
24+34α

)
fractions of time, (d1, d2) =

( (3+3α)(3+2α)
2(12+17α) , (3+3α)(3+2α)

2(12+17α)

)
GSDoF is achievable. In this

scheme, the transmitter wants to send four confidential symbols

(v1, v2, v3, v4) to receiver 1 and (w1, w2, w3, w4) to receiver

2, respectively. The communication takes place in two steps,

i.e., data dissemination phase and broadcasting of common

information.

A) Data dissemination phase: In this step, the transmitter sends

desired information to both receivers. In the first time slot, the

transmitter chooses (P,D,D, 1, α, α) state and injects artificial

noise u := [u1, u2, u3]
T . At the end of this phase, the channel

input-output relationship is given by

y1 =
√
ρh1u

︸ ︷︷ ︸

O(ρ)

, (12a)

ý1 =
√
ραh́1u

︸ ︷︷ ︸

O(ρα)

, (12b)

z1 =
√
ραg1u

︸ ︷︷ ︸

O(ρα)

. (12c)

At the end of first time slot, the receiver 2 and eavesdropper feed

back the delayed CSI to the transmitter.

In the second time slot, the transmitter remains in

(P,D,D, 1, α, α) state and sends v := [v1, v2, v3]
T to the
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receiver 1 along with channel output y1 at the receiver 1. The

transmitter can learn y1, since it already knows the perfect CSI

h1 and u and sends x1 = v+[y1 φφ]T . The channel input-output

relationship, at the end of second time slot is given by

y2 =
√
ρ(h2v + h21y1)

︸ ︷︷ ︸

O(ρ)

, (13a)

ý2 =
√
ρα(h́2v + h́21y1)

︸ ︷︷ ︸

side information (O(ρα))

, (13b)

z2 =
√
ρα(g2v + g21y1)

︸ ︷︷ ︸

side information (O(ρα))

. (13c)

At the end of second time slot, since the receiver 1 knows the

CSI (h2) and the channel output at receiver 1 in time slot 1 (y1),
it subtracts out the contribution of y1 from y2 to get one equation

with 3 symbols (v); and, requires 2 extra equations — being

available as side information at receiver 2 and eavesdropper —

to decode the intended symbols. Notice that, the side information

at receiver 2 and eavesdropper is available at a reduced power

level (O(ρα)) compared to the receiver 1.

In the third time slot, the transmitter chooses (D,P,D, α, 1, α)
state and sends fresh information w := [w1, w2, w3]

T to the

receiver 2 along with channel output ý1 at the receiver 2. The

transmitter can learn ý1, since it knows the past CSI h́1 and u and

sends x2 = w+[ý1 φ φ]T . The channel input-output relationship

is given by

y3 =
√
ρα(h3w+ h31ý1)

︸ ︷︷ ︸

side information O(ρα)

, (14a)

ý3 =
√
ρ(h́3w + h́31ý1)

︸ ︷︷ ︸

O(ρ)

, (14b)

z3 =
√
ρα(g3w + g31ý1)

︸ ︷︷ ︸

side information (O(ρα))

. (14c)

At the end of third time slot, since the receiver 2 knows the

CSI (h́3) and the channel output at receiver 2 in time slot 1

(ý1), it subtracts out the contribution of ý1 from ý3 to obtain

one equation with 3 variables (w) and requires 2 extra equations

being available as side information at receiver 1 and eavesdropper

to decode the intended variables. The information leaked to

eavesdropper after 3 time slots can be readily shown to be

bounded by

I(v,w; z1, z2, z3|Sn) ≤ o(log(P )). (15)

At the end of three time slots, the receiver i requires side infor-

mation available at the receiver j, ∀i 6= j and eavesdropper — at

reduced power levels (O(ρα)) — to decode the desired symbols.

Due to the availability of strictly causal CSI, the transmitter

can learn these side informations. Next, by using Theorem 2,

z2 (O(ρα)) is send to the receiver 1 and z3 (O(ρα)) is send to

the receiver 2 over a total of 2α

GDoF
1α/α1

PD/DP

= 6α
3+2α time slots.

After, conveying z2 and z3 to the desired receivers, the next

step is to convey ý2 to receiver 1 and y3 to the receiver 2.

One can not simply multicast these side informations in the

spirit of Theorem 2, since it will leak extra information to

the eavesdropper. Recall that, at the end of time slot 3, the

side information at both receivers are available at O(ρα). The

transmitter then performs following operations: 1) it quantizes

the channel outputs ý2 and y3 to α log(ρ) + o(log ρ) bits within

bounded noise distortion, respectively, and 2) performs a bit wise

XOR operation to generate α log(ρ) + o(log ρ) bits which are

then mapped to a common message c where c ∈ C = {1, . . . , ρα}.

After receiving the common message, both receivers can construct

the desired side information within bounded noise distortion, that

suffices to decode their respective symbols.

The resulting GSDoF at each receiver can be concisely written

as

d′i =
1 + 2α

3 + 2α

GDoF
1α/α1

PD/DP

+ α
GSDoFcommon

, i = 1, 2 (16)

where GSDoFcommon denotes the GSDoF of the common message

c. Note that, three symbols are send to each receiver, where only

(1 + 2α) log(ρ) bits can be decoded.

In what follows, we provide the description of the coding

scheme that conveys a common message to both receivers se-

curely.

B.2) Multicasting common information: In this scheme, the

transmitter sends 2 common symbols (c1, c2) to both receivers

along with two confidential symbols (v4, w4) securely. In the

first time slots, the transmitter chooses (P,D,D, 1, α, α) state

and sends c1 and v4 along with artificial noise q1 as

x1 =
[

c1 + ρ−α/2v4 φ φ
]T

+Θ1q1,

where Θ1 ∈ C3×1 is the precoding vector chosen such that

h1Θ1 = 0. The channel input-output relationship is given by

y1 =
√
ρh11c1

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh11v4
︸ ︷︷ ︸

O(ρ1−α)

, (17a)

ý1 =
√
ραh́11c1 +

√
ραh́1Θ1q1

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h́11v4
︸ ︷︷ ︸

O(ρ0)

, (17b)

z1 =
√
ραg11c1 +

√
ραg1Θ1q1

︸ ︷︷ ︸

side information O(ρα)

+
√

ρ0g11v4
︸ ︷︷ ︸

O(ρ0)

. (17c)

At the end of time slot 1, the receiver 1 can recover c1 and

v4. Receiver 2 gets c1 embedded in with artificial noise q1 and

requires one extra equation available as side information at the

eavesdropper (z1).
In the second time slot, the transmitter chooses

(D,P,D, α, 1, α) state and sends c2 and w4 along with

artificial noise q2 as

x2 =
[

c2 + ρ−α/2w4 φ φ
]T

+Θ2q2, (18)

where Θ2 ∈ C3×1 is the precoding vector chosen such that

h́2Θ2 = 0. The channel input-output relationship is given by

y2 =
√
ραh21c2 +

√
ραh2Θ2q2

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h21w4
︸ ︷︷ ︸

O(ρ0)

, (19a)

ý2 =
√
ρh́21c2

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh́21w4
︸ ︷︷ ︸

O(ρ0)

, (19b)

z2 =
√
ραg21c2 +

√
ραg2Θ2q2

︸ ︷︷ ︸

side information O(ρα)

+
√

ρ0g21w4
︸ ︷︷ ︸

O(ρ0)

. (19c)
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Similar to time slot 1, at the end of time slot 2, the receiver 2

can readily recover c2 and w4. Receiver 1 gets c2 embedded in

with artificial noise q2 and requires one extra equation available

as side information at the eavesdropper (z2).
At the end of two time slots, both receivers require one

extra equation available as side information at the eavesdropper

with O(ρα). These side informations are send in the spirit of

Theorem 2, over a total of 2α

GDoF
1α/α1

PD/DP

= 6α
3+2α time slots. Thus,

2 common symbols (2α) are securely send to each receiver over

a total of 2 + 6α
3+2α time slots yielding a common GSDoF of

GSDoFcommon =
2α

2 + 6α
3+2α

=
2α(3 + 2α)

2(3 + 2α) + 6α
. (20)

Note, that in conveying two common messages to both receivers,

the transmitter can also send two confidential symbols (v4, w4)
securely, since the eavesdropper receives both of these symbols

below noise floor and can not decode them. The over all GSDoF

is then given by

di = d′i +
(1− α)/2

3 + 2α

GDoF
1α/α1

PD/DP

+ α
GSDoFcommon

, i = 1, 2. (21)

Finally replacing (20) in (21) yields

di =
(3 + 3α)(3 + 2α)

2(12 + 17α)
, i = 1, 2. (22)

2) S2 — Coding scheme using (P,D,D, 1, α, α) and

(D,P,D, α, 1, α) states: The coding scheme in this case follows

along similar lines as mentioned above by reversing the roles of

receiver 1 and receiver 2, and is omitted for brevity.

APPENDIX I

CODING SCHEME ACHIEVING (3+2α
6 , 3+2α

6 ) GDOF PAIR IN

THEOREM 2

We now provide the proof of the coding scheme which gives

the GDoF pair (3+2α
6 , 3+2α

6 ). In this scheme, the transmitter uses

6 time slots to send 8 symbols {ai}8i=1 to receiver 1 and {bi}8i=1

to receiver 2, respectively. In time slots 1, 3, 5, the transmitter

chooses (P,D, 1, α) state and in time slots 2, 4, 6, it chooses

(D,P, α, 1) state. In the first time slot, the transmitter sends

(a1, a2, a3) along with (b1) as

x1 = [a1 a2]
T
+
[

a3ρ
−α/2 φ

]T

+Θ1b1,

where Θ1 ∈ C2×1 is the precoding vector chosen such that

h1Θ1 = 0. The channel input-output relationship is given by

y1 =
√
ρL1(a1, a2)

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh11a3
︸ ︷︷ ︸

O(ρ1−α)

, (23a)

ý1 =
√
ραL2(a1, a2)

︸ ︷︷ ︸

side information O(ρα)

+
√

ρ0h́11a3
︸ ︷︷ ︸

O(ρ0)

+
√
ραh́1Θ1b1

︸ ︷︷ ︸

O(ρα)

. (23b)

At the end of time slot 1, the receiver 1 gets a linear combination

of (a1, a2) denoted by L1(a1, a2) along with symbol a3. The

receiver 1 can readily recover a3 by treating L1(a1, a2) as

noise with (1 − α) log(ρ) bits and requires one extra equation,

L2(a1, a2), being available as side information at receiver 2 to

decode the symbols (a1, a2). Receiver 2 gets the desired symbol

embedded in with interference L2(a1, a2). Notice that, conveying

this interference to both receivers is useful in two ways, 1)

it provides the side information to receiver 1 to decode the

symbols (a1, a2), and 2) also helps the receiver 2 to remove the

contribution of L2(a1, a2) from ý1 to recover b1.

In the second time slot the transmission scheme is similar to

time slot 1 with the roles of receiver 1 and 2 being reversed. The

transmitter sends,

x2 = [b2 b3]
T +

[

b4ρ
−α/2 φ

]T

+Θ2a4,

where Θ2 ∈ C2×1 is the precoding vector chosen such that

h́2Θ2 = 0. The channel input-output relationship is given by

y2 =
√
ραL3(b2, b3)

︸ ︷︷ ︸

side information O(ρα)

+
√

ρ0h21b4
︸ ︷︷ ︸

O(ρ0)

+
√
ραh2Θ2a4

︸ ︷︷ ︸

O(ρα)

, (24a)

ý2 =
√
ρL4(b2, b3)

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh́21b4
︸ ︷︷ ︸

O(ρ1−α)

. (24b)

At the end of time slot 2, the receiver 2 gets a linear combination

of (b2, b3) along with symbol b4. The receiver 2 can decode b4 by

treating L4(b2, b3) as noise with (1−α) log(ρ) bits; and, requires

one extra equation, L3(b2, b3), available as side information at

receiver 1 to decode the symbols (b2, b3). Receiver 1 gets the

symbol a4 embedded in with interference L3(b2, b3). Thus, by

conveying L3(b2, b3) to both receivers will suffice to decode the

desired symbols.

At the end of time slot 2, the transmitter can learn the side in-

formations L2(a1, a2) and L3(b2, b3) by means of past CSI; and,

the next step is to communicate them for interference alignment.

Recall that, both side informations are available at power level

O(ρα). After constructing the side informations, the transmitter

quantizes L2(a1, a2) and L3(b2, b3) into 2α log(ρ)+o(log ρ) bits

within bounded noise distortion, which are then mapped to a

common symbol {ci} where ci ∈ C = {1, . . . , ρα} ∀i ∈ {1, 2}
and sends

x3 =
[

c1 + ρ−α/2a5 φ
]T

+Θ3b5,

where Θ2 ∈ C3×1 is the precoding vector chosen such that

h3Θ3 = 0. The channel input-output relationship is given by

y3 =
√
ρh31c1

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh31a5
︸ ︷︷ ︸

O(ρ1−α)

, (25a)

ý3 =
√
ραh́31c1

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h́31a5
︸ ︷︷ ︸

O(ρ0)

+
√
ραh́3Θ3b5

︸ ︷︷ ︸

O(ρα)

. (25b)

At the end of time slot 3, the receiver 1 first decodes a5,

by treating c1 as noise, which contains (1 − α) log(ρ) bits.

Afterwards, it recovers c1 by subtracting the contribution of a5
from y3. Next, after decoding c1 the receiver 1 can reconstruct

L2(a1, a2) within bounded noise. Finally, with (y1, L2(a1, a2)) it

decodes (a1, a2) with 2α bits via channel inversion. Receiver 2,

gets b5 along with common symbol c1.

In the fourth time slot, the transmission scheme follows along

similar lines as in time slot 3, by interchanging the roles of
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Bits Receiver 1 Receiver 2
α log(ρ) a1, a2, a4, a6, a8 b1, b2, b3, b5, b7

(1− α) log(ρ) a3, a5, a7 b4, b6, b8

TABLE I
INFORMATION CONTENT IN EACH SYMBOL.

receiver 1 and receiver 2. The transmitter sends common symbol

c2 along with new symbols a6 and b6 to receiver 1 and 2 as,

x4 =
[

c2 + ρ−α/2b6 φ
]T

+Θ4a6,

where Θ4 ∈ C2×1 is the precoding vector chosen such that

h́4Θ4 = 0. The channel input-output relationship is given by

y4 =
√
ραh41c2

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h41b6
︸ ︷︷ ︸

O(ρ0)

+
√
ραh4Θ4a6

︸ ︷︷ ︸

O(ρα)

, (26a)

ý4 =
√
ρh́41c2

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh́41b6
︸ ︷︷ ︸

O(ρ1−α)

. (26b)

At the end of time slot 4, the receiver 2 can decode both b6 and

c2. After recovering c2, with (ý2, L3(b2, b3)) the receiver 2 can

then decode (b2, b3) with 2α log(ρ) bits.

At the end of fourth time slot, receiver 1 requires c2 to decode

a6 and receiver 2 requires c1 to decode b5. In the fifth time slot,

the transmitter sends common symbol c2 along with new symbols

a7 and b7 to receiver 1 and 2 as,

x5 =
[

c2 + ρ−α/2a7 φ
]T

+Θ5b7,

where Θ5 ∈ C2×1 is the precoding vector chosen such that

h5Θ5 = 0. The channel input-output relationship is given by

y5 =
√
ρh51c2

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh51a7
︸ ︷︷ ︸

O(ρ1−α)

, (27a)

ý5 =
√
ραh́51c2

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h́51a7
︸ ︷︷ ︸

O(ρ0)

+
√
ραh́5Θ5b7

︸ ︷︷ ︸

O(ρα)

. (27b)

At the end of fifth time slot, the receiver 1 can readily recover c2
and a7 from y5. After decoding c2, the receiver 1 can construct

L3(b2, b3) within bounded noise and can remove its contribution

from (24a), (26a) to decode a4 and a6 respectively. Similarly,

since receiver 2 knows c2 from (26b), it can subtracts out the

contribution of c2 from (27b) to decode b7.

In the sixth time slot, the transmitter sends common symbol c1
along with new symbols a8 and b8 to receiver 1 and 2 as,

x6 =
[

c1 + ρ−α/2b8 φ
]T

+Θ6a8,

where Θ6 ∈ C2×1 is the precoding vector chosen such that

h́6Θ6 = 0. The channel input-output relationship is given by

y6 =
√
ραh61c1

︸ ︷︷ ︸

O(ρα)

+
√

ρ0h61b8
︸ ︷︷ ︸

O(ρ0)

+
√
ραh6Θ6a8

︸ ︷︷ ︸

O(ρα)

, (28a)

ý6 =
√
ρh́61c1

︸ ︷︷ ︸

O(ρ)

+
√

ρ1−αh́61b8
︸ ︷︷ ︸

O(ρ1−α)

. (28b)

At the end of sixth time slot, since the receiver 1 knows c1
from (25a), it subtracts out the contribution of c1 from (28a) to

decode a8. Similarly from (28b), the receiver 2 can recover c1 and

b8. Next, it subtracts out the contribution of c1 from (23b), (25b)

to decode b1 and b5.

Thus, at the end of 6 time slots all the symbols are decoded

at both receivers. Table I summarizes the information content in

each symbol send by transmitter to both receivers which yields a

GDoF pair (3+2α
6 , 3+2α

6 ).
This concludes the proof.
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