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Abstract—In this paper, we consider a multi-server mobile
edge computing (MEC) network supporting low latency
computation services, where the wireless data transmis-
sion/offloading are carried by finite blocklength (FBL) codes
to satisfy the latency constraints. We characterize the FBL
reliability of the transmission phase and investigate the
extreme event of queue length violation in the computation
phase by applying extreme value theory. Following the ob-
tained characterizations, we provide an optimal framework
design including time allocation and server selection, aiming
at minimizing the overall error probability. Via simulations,
we validate our analytical model and show the impact of the
number available servers and total workloads on the system
performance.
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I. INTRODUCTION

The recent emerged mobile edge computing (MEC)
technologies enables the flexible and rapid deployment
for the latency-sensitive applications by pushing the com-
putation, control and storage to the edge of networks [1].
In comparison to the mobile cloud computing (MCC)
which utilizes the centralized servers that are logically
and spatially far away from the user [2], the servers
in MEC are distributed in the close proximity, e.g.,
with cellular base stations (BSs) and WiFi access points
(APs), which shows significant advantages to reduce the
communication latency. On the other hand, the compu-
tation capability of single server in MEC is relatively
limited and insufficient to satisfy all application for all
users, due to the nature of edge networks. Therefore,
the cooperative offloading of multiple servers becomes
a potential solution to enhance the capacity in the edge
network cell [3]–[5].

On the other hand, in the new era of 5G, the arising
demands on the ultra-reliable communications, such as in
the applications of Internet-of-Thing (IoT) and vehicle-
to-everything (V2X), attract a lot of attention from both
academic and industrial area. The requirement of the
ultra-reliability, i.e., being greater than 99.999% in the
ultra-reliable and low-latency communication (URLLC)
standard of 3GPP [6], pushes the system design to be
revised by taking the extreme cases into account e.g.,
the transmission error probability in the short block-
length regime from the communication perspective [7],
[8] and the deadline violation probability due to waiting
time at the computing server’s buffer in the computation
phase [9].

∗Y. Hu is the corresponding author.

In the ultra-reliable and low-latency scenario, the re-
liability in the perspective of either communication or
computation is coupled with the available delay tolerance.
Note that the task offloading involves both the data
transmission via wireless links and computing process at
the MEC servers. For a given maximal allowed service
delay, there exists a trade-off in the time allocation for
the communication phase and computation phase. On
the other hand, due to the user location as well as the
random channel behavior, the channel qualities from the
user to different MEC servers are not same. In addition,
the computing capability and the buffer statuses of MEC
servers are also different. Hence, it is not necessarily
gainful with respect to reliability to let the user offload its
tasks to more and more servers, as the partial offloading to
a server via a poor channel likely results in a transmission
error. On the other hand, always offloading tasks to less
servers (or only one server) may lead to a significant delay
(including waiting and computing time) in the computing
phase, which increases the latency violation probability.
Thus, it is beneficial and important to optimally select
multiple servers to improve the reliability of the service to
the MEC user. Nevertheless, the framework optimization
in the FBL regime has been studied for a two hop relaying
network [11], [12], multiple access network [13], [14].
In [9], [15], the task offloading in the ultra-reliable and
low-latency communication scenario has been investi-
gated. In particular, [9] studies the extreme probabilistic
cases that queue length in the servers violates the delay
threshold. [15] proposes an offloading scheme by jointly
considering the latency and reliability as a cost function.
However, the FBL performance is not considered in those
optimal offloading design, i.e., making the results inaccu-
rate for low-latency networks [16]. To the best of our
knowledge, the optimal offloading in the multiple servers
MEC network operating with FBL codes, especially the
joint framework optimization with multi-server selection,
is still an open problem.

Motivated by the above observations, in this work we
provide an optimal framework design for a multi-server
MEC network with respect to time allocation and server
selection, aiming at minimizing the overall error probabil-
ity. In particular, we leverage the communication model in
the finite blocklength from Polyanskiy [16] to determine
the reliability in the transmission and the extreme value
theory (EVT) [20] to study possible error incurred in
the cloud server side at the same time. Moreover, the
selection of cooperative servers is also optimized to carry
the offloading tasks.
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The rest of the paper is organized as follows. In Section
II, we describe the system. We characterize the end-to-
end reliability of the considered network in Section III,
following which we introduce our design with respect to
framework and server selection in Section IV. We provide
our simulation results in Section V and concluded the
whole work in Section VI.

II. SYSTEM MODEL

We consider a MEC network with K available servers
K = {1, ..,K}, supporting an user equipment (UE) with a
compute-intensive application to be completed, as shown
in Fig. 1. Due to the lack of the local computation
capability, the tasks of the compute-intensive application
at the UE has to be offloaded to and computed by the
servers remotely.

servers

UE Destination

Fig. 1. An example of the considered system.

The system operates in a time-slotted fashion, where
time is divided into frames. The service to the application
(with a group of computing tasks) is required to be
finished in a frame. In addition, as showed in Fig. 2, each
frame contains three phases: a communication phase with
length of t1 and a computation phase with length of t2 and
a feedback phase with length of t̄. In the communication

communication
phase

computation
phase

t1 t2 t¯

T

Fig. 2. The structure of a frame.

phase, the device broadcasts τ bits to different servers via
wireless channels, including the input data of the tasks
needing to be computed as well as the server selection
information. Subsequently, in the computation phase the
selected servers compute the corresponding tasks with
workloads ck. Denote by T the total cost of the communi-
cation and computation phases, i.e., T = t1 + t2. Finally,
the servers transmit computation results to the destination
in the feedback phase. Clearly, the total service time
of the application satisfies T + t̄. However, since the
transmit power of the severs is generally high and the
data size of the computation results is small, the length
of feedback phase t̄ usually be considered to be negligible
in comparison to T [10]. In this work, we assume t̄ to
be significant small and constant. In other words, in the
framework optimization problem considered later in the
work, we only determine the optimal values for t1 and t2
while satisfying the maximal allowed T .

Suppose that the duration of one symbol is denoted
by TS . Then, the blocklength of the communication is
given by n1 = t1

TS
. Note that in total τ bits information

are transmitted in the communication phase. The corre-
sponding coding rate is actually given by r = τ

n1
(in

bits/symbol). Wireless channels between the UE and the
servers are assumed to be independent to each other. We

denote by hk the channel power gain between the UE
and server k, by σ2

k the noise power of server k, by φk
the path-loss from the UE to the server k and by P the
transmit power of the device. Then, the SNR γk of the
received signal in the communication phase at server k is
be expressed as

γk =
hkP

φkσ2
k

. (1)

Finally, for the computation phase, we assume that the
server starts to execute the task as long as the input data
of the tasks is successfully received. Note that only the
selected servers are active to the computation tasks from
the UE. The decision vector of the server selection results
is denoted by

A = {a1, ..., ak}, (2)

where ak is the computation decision of server k. Spe-
cially, ak = 1 implies the device chooses to offload the
task to server k, while ak = 0 indicates the server k is not
selected. In addition, we denote by co the total required
workloads for the application and by fk the computation
power of server k. We denote by K̂ = {k̂

∣∣∀ak̂ = 1}
the set of the selected servers. Hence, the number of
selected servers, i.e., the size of set K̂, is

∑
k ak. Then, the

total workloads are equally assigned to selected servers,
where the assigned workload of the selected server k
is given by ck = co∑

k ak
, ∀k ∈ K̂∗. Specifically, we

define the workload of the non-selected server k̂ as
ck̂ = co∑

l al
,∀k̂ 6∈ K̂ and ∀l ∈ K̂. This definition

does not affect the system operation (as the non-selected
server will be idle anyway) but significantly facilitates the
problem formulation and optimal design in Section III .
Hence, we have

ck =
co∑
k ak

,∀k ∈ K. (3)

Since we consider the reliable low-latency communi-
cation and computation service, the total service time
must be lower than a stringent threshold. Moreover, the
reliability is also one of the major concern in the system
design. To this end, we investigate the communication be-
haviour via the wireless channel following the FBL theory
and characterize the computation delay by exploiting the
extreme value theory.

III. CHARACTERIZATION OF THE END-TO-END
ERROR PROBABILITY

In this section, we characterize the end-to-end error
probability after modeling the FBL communication errors
and computation errors.

A. Communication error in the FBL regime
Recall that the blocklength and the corresponding

coding rate are given by n1 = t1
TS

(in symbols) and
r = τ

n1
(in bits/symbol). Following the FBL transmission

model [16], the (block) error probability of the transmis-
sion to server k is given by:

ε1,k = P(γk, r, n1) ≈ Q
(√

n1
Vk(γk)

(Ck(γk)− r)loge2

)
,

(4)
∗Though the assignment of workloads can be further optimized,

which results in a joint optimization problem, it is beyond the scope
of this paper.
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where Ck = log2(1 + γk) is the Shannon capacity. More-
over, Vk(γk) is the channel dispersion between the UE
and the server k [18]. Under a complex AWGN channel,
Vk = 1− 1

(1+γk)2
.

B. Computation Error

Next, we investigate the computation model at the
servers in the computation phase t2. We denote Dk the
computing time of server k. In general, the execution time
at each server k consists of computing time and queuing
delay (waiting time delay in the queue buffer), which can
be expressed as:

Dk =
ck
fk

+Wk, (5)

where Wk is the queuing delay at server k, which is
decided by the arriving tasks and computation power fk.

A computation delay violation error occurs at server k,
if the server fails in finishing the assigned tasks within
t2. The probability of this computation error at server k
is expressed by

ε2,k = Pr(Dk ≥ t2), (6)

where Pr(Dk ≥ t2) is the probability that the computing
time exceeds t2. Assuming that the server follows the
first-come, first-served principle, the queue delay Wk

is generally proportional to current queue length Qk
according to the little’s law [19]. Obviously, ε2,k is a
monotonously decreasing function with respect to t2.
i.e., a loose threshold leads to a low computation delay
violation probability. In addition, for a server k, the
corresponding frequency fk is fixed†.

The distribution of the execution time is coupled to the
distribution of the waiting time Wk. In particular, we have

ε2,k = Pr(Dk ≥ t2) = Pr(Wk ≥ t2 −
ck
fk

). (7)

For the sake of simplicity, we denote by t̂2 = max{t2 −
ck
fk
, 0} the modified delay tolerance in the computation

phase.
Due to the high reliability requirement, the computation

error probability (computation delay violation probabil-
ity) should be extremely low, i.e., the complementary
cumulative distribution function (CCDF) of the queue
delay satisfies F̄Wk(t̂2) = ε2,k = Pr(Wk ≥ t̂2) � 1.
In other words, the tail performance of the monotoni-
cally increasing CCDF (with a sufficiently high t̂2) is
with the high interests in the design of such reliable
MEC network. According to the extreme value theory
(EVT) [9], [20], the tail of the probability distribution of
ε2,k can be characterized. Considering the distribution of
Dk conditionally exceeding a high threshold d, we denote
Xk = max{t̂2− d, 0} the exceedance of delay tolerance.
According to [20], if the threshold d closely approaches
F−1Wk

(1), the conditional CDF of the exceedance Xk can
be expressed as

FXk|Dk>d(xk) = Pr(Dk − d ≤ xk|Dk > d)

≈ G(x;σ, ξ) = 1−
(

1 +
ξx

σ

)−1/ξ
,

(8)

†Although the server may adopt the dynamic frequency and voltage
scaling (DVFS) technique frame-wise, we assume the CPU frequency
during the single frame is fixed.

where G(x;σ, ξ) is the generalized Pareto distribution
(GPD) characterized by the scale parameter σ > 0 and
shape parameter ξ < 1/2. Therefore, the error probability
with given time slot of computation phase t2 in the ultra-
reliable scenario with the threshold d is given by:

ε2,k = (1−FDk(d))(1−G(max{t2−
ck
fk
− d, 0};σ, ξ)).

(9)
σ and ξ are parameters, which are influenced by the
computing task arrival rate and the computation power
of the server k, i.e, they can be obtained by the suf-
ficient historical data. More importantly, the validity of
the expression does not depend on any specific task
distribution [9].

C. End-to-End Error Probability

Note that multiple servers are expected to be selected,
while each of them computes a part of the total workloads.
The overall service is successful as long as all parts via
the corresponding selected servers are successful, i.e.,
no communication and computation error occurs at each
server. We denote εk the error probability of the part of
the workloads processed by server k. Clearly, an error
occurs at server k if the transmission to server k fails or
the computation delay violates t2. On the other hand, if
server k is not selected, it contributes nothing to the error
probability, i.e., εk = 0,∀k 6∈ K. Hence, for all k ∈ K,
εk can be generally given by

εk = ak(ε1,k + (1− ε1,k)ε2,k)

= ak(ε1,k + ε2,k − ε1,kε2,k).
(10)

Denote by εO the end-to-end error probability over all
the selected servers. εO can be obtained by

εO = 1−
∏
k

(1− εk). (11)

IV. FRAMEWORK OPTIMIZATION WITH SERVER
SELECTION

In this section, we propose a framework optimization
design to minimize the end-to-end error probability by op-
timally allocating the sum (of communication and compu-
tation) time T to the two phases t1 and t2, while optimally
determining the offloading decisions with consideration of
both the task-partition and the server selection.

A. Problem Formulation

We aim at minimizing the end-to-end error probability
by optimally allocating the maximal allowed T , denoted
by Tmax, to t1 and t2, and optimally selecting multiple
severs. Hence, the optimization problem is formulated by:

minimize
t1, t2,A

εO (12a)

subject to A ∈ {0, 1}K , (12b)
t1 + t2 ≤ Tmax, (12c)
εk ≤ εmax, ∀k ∈ K, (12d)

ck =
cO∑
k ak

, ∀k ∈ K, , (12e)∑K

k=1
ak ≥ 1, (12f)
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where A is the server selection results defined in (2). In
addition, the constraint (12d) ensures the reliability of the
selected links fulfills a given threshold to prevent wasting
of network resource.

B. Optimal Solution to (12)
In this subsection, we solve Problem (12) based on the

following methodology: We first decompose the original
problem in (12) subproblems. Subsequently, we charac-
terize the subproblem and the relationship between the
optimal solutions of t1 and t2. Finally, according to the
characterization of the sub-problems, we reformulate it
and combine it back to achieve a solvable reformulation
of the original problem in (12).

1) Decomposition and subproblems of (12): With K
available servers, there exists 2K−1 possible server selec-
tion combinations of K̂. Therefore, the original problem
in (12) can be decomposed into 2K−1 subproblems with
different K̂. For a given set of K̂, the subproblem can be
formulated as follows:

minimize
t1, t2

εO (13a)

subject to εk ≤ εmax, ∀k ∈ K̂, (13b)

ck =
cO∑
k ak

,∀k ∈ K̂, (13c)

ak = 1, ∀k ∈ K̂. (13d)

2) Characterization of Subproblem (13): We have the
following two lemmas characterizing Subproblem (13).

Lemma 1. The end-to-end error probability εO is convex
in both t1 and t2.

Proof: First, we investigate the convexity of the error
probability εk . For the non-selected server k 6∈ K̂, we
have εk = 1, which is convex in both t1 and t2. For the
selected server k ∈ K̂,the second derivative with respect
to t1 is given by:

∂2εk
∂t21

=
∂2ε1,k
∂t21

+ 0− ∂2ε1,k
∂t21

ε2,k

=
∂2ε1,k
∂n21

(
∂n1
∂t1

)2

(1− ε2,k)

=
∂2ε1,k
∂n21

(1− ε2,k)

T 2
s

.

(14)

Our previous work [21] shows ∂2ε1,k
∂n2

1
≥ 0. Moreover, the

error probability in the computation phase always holds
ε2,k ≤ 1. Hence, it also holds ∂2εk

∂t21
≥ 0, i.e., the error

probability for the selected server k is convex in t1.
Similarly, the second derivative with respect to t2 is

given by:

∂2εk
∂t22

=
∂2ε2,k
∂t22

+ 0− ∂2ε2,k
∂t21

ε1,k

=
∂2ε2,k
∂t22

(1− ε1,k)

(15)

Considering an ultra-reliable scenario, where the server
is only selected if the error probability εk is lower than a
given low threshold εmax < 0.01, the error probability in
each phase must also lower than the threshold according
to (11). Therefore, we assume that t2 is sufficient to apply

the EVT for the selected server, i.e., t2 > d. Based on
EVT in (8), the second derivative of ε2,k with respect to
t2 can be written as

∂2ε2,k
∂t22

= FDk(d)
∂2G(t2 − dk;σ, ξ)

∂t22

= FDk(d)
(1 + ξ)

σ2

·
(

1−G(t2−
ck
fk
− ck
fk
−d;σ, ξ)

)− 2+ξ
xi

≥ 0.
(16)

Note that it also holds 1 − ε1,k ≥ 0. Hence, we have
∂2ε2,k
∂t22

≥ 0.
Next, we investigate the convexity of the end-to-end

error probability εO. For the convenience of notations,
we denote vk = 1 − εk the reliability of the server k.
Obviously, if ak = 1, we have vk = 1. It implies that if
the sever is not selected, the "empty" offloading between
such server and the UE is always reliable.

Therefore, the second derivative of εO with respect
to t1 is expressed as

∂2εO
∂t21

= −
∑
k

∂2vk
∂t21

∏
l 6=k

vl +
∑
k

∑
l 6=k

∂vk
∂t1

∂vl
∂t1

∏
p 6=k,p 6=l

vp

(17)
As showed in (14), εk ≤ 1 is a convex and monotonic
function with respect to t1. Therefore, vk = 1 − εk ≥ 0

is a concave and monotonic function. We have ∂2vk
∂t21
≥

0,∀ak = 1 and ∂2vk
∂t21

= 0,∀ak = 0. Moreover, we

have sgn
(
∂vk
∂t1

)
= sgn

(
∂vl
∂t1

)
,∀ak = al = 1 and

∂vk
∂t1

= 0,∀ak = 0 , where sgn(·) is the sign function.

Hence, it holds ∂2εO
∂t21

≥ 0. Analog to t1, we can show

that ∂2εO
∂t22

≥ 0 since εk is also a convex and monotonic
function with respect to t2 according to (15).

As a result, the end-to-end error probability εk is
convex in both t1 and t2.

Next, in the following lemma, we state the relationship
between the optimal values of t1 and t2.

Lemma 2. The optimal solutions to Problem (13), given
by t∗1 and t∗2, satisfy t∗1 + t∗2 = Tmax.

Proof: We prove the lemma with contradiction. As-
suming that the optimal solution t′1 and t′2 satisfies the
strict inequality of constraint (12e), i.e., Tmax − (t′1 +
t′2) = α > 0. Since the solution is optimal, ε′O(t′1, t

′
2)

is always the global minimum. It always holds that
ε′O(t′1, t

′
2) ≥ εO(t1, t2). However, there exists a feasible

solution (t′′1 = t′1 + α, t′′2 = t′2) ∈ {t1, t2|t1 + t2 ≤ Tmax.
We showed in the proof of lemma 1 that εO is an
decreasing function with respect of blocklength n = t1

TS
,

namely with respect of t1. Hence, we conclude that the
solution (t′′1 , t

′′
2) results a lower error probability compar-

ing to (t′1, t
′
2), i.e., ε′′O(t′′1 , t

′′
2) < ε′O(t′1, t

′
2). Therefore, the

assumption of the optimal solution (t′1, t
′
2) is violated.

3) Reformulation of Problem (12): According to the
above lemmas characterizing the subproblem (13), the
original problem in (12) can be reformulated as
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minimize
t1,a

εO = 1−
∏
k

(1− εk) (18a)

subject to t1 + t2 = Tmax, (18b)
εk ≤ εmax, ∀k ∈ K, (18c)

ck =
cO∑
k ak

, ∀k ∈ K, (18d)∑
k

ak ≥ 1, (18e)

εk ≤ ak,∀k ∈ K, (18f)
εk ≤ ε1,k + ε2,k − ε1,kε2,k,∀k ∈ K,

(18g)

where (18f) and (18g) are the constraints for the lineariza-
tion of objective function, which helps us to avoid the
multiplication of variable ak and t1.

The objective function and constraints of Problem (18)
are either affine or convex. Therefore, the reformulated
problem in (18) becomes a mixed integer convex problem
(MICP) which can be solved efficiently via the recently
developed algorithm in [22].

V. NUMERICAL SIMULATION

In this section, we provide the numerical simula-
tion to evaluate the proposed design. In the simulation,
we consider the following parameter setups: First, we
consider the UE with a location in the center of a
square area of 50 m2. In addition, for the offloading
via the wireless links, we set the bandwidth B= 5Mhz,
carrier frequency F = 2.4 Ghz, thermal noise power
N = −174 dBm and transmit power P = 20 dBm.
Moreover, we adopt the path-loss model in [23], given by
PL = 17.0 + 40.0 log10(r). We further set the input data
τ = 1600 bits and the total workloads co = 24 Mcycles.
Each of the K servers has a computation power of f = 3
Ghz, and the task Poisson arriving rate λ = 3 Mcycles/s.
We obtain the shape parameter ξ = −0.0214 and scale
parameter σ = 3.4955× 106 with a threshold d = 5.7ms
above 99.9% reliability. Finally, the total delay tolerance
is assumed to be T = 25ms and the error probability
threshold is set to εmax = 0.01.
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Fig. 3. The error probability in the selected link versus the duration
of communication phase t1 with different setups of the average trans-
mission distances r (from the UE to servers) and the average assigned
workloads c
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Fig. 4. The overall error probability εO versus the number of available
servers K with homogeneous servers or heterogeneous servers.

We start with Fig. 3 to present the error probability
of a selected link k versus the duration of time slot t1.
First of all, the error probability is observed to be convex
in t1, which confirms Lemma 1. Secondly, the optimal
solution of t1 are not the same for scenarios with different
values of distances r (from the UE to the servers). A
small t1 is more preferred, when r is short. On the
other hand, for fixed r, changing c does not effects the
optimal solution of t1 too much. Moreover, selecting
more servers, corresponding to reducing c, improves the
reliability. However, when the server is relatively far from
the UE, e.g., r = 20m, the performance improvement by
selecting more servers becomes significantly smaller than
the case with r = 5m.

To further investigate the relationship of the selected
server and the performance, in Fig. 4 we study the impact
of the total number of servers K on the end-to-end
error probability εO. Both the homogeneous (servers with
same distances from the UE) and heterogeneous servers
(with different distances from the UE) are considered.
Generally, increasing the number of servers (deployed
in the system) improves the reliability of the MEC net-
work, which matches with the results of Fig. 3. In the
homogeneous cases and the heterogeneous case with the
proposed optimal design, the performance improvements
by adding one more server in the system are decreasing
in K, i.e., the curves become flat when K becomes
relatively large. Under such cases, the bottleneck of the
system performance is the computation error. It should be
pointed out that with the help of the proposed design, the
reliability of the MEC network outperforms other cases.
More importantly, owning to our design, the performance
improvement by adding more servers is more considerable
than the rest cases. Finally, it can be observed that without
the proposed server selection process, i.e., selecting all the
servers deployed in the system (only keeps the computing
resource allocation process of the proposed design), the
performance is not always improved by adding more
servers. In particular, it becomes even worse when K is
relatively large. This indicates the proposed joint design is
more important in practical scenarios with heterogeneous
servers.

Finally, in Fig. 5 we valuate the impact of the total
workloads to the reliability of the considered MEC net-
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Fig. 5. Overall error probability εO versus total workloads co. Both
the proposed design and the case selecting all servers are provided.

work. As expected, increasing of cO increases the overall
error probability. However, these curves increase in differ-
ent manners. First of all, the proposed design outperforms
the case without the proposed server selection process
(simply selecting all servers) no matter when K = 2
or K = 6. Secondly, the performance advantage of the
proposed design is more significant for the scenario with
more servers, which matches with the results observed
from Fig. 4. Finally and interestingly, it can be observed
that under the case without the selection process, the
curves of scenarios with K = 6 and K = 2 across
with each other. This indicates that without an appropriate
server selection process, it is only beneficial to let more
servers join in the offloading when the workload is slight.
On the other hand, in the proposed design, the gain from
having more servers (for selection) is more remarkable
for the scenario with relatively heavier workload.

VI. CONCLUSION

In this work, we propose a reliability-optimal design in
a multi-server edge computing network by joint optimally
selecting multiple servers and optimally allocating the
allowed time for the communication and computation
phases. In particular, both the communication errors due
to FBL codes and computation errors caused by delay
violation are taken into account in the characterization
of the overall error probability. We then formulated an
optimization problem which minimizes the overall error
probability of the whole service within the maximal al-
lowed service delay. Based on the analysis of the decom-
posed problems, we reformulated the original problem
as a MICP problem, which can be solved efficiently.
Simulation results confirm our analytical model and the
performance advantage of the proposed design.
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