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Abstract—This paper tackles the problem of target localization
of multiple co-channel targets based on the sum of the received
signal strength of all targets at different sensor nodes. The
problem is hard, since the targets can transmit at the same time
on the same channel. The propagation channel is assumed to be
log-normal shadowing model. We propose an unbiased estimator.
The underlying complicated optimization problem is then solved
by a heuristic based on mixed-integer programming, which
presents a low-complexity. The performance of the estimator is
justified to be good using simulations.

Index Terms—multi-source localization, compressed sensing,
mixed-integer programming, internet of things

I. INTRODUCTION

It is envisaged that the majority of applications in the
context of internet of things and 5G mobile networks depend
on the location awareness to deliver better services. Therefore,
the old topic of localization is not yet obsolete. In the literature
a variety of techniques have been exploited to solve such a
problem. We here stick to received signal strength (RSS)-based
technique due to its simplicity and lower cost compared to
time difference of arrival (TDOA) or angle of arrival (AoA),
[1]. Despite its vulnerability against uncertainties of path-loss
model, RSS localization is beneficial whenever the precision
can be somewhat compromised for price. The RSS-based
localization for a single target with unknown transmit power
is studied in many publications, such as [2], where the by
dividing the RSS of two different receivers the transmit power
cancels out. The remaining of the problem is a standard mul-
tilateration problem. This technique is known as differential
or ratio of RSS which is not applicable in our case, since we
consider that there are more then one transmitter on the same
channel which causes co-channel interference problem.

The work [3] also considers a multi-target scenario, but it
does not assume co-channel interference since each receiver
knows the RSS of each transmitter, separately. To the best
of our knowledge, the only papers which consider the multi-
user case with co-channel interference is [4], [5]. Nevertheless,
[4] does not exploit the explicit path-loss model but performs
fingerprinting, instead. On the one hand, fingerprinting avoids
the model uncertainty of the path-loss model. It, on the other
hand, involves the difficulty of building the radio maps which
can be costly and time consuming. The built radio map can

also be different in reality, when moving humans or objects
vary the propagation profile of the environment. The paper
deals with the problem through `1-minimization which needs
a sufficiently enough number of observation. This translates
into a radio map with high granularity. To surmount this
problem, they use not only the RSS but also cross-correlation
of the received signal at different sensors. This improves
performance, but at the cost of more expensive sensors as well
as higher power consumption [5]. We, here, assume a log-
normal shadowing path-loss model. To solve the intractable
underlying mathematical problem, we resort to a grid based
solution and techniques of mixed integer programming (MIP).
Also, to maintain a low-complexity we keep the number of
grid points (GPs) low and adapt the GPs, iteratively. An
interesting application for our scenario is finding the position
of the illegitimate secondary user(s) with unknown transmit
power. Note such interfering users decrease the throughput
of the primary user or even cause link failure due to strong
interference.

The organization of this paper is as follows: the system
model is described in Sec. II and statistical behavior of RSS at
the sensor receiver in Sec. III. We propose in Sec. IV a mixed
integer quadratic programming (MIQP) formulation, assuming
the targets are located only at GPs. An adaptive scheme is
proposed in Sec. V to refine the GPs to overcome the problem
of off-grid targets. The performance of the presented solutions
will be justified by means of computer simulations in Sec. VI.
The Sec. VII concludes the paper.

Notations: All mathematical notations, symbols and vari-
ables of this paper are summarized in Tab. I and Tab. II.

Table I: Summary of general mathematical notations

Notation Description
N set of all integer positive and non-zero numbers
R set of all real numbers
R+ set of all non-negative real numbers

δlm

Kronecker delta function, i.e.,

δlm =

{
1 , l = m,

0 , l 6= m.



Table II: Summary of systems symbols and variables

Symbol Description
K number of sensor nodes, K ∈ N
N number of active targets, N ∈ N
M number of GPs given

√
M ∈ N

FL the index-set FL = {1, · · · , L} for any given number L ∈ N

II. SYSTEM MODEL

The system of consideration consists of N ∈ N active
targets with unknown position and K ∈ N passive sensor
nodes (SNs) with known positions. Each target n ∈ FN
transmits a signal with the unknown power pn. We know that
that transmit power of each target is bounded as follows

¯
P ≤ pn ≤ P̄ , ∀n ∈ FN , (1)

where
¯
P, P̄ ∈ R+ are, respectively, the lowest and highest

possible values for the transmit power of an active target. The
propagation channel is based on the log-normal shadowing
attenuation model presented in [6]. In a multi-source scenario,
the RSS rk at sensor k is the sum of different terms corre-
sponding to the received power of each target signal [7], [8]:

rk =
∑
n∈FN

c0 pn d
−α
kn 10

ζkn
10 , (2)

where dkn is the distance between sensor k and nth target, α
is the path-loss exponent and ζkn ∼ N (0, σ2

kn) is a zero-mean
Gaussian random variable with power of σ2

kn. It models the
log-normal shadowing between each pair of sensor and target
nodes and is assumed to be identically and independently
distributed (iid). The coefficient c0 is given by [6],

c0 :=
GtGrλ

2

(4π)
2 ,

where Gt and Gr are the gains of transmit and receive
antennae, respectively. The wavelength is denoted by λ. We
assume that c0 is known and without loss of generality and
for the sake of simplicity, c0 = 1.

Here, we have neglected the thermal additive noise due to
the fact that shadowing has much stronger effect on RSS
compared to the thermal noise [9]–[11]. The main reason
for such assumption is that the receivers have considerably
higher detection threshold than sensitivity. Also, the RSS
measurements are usually performed after correct decoding
of the information data out of the received data packets
[9]. Besides, the effect of additive noise can be somewhat
compensated using methods of blind estimation of noise power
, e.g., [12], [13].

The area of observation is assumed to be an square in
the range of [−w,w], w ∈ R+ in both x- and y- axes, in
the Cartesian coordinate system. The targets and sensors are
randomly distributed within the area. The ordered pair (x̌k, y̌k)
stands for the coordinate of kth sensor node, while target n
is located at the unknown position (xn, yn). Assuming that
fusion center (FC) acquires the values of RSS rk of the kth

y

xw0−w0

w0

−w0

Figure 1. A wireless sensor network consisting of K = 10
passive sensors ( ) and N = 2 targets ( ) . The grid
granularity is G =

√
M = 5, which means the area of interest

is divided to (
√
M − 1)2 = 16 smaller sugars. This leads to

M = 25 GPs, around which we look for the targets. The size
of each grid square is ∆g = w

2 .

sensor error-freely upon successful communication from SN, it
has to solve the following system of nonlinear and non-convex
equation to find the position (xn, yn) of each target:

rk =
∑
n∈FN

pn 10
ζkn
10(√

(xn − x̌k)2 + (yn − y̌k)2
)α . (3)

III. SUM OF LOG NORMAL RANDOM VARIABLES

The sum of log-normal (LN ) random variables (r.vs) has
an unknown probability distribution function (pdf) [14], even
for sum of two r.vs. The underlying reason is that the moment
generating function of the LN distribution is not defined, [15].
In general, LN distribution has a bad behavior and cannot
be described by its moments. This holds, consequently, for
sum log-normal (SLN ) distribution. On the other hand, all
the moments of the LN distribution exist in closed-form. In
the literature there are several works trying to approximate
SLN , cf. [16] and references therein, based on either LN
approximation, e.g., [14], or numerical methods. Since our
goal is to come up with a good location estimator, we are
interested in a closed-form approximation which does not need
a prior knowledge of the cumulative distribution function (cdf)
of the RSS at each sensor. Therefore, we choose the Fenton-
Wilkinson, [14], method which approximates SLN by a LN
and matching the first and second moments. Though, this is
not very accurate in low values of the r.v, but is suitable for
our purpose due to its simplicity and due to the fact the all
the moments of SLN distribution exist in closed-form. We
will see in what follows, that even this simple approximation



leads to a very complicated optimization problem for finding
the position of the targets.

Let Rkn be the r.v that represents the value of RSS at
sensor k due the transmit signal from nth target, i.e, rkn =

pn d
−α
kn 10

ζkn
10 , then the lth moment of Rkn is given by

E
(
Rlkn

)
=
(
pn d

−α
kn

)l
βl

2

kn, (4)

where βkn = e
(ln 10)2σ2kn

200 . Obviously, the mean and variance
of Rkn read

E(Rkn) =pn d
−α
kn βkn , (5)

Var(Rkn) =(pn d
−α
kn )2(β2

kn − 1)β2
kn . (6)

Let us assume that all σkn are equal, then define β = βkn for
all pair of sensors and targets. A scenario that such assumption
does not hold is multi-floor indoor environments [7]. We
further assume that the value of β is known. Since, all the
r.vs Rkn are pairwise independent the mean Mk and variance
Vk of the r.v Rk :=

∑
n∈FN

Rkn is given by

Mk =βgk , gk :=
∑
n∈FN

pn d
−α
kn , (7a)

Vk =(β2 − 1)β2hk , hk :=
∑
n∈FN

(pn d
−α
kn )2 . (7b)

Now, similar to [14] we approximate the r.v Rk by a LN :

Rk ≈ eµk+σkX , (8)

where X is a zero-mean normal r.v with variance 1. We find
the values of µk and σk such that the mean and variance of
Rk equate with the ones of the r.v eµk+σkX :

Mk =eµk+
σ2k
2 , (9)

Vk =e2µk+2σ2
k , (10)

which results in

µk = 2 ln(Mk)− 1

2
ln(M2

k + Vk) , (11a)

σ2
k = ln(M2

k + Vk)− 2 lnMk . (11b)

Finally, we state that the ln rk is approximately a normal r.v:

ln rk ≈ µk + σkX . (12)

Deriving classical estimators, e.g., maximum likelihood (ML)
or minimum variance unbiased (MVU) is not possible, since
the exact pdf of the RSS is unknown. We are rather interested
in an estimator which is unbiased and has minimal mean
square error (MSE). This is different from the classical MVU
estimator, since we want to solve the following optimization

min
xn,yn,pn
n∈FN

∑
k∈FK

σ2
k (13a)

s.t. µk = ln rk , (13b)

¯
P ≤ pn ≤ P̄ , ∀n ∈ FN , (13c)
− w ≤ xn ≤ w , ∀n ∈ FN , (13d)
− w ≤ yn ≤ w , ∀n ∈ FN . (13e)

The constraint (13b) guarantees that the estimator is unbiased.
Note, µk and σk both are functions of the variables xn, yn
and pn, n ∈ FN . Unfortunately, this problem is mathemati-
cally intractable. We, hence, propose a heuristic to solve the
problem. The heuristic is based on MIQP. For so doing, we
need to discretize the area by a grid of granularity of

√
M ∈ N

which means M GPs in total. Let GwM (x, y) define the grid
set centered at the point (x, y) of width 2w ∈ R+ and M
members. Indeed, it is the set of the equidistant GPs

GwM (x, y) :=
{

(xi, yj) |xi = x− w + (i− 1)∆g

y − w + (j − 1)∆g), i, j ∈ FG
}
, (14)

where G =
√
M and ∆g = 2w√

M−1
is the width of one grid

square. Then, we discretize the observation area into the GPs
(x̃m, ỹm) ∈ GwM (0, 0), m ∈ FM . Fig. 1 depicts an example of
the described network where the grid is given by Gw25(0, 0).

IV. MIQP

Let us momentarily assume that the N targets are located
exactly at N GPs, while the other M−N GPs are not occupied
by any target. This assumption is not realistic, since the targets
can be anywhere within the monitoring area. We, nevertheless,
tackle the problem of off-grid targets later in Sec. V. Let d̃km
denote the distance between sensor k ∈ FK and the mth GP

d̃km =
√

(x̃m − x̌k)2 + (ỹm − y̌k)2 , m ∈ FM . (15)

which results in RSS r̃k at the SN k:

r̃k =
∑
m∈FM

p̃md̃
−α
km10

ζkn
10 . (16)

Then, it is correct to write

ln r̃k = µ̃k + σ̃kX , (17)

where the variable p̃m is zero when the GP is not occupied
by any target. It is, otherwise, equal to the transmit power of
the corresponding target, i.e.,

p̃m =

{
0 , @n ∈ FN | (xn, yn) = (x̃m, ỹm)

pn , ∃n ∈ FN | (xn, yn) = (x̃m, ỹm)
. (18)

Using (7) and (11), we can derive the values of µ̃k and σ̃2
k as

µ̃k = lnβ + 2 ln gk −
1

2
ln
(
g2
k + (β2 − 1)hk

)
, (19)

σ̃2
k = ln

(
g2
k + (β2 − 1)hk

)
− 2 ln gk , (20)

where

g̃k =
∑
m∈FM

p̃m d̃
−α
km , (21)

h̃k =
∑
m∈FM

(
p̃m d̃

−α
km

)2

. (22)

It is ideal to minimize the MSE
∑
k∈FK

σ̃2
k subject to E(ln r̃k) =

µ̃k = ln rk for the localization. The constraint imposes the es-
timator to be unbiased. Since both µ̃k and σ̃2

k are complicated
functions of the variables x̃m, ỹm and p̃m, we rather try to



minimize (ln rk−µ̃k)2 via the following optimization problem:

min
sm,p̃m,
m∈FM

∑
k∈FK

(ln rk − µ̃k)2 (23a)

s.t. p̃m ∈ R+ , ∀m ∈ FM , (23b)
sm

¯
P ≤ p̃m ≤ sm P̄ , ∀m ∈ FM , (23c)

sm ∈ {0, 1} , ∀m ∈ FM , (23d)∑
m∈FM

sm = N . (23e)

Note that rk is the RSS reading at kth sensor. The constraint
(23b) and (23c) take our knowledge of the upper and lower
bound of the transmit power, i.e., eq. (1), into consideration.
Also, constraints (23d) and (23e) make sure that exactly N
GPs are chosen as the location of the targets.

Because of the binary variables sm, the problem (23) is
non-convex. It involves the continuous variables p̃m which
makes it an MIQP problem. Such a problem is NP-hard
[17]. Yet, because of its quadratic objective it could be solved
fast and efficiently using branch and bound method, [18],
for low number of GPs. This hands in an accurate solution
in case targets are located exactly at assumed GPs. Since,
the targets are not at grid points, in general, the number of
gird points needs to be very big for an accurate positioning.
Unfortunately, values of M in the order of 100 is already a big
number which blows up the complexity. For this reason, in the
literature such problems are tackled based on `1-minimization,
e.g., [3], [4], and [19]. Such techniques impose a big number
of observations, i.e., number of sensor nodes in our case,
compared to the combinatorial solution. In the next section,
we instead propose a heuristic based on MIQP with small
value of M that adapts the GPs. The advantage of such an
approach is that it avoids increasing the number of sensor
nodes. More sensor nodes means increased communication
overhead towards the FC, which in turn means higher hardware
costs and power consumption.

V. ADAPTIVE GRID REFINEMENT

In order to combat with problem of off-grid targets with a
low number of GPs, we need to devise a smart solution. Thus,
our proposed heuristic introduces the set of new variables dx̃m,
dỹm which, in each iteration, let the selected GP (x̃m, ỹm) be
adapted to (x̃m + dx̃m, ỹm + dỹm). Also, the transmit power
p̃m is updated to p̃m+dp̃m in each iteration. Let us start doing
this by deriving the first order Taylor series expansion of the
function fk(p̃1, · · · , p̃M , x̃1, · · · , x̃M , ỹ1, · · · , ỹM ) or in short
form fk,

fk := ln rk − µ̃k = ln rk − lnβ − 2 ln gk

+
1

2
ln
(
g2
k + (β2 − 1)hk

)
, (24)

w.r.t θ that stands for any of the variables x̃m, ỹm and p̃m

∂fk
∂θ

= − 2

gk

∂gk
∂θ

+
∂gk
∂θ gk + 1

2 (β2 − 1)∂hk∂θ
g2
k + (β2 − 1)hk

,

where

∂gk
∂x̃m

=
α p̃m (x̌k − x̃m)

d̃α+2
km

,
∂hk
∂x̃m

=
2α p̃2

m (x̌k − x̃m)

d̃2α+2
km

,

∂gk
∂ỹm

=
α p̃m (y̌k − ỹm)

d̃α+2
km

,
∂hk
∂ỹm

=
2α p̃2

m (y̌k − ỹm)

d̃2α+2
km

,

∂gk
∂p̃m

= d̃−αkm ,
∂hk
∂p̃m

= 2 p̃m d̃
−α
km .

Assume at the iteration i the vector θ is given, θ :=
(p̃i−1

1 , · · · , p̃i−1
M , x̃i−1

1 , · · · , x̃i−1
M , ỹi−1

1 , · · · , ỹi−1
M ). Also, let us

define ai−1
km , bi−1

km and ci−1
km as, respectively, ∂fk

∂x̃m
(θ), ∂fk

∂ỹm
(θ),

∂fk
∂p̃m

(θ), Thus, fk at ith iteration can be approximated by its
first order Taylor series expansion:

fk ≈ f i−1
k +

∑
m∈FM

ai−1
km dx̃m + bi−1

km dỹm + ci−1
km dp̃m ,

where f i−1
k := f(θ) and dx̃m, dỹm and dp̃m are our

optimization variables and will be explained, shortly. At the
ith iteration, we apply the following update rules

x̃im = x̃i−1
m + dx̃m , (25a)

ỹim = ỹi−1
m + dỹm , (25b)

p̃im = p̃i−1
m + dp̃m . (25c)

Then, at ith iteration, given the values of x̃i−1
m , ỹi−1

m , p̃i−1
m and

thus f i−1
k , we solve the following problem, instead of (23)

min
sm, dx̃m,
dỹm, dp̃m
m∈FM

∑
k∈FK

(f i−1
k +

∑
m∈FM

ai−1
km dx̃m + bi−1

km dỹm

+ ci−1
km dp̃m)2 (26a)

s.t.
dx̃m, dỹm, dp̃m ∈ R , (26b)

sm
¯
P − pi−1

m ≤ dp̃m ≤ sm P̄ − pi−1
m , (26c)

− sm (w + xi−1
m ) ≤ dx̃m ≤ sm (w − xi−1

m ) , (26d)

− sm (w + yi−1
m ) ≤ dỹm ≤ sm (w − yi−1

m ) , (26e)
− sm δ ≤ dx̃m ≤ sm δ , (26f)
− sm δ ≤ dỹm ≤ sm δ , (26g)
sm ∈ {0, 1} , (26h)∑
m∈FM

sm = N . (26i)

The constraints (26c)-(26e) guarantee that p̃m and (x̃m, ỹm)
are always in their admissible ranges, i.e., [

¯
P, P̄ ] and [−w,w],

respectively. On the other hand, the constraints (26f) and (26g)
imposes the update points xim and yim to lie in a square of
width δ = w√

M−1
centered at the mth GP.

Hopefully, defining the variables dx̃m and dỹm makes it
possible to come up with off-grid points as the position of
the targets. To overcome the complexity associated with the
MIQP nature of (26), we choose a small M and adapt the GPs
iteratively via (25). Alg. 1 shows our heuristic, elaborately.



Algorithm 1 Joint estimate of the transmit power and position
of multiple co-channel targets

initialization:
• set the number of GPs M,

√
M ∈ N

• define the set G := GwM (0, 0), using (14)
• let (x̃0

m, ỹ
0
m) ∈ G, ∀m ∈ FM

• p0
m ← 1

2 (
¯
P + P̄ ) ,∀m ∈ FM

• set the number of iterations I ∈ N
• i← 1

while i ≤ I do
find optimal values s?m, dx̃?m, dỹ?m, dp̃?m using (26)
update x̃im, ỹim and p̃im using (25)
i← i+ 1

end while
X :=

{
(x̃Im, ỹ

I
m, p̃

I
m)
∣∣ sm = 1, ∀m ∈ FM

}
return X

Note that the set X denotes the estimated position and the
transmit power of the targets. In each possible combination of
the combinatorial problem (26), only N out of M binary vari-
ables sm are non-zero So, in the worst case for each possible
combination a quadratic programming (QP) must be solved.
The total number of possibilities is M !

N !(M−N)! ∝ eN ln(MN ).
Also, QP has a complexity of O(n3), where n is the number
of variables, [20]. In our case n = 3N , because of variables
dx̃m, dỹm and dp̃m. Since the total number of iterations is I ,
the overall complexity of Alg. 1 is O(IM

N

NN
).

Also, assume for a given N instead of using Alg. 1, we
increase the granularity of the original MIQP (23) by an order
of I , i.e., the same as number of iterations in Alg. 1. This
means increasing the number of GPs from M to MI , then
complexity will be O(IN MN

NN
). Now, we see that Alg. 1 has

a complexity reduction of order IN−1. Besides, increasing M
from 25 to 500, i.e., I = 20, does not necessarily provide us
enough granularity for successful localization.

VI. SIMULATIONS

We now evaluate the performance of the proposed target
localization method by means of computer simulations. In the
simulation setup P̄ = 1,

¯
P = 0.5 and w = 1Km are chosen.

The results are outcome of J = 5000 simulation realizations,
in each of which the position of sensors and realization of ζkns
are random, while the transmit power and position of targets
are always the same. Let the estimated position of the nth target
at jth realization be denoted by (x̂jn, ŷ

j
n). Then, positioning

root mean square error (PRMSE) in meters is defined by, [4]:

δ =

√√√√ 1

JN

J∑
j=1

N∑
n=1

(
x̂jn − xn

)2

+
(
ŷjn − yn

)2

, (27)

Let the maximum positioning error at jth iteration, i.e.,

δjmax := max
n∈FN

√(
x̂jn − xn

)2

+
(
ŷjn − yn

)2

, (28)

be a draw of the r.v ∆. Then, the error function Pd0

Pd0 := Pr (∆ > d0) = 1− F∆(d0) , (29)

stands for the probability that at least one of the targets is
localized with an error of more than d0 meters. Note, F∆ is
the empirical cdf of the error ∆. Similar to (27), root mean
square error (RMSE) of the transmit power is defined by

ρ =

√√√√ 1

NJ

J∑
j=1

∑
n∈FN

ρjn , (30)

where ρjn := (pn − p̂jn)2 is the square error of the estimated
power value of nth target at jth realization.

The simulation results for Alg. 1 are given in Fig. 2 for
N = 2 and different values of K, G, I and σ. The parameter
σ represents the strength of shadowing. We assume σ =: σkn
for all pairs of targets/sensors are equal. The problem (26) can
be optimally solved by branch and bound method, e.g., using
Gurobi [21]. Fig. 2 shows, also, the simulation result of the
[5, Alg. 2]. In the legend of the figures the values of δ and ρ
are shown.

We see from the figures that increasing G and I decreases
Pd0 at the cost of higher complexity. For instance, in case of
no shadowing, the positioning error for N = 2 is less than 100
micro meters with a probability between 75 − 97.3%. Also,
we see for γ = 30 and 40 the probability that the positioning
error of the worst target is more than 10 meters is respectively,
8− 18% and 8− 32%. These number are sufficiently good in
many applications, given the fact that the area of observation
is 2Km × 2Km. We see that for N = 2, G = 5 and I = 20
and compared to [5, Alg. 2], Alg. 1 shows an improvement
of 8 − 50%, 9% and 16% for, respectively, no-shadowing,
γ = 40 and 30. It also achieves approximately 103 m decrease
in PRMSE, i.e., from 246.5 to 143.8 meters, for γ →∞.

In case of indoor environment, where the shadowing effect
becomes stronger, we could deploy more SNs to combat with
shadowing. Hopefully, RSS-based localization requires cheap
and not sophisticated sensors, on the one hand and on the other
hand, the proposed heuristic has low-complexity. Simulation
shows that for the case γ = 40, N = 2, G = 7 and I = 50,
increasing K from 10 to 20 and 30 decreases the probability
Pr(∆ > 1m) from 70.3% to, respectively, 24%. 10.3%.

Also, to see how the complexity increase results in perfor-
mance loss, Fig. 3 shows Pd0 against d0 for N = 3 targets in
case of no shadowing for different values of G, K and I . We
see that for G = 11, K = 20 and I = 50 the error probability
increases from 3.28% to 12.41% in comparison with N = 2.

VII. CONCLUSION

This paper proposes an unbiased estimator for position as
well as the transmit power of multiple co-channel nodes, where
their signal at SNs are superimposed. The propagation scenario
is assumed to be indoor or urban outdoor areas where shad-
owing effect is not negligible. The problem of consideration is
mathematically intractable. It is also statistically challenging,
since the distribution of the sum of two or more log-normal
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Figure 2. The error probability Pr(∆ > d0) against posi-
tioning error d0 for N = 2 targets achieved by Alg. 1 and [5,
Alg. 2].
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Figure 3. The error probability Pr(∆ > d0) against position-
ing error d0 for N = 3 targets achieved by Alg. 1.

r.vs is unknown. We, nonetheless, have proposed a heuristic to
solve the underlying problem by means of MIP. The method
shows a low complexity for it chooses a small number of
GPs and adapts them in an iterative fashion. The numerical
evaluation shows that the positioning error below 10 meters,
in a ground of area of 4Km2, is very likely to be achieved by
the proposed estimator.
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