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Abstract— The paper presents a stochastic, infrastructure
centered modeling approach for capacity analysis applications
in long term planning of railway stations. A formal modeling
approach of train operations using generalized stochastic Petri
nets is proposed. The model is analyzed based on the embedded
Markov chain, which allows for quality based performance
metrics including utilization, blocking probabilities and waiting
times. The model is validated and tested against simulation in
an application scenario for a medium size railway station. In
addition, model extensions to large-scale systems are discussed.

[. INTRODUCTION

Complicated approval procedures and long asset lifetimes
require intensive planning in railway projects. Capacity ana-
lysis, which deals with assessing the traffic load that can be
sustained by the infrastructure at a high level of quality, is a
vital planning step in this context. Whereas significant efforts
have been undertaken to analyze and standardize capacity
evaluation of railway lines [1], [33], [36], such that lines are
well-understood, the situation is different for railway nodes.

On the tactical level, traffic planning and optimization in
railway station areas have sucessfully been tackled in the
station routing [5], [24], [26] and the train platforming prob-
lem [9], [10], [32]. Recently, robust scheduling techniques
[4], [7], [12] have found widespread application in this area.

As these approaches require information on train arrival
and departure times, they are unsuited for strategic infrastruc-
ture dimensioning where timetable information is scarce and
infrastructure capability regardless of a specific timetable is
to be assessed. This is why analytic and stochastic models,
as well as simulation studies are prevailing in long term
station performance analysis. UIC Code 406 [36] extends
the schedule compression method, which is based on infras-
tructure utilization, to track groups and station threads. In
probabilistic methods compiled and analyzed in [27], station
capacity is assessed in terms of blocking probability and
waiting times at station entry and exit. Similar techniques
are applied in [25], where additionally the interface to the
UIC compression method is explored.

Decomposition techniques for bottleneck analysis of sta-
tion areas [31] have frequently been used [22]. To assess
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entire route nodes, an aggregation of infrastructure segments
— so called serial route nodes — has been performed [29].
To cope with uncertainty in traffic demand, approaches
involving discrete event simulation [14], [15] are widespread.
Whereas the previously mentioned stochastic approaches suf-
fer from a lack of exactness in representing train operations
due to aggregation or decomposition, simulations are time
consuming given heavy-tailed train processing times [3].

Petri nets, which allow for a detailed representation of
operating conditions in station areas and dependencies im-
posed by the safety system, provide a means to mitigate
these problems. By allowing for an exact representation
of the train control logic, while providing flexibility in
transition modeling, they are particularly suited for long-
term planning purposes with uncertainty. In [20], [28] and
[34], Petri nets are used to represent railway control systems
and interlockings focusing on the safety aspect. In traffic
planning, colored Petri nets have been used as a formal
abstraction of timetable generation as early as 1996 [30]. A
detailed control model for railway operations based on the
interlocking logic and its application to deadlock prevention
is investigated in [18]. Ref. [21] presents a fully automated
approach to set up Petri net simulation models for railway
networks from elementary railroad infrastructure data and its
application to the Oslo subway network.

At a high-level train operation perspective, Petri nets have
been used to describe the train processing on lines [16], [38]
and in stations [2], [35]. Delay propagation in stations is
discussed in [40] and has been picked up in [17] and [39].
Still, the use of formal methods with the goal of station
capacity analysis is limited: In Ref. [37], an interval timed
Petri net for traffic modeling in railway stations is presented
and hard performance bounds for a single operation hour are
derived. However, to the best of our knowledge, Burkolter’s
work [8] remains the only approach to perform formal
Petri net based capacity analysis for extended time frames
and station areas. A two-level approach is used: On the
aggregated base level, Petri nets are used to create a tentative
timetable based on a macroscopic train event graph including
interactions between trains, but disregarding microscopic
route exclusions in stations. This event-activity graph is then
evaluated using max-plus techniques. On the second level,
this tentative timetable is checked for microscopic feasibility
in station threads. If necessary, an iterative adjustment to
the train sequence in the base layer is made. Capacity is
assessed based on the critical path in the max-plus setting,
i.e. the densest possible train sequence that can be generated
for given train service requests (also see [19]).



In this paper, we present a generalized stochastic Petri net
(GSPN) model for performance modeling of railway station
areas related to [8] and [37] and demonstrate how the frame-
work can be used for station capacity analysis. The focus is
on long term strategic infrastructure and line planning with
uncertain traffic demand, where no detailed timetable concept
and only a rough operating concept is available. Our model
goes beyond stochastic approaches prevalent in this area by:

« accounting for complex nonlinear interactions between
trains in the Petri net. Asynchronous track occupation
and release is explicitly considered. Such interactions
are not incorporated in existing models, where a de-
composition of station areas into track groups and route
nodes is widespread [36],

« extending the performance analysis to more detailed
quality-oriented capacity metrics such as the distribution
of system times or blocking probabilities at station
threads and at platforms. Corresponding performance
indicators derive from a state space based analysis of
the embedded Markov chain.

The paper is organized as follows: In Section II we
introduce some elementary notions of train operations in
railway station areas. The GSPN station model, as well
as a formalized approach to identify and include partially
exclusive shared resources in route nodes and station areas,
is discussed in Section III. Section IV presents an analysis of
the model’s performance for a medium size railway station.

II. TRAIN OPERATION IN STATION AREAS

Railway Station Areas (RSA) consist of platform tracks
and switch areas. Train processing tasks such as passenger
exchange and goods transfer are performed at platforms,
whereas switch areas connect platforms to adjacent railway
lines. For switch areas, a subdivision into serial route nodes,
i.e. connected areas that can only be allocated to one train
at a time has proved effective [31]. In the context of this
work, serial route nodes and platform tracks are referred to
as shared resources. A schematic representation of a railway
station including the shared resources is depicted in Fig. 1.

Train operation in station areas is based on train paths de-
fined in the interlocking system. Running trains requires the
allocation of a train path upon station entry and exit, which
involves the simultaneous blocking of all shared resources
involved in the train path. To describe route dependencies,
formalized route exclusion tables that describe compatibility
of routes in interlocking are widely used [27].
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Fig. 1: Schematic representation of a railway station. Ar-
rows indicate directionality of tracks. Serial route nodes are
highlighted by gray boxes.

III. GSPN MODEL FOR PERFORMANCE
MODELING OF RAILWAY STATION AREAS

A. Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPN) are an extension
of Petri Nets (PN) incorporating two types of transitions:
immediate transitions and timed transition. Immediate tran-
sitions correspond to transitions in classic Petri Nets and
fire immediately if enabled. Timed transitions, by contrast,
fire after an exponentially distributed time (z ~ Exp(A)).
Immediate transitions have priority over timed transitions. In
case multiple immediate transitions are enabled, firing order
is according to a specific firing policy.

The two types of transitions yield vanishing and tangible
markings in GSPNs. A vanishing marking is a marking in
which at least one immediate transition is enabled. The
holding time in vanishing states is always zero. Tangible
markings are markings bearing no immediate transitions.
Here, the exit rate is the sum of the transition rates of all
enabled transitions.

GSPNs also allow for arc multiplicity and inhibitor arcs.
Inhibitor arcs connect transitions and places and disable tran-
sitions in case the number of tokens in the place connected
to the transition exceeds the multiplicity of the inhibitor arc.

B. GSPN Modeling of Train Traffic in Railway Station Areas

Following up on similar practices in delay propagation
modeling for railway systems [6], [8], [19], different train
patterns (in terms of routing / stopping policy / speed) are
modeled as individual train lines, i.e. successions of train
events and activities. For a single train line this yields the
model layout in Fig. 2.

The train arrival process to the station area is modeled by
the timed transition #,.iya and an immediate transition Z,,e;,
which is enabled whenever the platform and serial route
nodes required by the entry route are available. In terms of
the GSPN, this relates to a marking with tokens in the places
corresponding to shared resources (pp, in the simplistic
representation in Fig. 2). g, and fg, are timed transitions
describing the train running time upon station entry and
exit. pawenn denotes the halting place at the platform, which
is connected with a timed transition f4ye; modeling train
stopping time. Once the stopping time has passed, the train
is ready to depart by an immediate transition fgejay in case
the exit route (route 2) is available. In this case, a token is
transferred to pp,, thus enabling entry routes to the platform
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Fig. 2: GSPN model for a single train line. Train movement
is modeled as a series of transitions describing train operation
times upon station entry, exit and in the platform areas.
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Fig. 3: GSPN model of a simple station layout with two train
lines. Train line 1 arrives from A and proceeds to B via track
1, train line 2 arrives from B and proceeds to A via track 2.
X, and X, denote the shared resources (serial route nodes)
for the left and right station threads.

again. If not, the train is delayed at the platform until
the exit route is released. Train routes are assumed to be
fix. However, alternative routes can be incorporated using a
probabilistic or state dependent routing scheme.

Joint use of the infrastructure imposes dependencies be-
tween train lines and connections in the GSPN graph. Figure
3 depicts the GSPN model for a simple crossing station and
two train lines. Train line 1 arrives from A and proceeds to
B via track 1, train line 2 arrives from B and proceeds to A
via track 2. Shared resources X; and X, correspond to the
serial route nodes to the left and right of the two platforms.

Rail operation requires simultaneous utilization of multiple
resources as the allocation and release of track segments is
not performed synchronously. A track segment can only be
released for other trains once the departure of the complete
train has been detected by track clearance sensors (axle
counters or track circuits). Stochastic network models often
neglect this fact, hence underestimating track occupation
times. The GSPN model allows to incorporate asynchronous
track occupation and release by including a timed transition
(tp, release) in the feedback loop after running time on route
R and station dwell time have been completed (see Fig. 4).
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Fig. 4: GSPN model with separate route and platform release.

C. Performance Evaluation

For performance evaluation the GSPN model is trans-
formed to a continuous time Markov chain (CTMC). Van-
ishing markings are eliminated from the GSPN’s reachability
graph as multiple simultaneous state space transitions cannot
be modeled by CTMCs. In this work, vanishing markings
are eliminated in a post-elimination step according to the
approach proposed in [11]. While some details on train
interdependency are lost in this approach, the soundness of
the effective statistical behavior of the system is maintained.

Different performance measures for capacity analysis of
station areas derive from the generator matrix of the under-
lying CTMC. Arguably, the most widespread performance
metric in railway capacity analysis is the utilization of
infrastructure components. By solving the balance equations,
utilization ratios for platform tracks and shared resources can
be obtained from the stationary probabilities that tokens are
in the corresponding place. Other metrics used in the railway
context are the waiting and delay probability of trains upon
station entry or exit. These quantities directly derive from
the stationary probability of the markings of pgueue OF Pdelay-

Mean sojourn times of trains in the station area can equally
be calculated from the means of the station holding times
in the CTMC. In addition to these metrics, the state-space
representation of the GSPN yields full information on the
distribution of sojourn times and delays (see [13]), such that
non-compliance with a pre-defined level of service widely
used as a capacity metric in railways [1] can be studied. In
addition, transient analysis, e.g. in case of disturbances or
changing traffic load during peak hours, is also possible.

Unlike previous probabilistic methods for railway stations,
GSPN modeling of train operations in station areas has
the advantage that nonlinear effects resulting from complex
interactions between trains in station areas are included in
the model in a natural way. In particular, blocking in the
left station thread may affect the right station thread due to
prolonged track occupation times at the platform tracks or
starvation of succeeding train arrivals.

IV. APPLICATION OF THE GSPN MODEL IN
STATION PERFORMANCE ANALYSIS

In the following, we analyze the performance of the GSPN
approach by comparison to simulation. In the first step, the
model is validated by comparison to discrete event simulation
of rail traffic using the same distributional assumptions as in
the GSPN model. In a second step, the model performance is
assessed by comparison to a more detailed simulation tool,
which includes physical calculation of train running times.

A. Application Scenario

For the analysis, a station layout and traffic concept
motivated by the former Frattamaggiore station previously
discussed in [27], is used. It consists of 4 platform tracks, of
which 3 are directional, and 1 is bidirectional (see Fig. 5).
Route and platform length are assumed to be 700 m and
500 m. Traffic concept, routing and train characteristics used
in the case study are depicted in Tab. I.
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Fig. 5: Railway station layout in case study including serial
route nodes highlighted by gray boxes (adapted from [27]).
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TABLE I: Traffic parameters in the case study.

Train length Trains/ Dwell time  Accel.  Speed

[m] 24 hours [min] (2] [km]
Ajn-1-Bout 300 56 2.0 0.15 30
Ain-2-Bout 300 56 2.0 0.15 30
Ain-4-Bout 100 8 1.5 0.20 30
Bin-3-Aout 300 112 2.0 0.15 30
Bin-4-Aout 100 8 1.5 0.20 30

An illustration of the GSPN model for the station is
depicted in Fig. 6. The size of the waiting space at the
adjacent lines is restricted to 3 to reduce state space size
in the CTMC representation. In the GSPN, this is modeled
by an inhibitor arc with multiplicity 3 in the arrival process.
Asynchronous track release is not depicted here.

B. Validation of the GSPN model

For validation, stationary asset utilization, mean sojourn
times, and mean waiting times are compared to a probabilis-
tic simulation of train operations in railway stations. Timed
transitions are governed by exponential distributions both
in the GSPN and the simulation setting. Simulation results
have been averaged over 100 runs with a total simulation
time of 10° minutes of train operation for each run to allow
for comparison with stationary GSPN results. Asynchronous
track release is not considered in the validation step.
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Fig. 6: GSPN model for railway station.

The results are depicted in Fig. 7. Fig. 7a provides an
infrastructure centered view on the utilization of the shared
components. The mean station sojourn times of trains on the
five corresponding routes and the mean waiting times at the
station borders are depicted in Figs. 7b and 7c. Finally, the
overflow probability, i.e. the probability that an arriving train
finds the waiting space (of size 3) at the station border full
and is lost, is depicted in Fig. 7d.

I Modeling Technique
Probabilistic Simulation

Xy

Shared Resource

Xz

X3

Xy

00 25 50 75 100 125 150 175 200 225
Utilization in %
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(b) Mean sojourn time in the station area by train route.
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(d) Overflow probability of waiting space at station border.

Fig. 7: Comparison of GSPN results to probabilistic simu-
lation. Simulation results averaged over 100 runs with 10°
simulation minutes.



It can be seen that the agreement between GSPN results
and stochastic simulation is almost perfect; relative errors are
below 0.8% for all values. The overflow probability is 0.57%
for station thread B and 0.16% for station thread A. While
the values are non-negligible, the error made by cutting the
waiting space at size 3 is not likely to seriously affect the
results. The significantly higher value for rightbound trains
can likely be explained by the fact that rightbound trains are
evenly spread over platforms 1 and 2, such that the platform
area approximately acts as a double channel service unit,
whereas almost all leftbound trains are routed via Platform
3, and hence effectively experience a single channel system.

C. Comparison to simulation results

To assess the exactness of the GSPN model, results are
compared to a more realistic simulation of train operations
in station areas, which includes a running time calculation
module. Train driving characteristics used for the simulation
are depicted in Tab. I. GSPN running time parameters are
calibrated to the average runtimes on the corresponding in-
frastructure segments rather than the maximum speed. Train
routes Aj, —4 — Boyt and By, — 4 — Aoy are not considered to
reduce state space size when asynchronous track release is
considered. Again, the simulation results are averaged over
100 runs with 10° simulation minutes of train traffic.

Results are depicted in Fig. 8. It can be seen in Fig. 8a
that the GSPN approach gives an adequate approximation
of the simulated utilizations. Whereas running times during
station entry and exit are almost exact, dwell times at station
platforms are slightly overapproximated. This can probably
be explained by the fact that our GSPN approach overesti-
mates variation of processing times by assuming exponential
holding times in timed transitions. This particularly seems to
affect the blocking probabilities at station exit and entry and
hence manifests in increased platform occupation times and
prolonged station entry waiting times (visible in Fig. 8c).
Overall sojourn times in the station area seem less effected.

D. Limitations and possible extensions

An even better representation of blocking effects could
possibly be achieved by extending the GSPN model to phase-
type distributed firing times. However, this would yield a
further increase of the state space. In Tab. II, basic model
parameters and solution times for the GSPN approach both
with and without asynchronous track release are given.

It can be seen that the model performance notably depends
on the number of train lines. By increasing from 3 to 5 train
lines — typical values for small and medium size station upon
suitable aggregation — the state space grows from 6446 to
289071 states. Yet, large stations easily involve 10 or more
different train lines that cannot be aggregated. Still, we find
that the size of the state space is not the primary limitation
of our approach. Sparse CTMCs with several millions of
states have been shown to be tractable in probabilistic model
checking [23]. The main effort currently stems from matrix
inversions in the elimination of vanishing markings in the
transformation of the GSPN to a CTMC based on the
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(c) Mean waiting times of trains upon station entry.

Fig. 8: Comparison of GSPN results to a realistic simulation
with physical calculation of train running times. Simulation
results averaged over 100 runs with 10° simulation minutes.

TABLE II: Computational performance of the GSPN model.
All results were obtained on an Intel i7 6700 machine with
16 GB RAM.

Without With
Separate Release  Separate Release
3 train  runtime ~ 0.2min ~ 7min
lines # states 6446 72326
5 train  runtime ~ 75min exceeding
lines # states 289071 memory

procedure described in [11]. Here, the main problem is not
the number of operations — which are governed by the degree
of sparsity (occ. < 0.1%), but fill-in in the inversion of the
routing matrix between vanishing markings. By performing
the elimination “on the fly” during model setup (also see
[11]), we are confident that a significant gain in performance
also making large stations accessible can be achieved. In
addition, state space reduction techniques as, e.g. described
in [37], can be used to improve performance in case of large-
scale systems.



V. CONCLUSIONS

We have presented a new GSPN modeling approach for
the description of train operations in railway station areas
in view of uncertain traffic demand. The approach is par-
ticularly suited for strategic capacity analysis tasks typically
encountered in infrastructure dimensioning and line planning.
By adopting GSPNs for capacity planning, a formalization of
capacity modeling of station areas that incorporates nonlinear
blocking effects not included in analytic, probabilistic and
queuing based approaches used to date, has been achieved.
In addition, our solution based on the embedded Markov
chain makes more detailed capacity measures such as the
marginal waiting times at specific network positions accessi-
ble. Information on distributional performance characteristics
or transient system behavior can also be obtained, such that
the approach can also be applied to analyze the effects of
disturbances in the future.
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