Majlesi Journal of Electrical Engineering Vol. 5, No. 1, March 2011

Performance Evaluation of Decision Fusion for
Distributed Detection with Side Information

Gernot Fabeck', Rudolf Mathar’

1- Institute for Theoretical Information Technology, RWTH Aachen University, Aachen, Germany.
Email: fabeck@ti.rwth-aachen.de

2- Institute for Theoretical Information Technology, RWTH Aachen University, Aachen, Germany.
Email: mathar@ti.rwth-aachen.de

Received: June 2010 Revised: October 2010 Accepted: December 2010

ABSTRACT:

Efficient evaluation of decision fusion algorithms becomes particularly important when different fusion schemes have
to be compared with respect to an underlying performance metric or when a large number of evaluations is required
for optimization purposes. In this paper, we present explicit expressions for the global error probabilities of decision
fusion for distributed detection with side information. In the considered distributed detection problem, the sensors
compress their observations independently and transmit local decisions to a fusion center that combines the received
decisions with respect to available side information and computes the final detection result. In the special case of
identical sensors, computationally efficient expressions are obtained by using the multinomial distribution. Numerical
results obtained by considering the Gaussian detection problem reveal the influence of different qualities of side
information on the overall detection performance.
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1. INTRODUCTION

One of the primary applications of wireless sensor
networks is the detection of phenomena of interest in
the monitored environment, e.g., absence or presence
of a target[l, 2, 3]. The wireless sensors typically
operate on limited energy budgets and are consequently

distributed detection applications was first considered
by Hashlamoun and Varshney [5]. They derived the
form of the optimal fusion rule for fixed binary local
sensor decision rules. In this paper, we allow for
general M-ary local sensor decision rules and provide
explicit expressions for the global error probabilities

subject to communication constraints, resulting in a both for identical and non-identical sensors.
finite number of bits each sensor node can transmit to
the data sink before it runs out of power. In order to use
the available energy budget efficiently and thereby
extending sensor network lifetime, preprocessing of
measured raw data at the sensors and transmission of
summary messages is recommended or even necessary.

In the so called parallel fusion topology, the sensors
compress their observations independently and make
preliminary decisions about the state of the observed

environment [4]. The sensors transmit the local Us

decisions to a fusion center that combines the decisions Ur Un
with respect to potentially available side information

and computes the final detection result. The problem of ( Fusion Center Xo
decision fusion is to optimally design the fusion rule

according to the joint distribution of local sensor l
decisions and the statistics of the side information with
respect to an overall performance criterion, e.g., the
global probability of error.

Decision fusion with side information for

Up € {0, 1}
Fig. 1. Decision fusion for distributed detection with
side information.
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2. DECISION FUSION

The problem of decision fusion for distributed
detection with side information at the fusion center and
M-ary decisions at the local sensors can be stated as
follows (see Fig.1). We consider a binary hypothesis
testing problem with hypotheses Hy and H; indicating
the state of the monitored environment. The associated
prior probabilities are Ty = P(H,) and m; = P(H,). In
order to detect the true state of nature, a network of N
sensors Sy, ..., Sy obtains random observations

Xy, 0, Xp) EX] X o X Xy (1
which are generated according to either H, or H;. The
random observations Xj,..,Xy are assumed to be
conditionally independent across sensors given the
underlying hypothesis, i.e., the joint conditional
probability density function of all the observations
factorizes as

N
fe i) = [feglHo, k=01 @
j=1

without the conditional independence assumption (2),
analysis and design of distributed detection systems
becomes intractable [6].

2.1. Local Sensor Decision Rules

According to the distributed nature of the problem,
the sensors compress their respective observations X;
independently by forming local decisions

thus, the local decision U; of sensor S; does only
depend on its own observation X; and not on the
observations of the other sensors. In the general case of
M-ary quantization at the local sensors, the local
sensor decision rules §; are mappings

8:6 - M = {1,..., M} )

where M denotes the finite alphabet set. As Warren
and Willett have shown, local sensor decision rules
leading to jointly optimal configurations are monotone
likelihood ratio partitions of the sensor observation
spaces Xj, ..., Xy, provided that the observations are
conditionally independent across sensors [7]. Hence, it
is sufficient to consider sensor decision rules §; that can
be parameterized by a vector of real quantization

thresholds 7; = (z(", ., 7" )" with (¥ <7{*
leading to the conditional quantization probabilities
a = P(U; = k|H,) = P(r) "V < L; <7\ |H,),
3.("> P(U; = k|H,) = P(T(k V<< T(k)|H)
In the above equations, T( ) = —00, T].( ) = oo, and
Li =log (fj(Xj|H1)/fj(Xj|H0)) is the local log-
likelihood ratio of observation X;. The stochastic
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vectors of quantization probabilities

@ = (&, .., a"y )

B =B, ..My (©)

are computable given the local observation statistics
fj(xj|Hy) and the vector of quantization thresholds t;
for each j =1,...,N. Upon local decision making, the
sensors transmit the local decisions Uy, ..., Uy to the
fusion center.

2.2. Optimal Decision Fusion With Side
Information

At the fusion center, the received decisions
Uy, ..., Uy are fused with respect to the available side
information X, € X, into the final detection result

Uy = 6o(Uy, ..., Uy, X), where the fusion rule §, is a
binary-valued mapping
8o: MY x Xy - {0,1} 7

we assume that the available side information described
by the random variable X, € X, and the local decisions
U, ..,Uy from the sensors are conditionally
independent given the underlying hypothesis. Decision
fusion performance is measured in terms of the global
probability of error

Pe=7TOPf+7T1Pm (8)

which is a weighted sum of the global probability of
false alarm Pr = P(U, = 1|H;) and the global
probability of miss B, = P(U, = 0|H,) at the fusion
center. Optimal decision fusion with side information
under the minimum probability of error criterion can be
performed by evaluating a log-likelihood ratio test with
a variable threshold according to

Uy =1
ty 2 t(u) ©)
u, =0
where
fo(xolHy)
£, =1lo 10
o =tog (R i) (19

is the realization of the log-likelihood ratio L, of the
side information X, and
(u])

«m)maﬂ+2%%m) (1)

is the decision threshold for the received values

u=(ug,..,uy) €MV (12)
of local decisions. The probability density functions
fo(xo|Hy), k=01, describe the conditional
distributions of the side information at the fusion center
under the two hypotheses. It is important to note that
once the quantization probabilities (5) and (6) of the
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local sensor decisions Uj, ..., Uy are determined, the
optimal decision fusion rule with side information (9) is
also determined.

3. PERFORMANCE EVALUATION

When using the decision fusion rule according
to (9), the global probability of false alarm Pr is
determined by the conditional probability

Pf = P(60(U, X,) = 1|Hy) (13)
= P(Lo > 7(U)|Ho) (14)
where U = (Uy, ..., Uy)" is the discrete random vector

of local decisions. Applying the theorem of total
probability, we obtain

Pr= ). Plo>T@IH)PU=ulH) ()
uemN
= ) Pllo > TlHo)af"™ (16)
uemN

= > [1-Plo < T@H)IEM™ ™ (1)

uemN

N
= > 1=FR,alE) | [ (18)
j=1

uemN
where Fj (€o|Hy) is the conditional cumulative
distribution function of the log-likelihood ratio L, of
the side information X, under hypothesis Hj.
Analogously, we obtain for the global probability of
miss

P = P(85(U, Xo) = O|Hy) (19)
= P(Ly < T(V)|Hy) (20)
= > P (Lo < T@)|H)P(U = ulH,) o
uemN
= Z P (Lo < T@)|H)BM -+ By (22)
uemN
= > R, @) 1_[3(“” 23)
uemN

In order to exactly evaluate the decision fusion
performance in terms of the global probability of error
P,, one has to sum up over all [MN| = MN possible
realizations u = (U, ..., uy)" € MV of local decisions
to obtain the global probability of false alarm (18) and
the global probability of miss (23). In the special case
of identical sensors, the computational complexity can
be reduced significantly by using a representation in
terms of the multinomial distribution.

4. IDENTICAL SENSORS AND MULTINOMIAL
DISTRIBUTION

In the special case of identical sensors, i.e., identical
stochastic vectors of quantization probabilities a; =
=ay and f;=--=pfy, the conditional
distributions of local sensor decisions can be
interpreted in terms of the multinomial distribution.
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The multinomial distribution allows for
computationally feasible expressions for the global
error probabilities.

4.1. Multinomial Distribution
A discrete random vector V = (V,, ...,V,,)" € N¥ is
multinomially distributed with parameters N € N and
D1, Py = 0, XX pp = 1, if it has the probability
mass function (see, e.g., [8])

pv(@) =Py =v,, ..,V = UM) (24)
N!
_ m pk,levk—N (25)
0 ,OtherWlse

the notation is V ~ M(N;p,, ..., py). The support T
of the multinomial distribution is given by
M

T = ((vy, ., vyy)' € NY| Z v = N} (26)
k=1
and has the cardinality
N+M-1
= 27
1=y ) @7

this is usually much smaller than MY, the cardinality of
the support of the discrete random vector of local
decisions U = (Uy, ..., Uy)". The asymptotic behavior
of (27) can be approximated by using Stirling’s formula

1
N! =~2rN"*Zexp (— N) (28)

according to
(N+M-—1)M1
|7 = ———— (29)
M —-1)!
obviously, this value is much smaller than M". For
example, for N =100 and M =4, one obtains

|T| = 176851 <« 4190,

4.2. Global Error Probabilities for Identical
Sensors
For sensors Sj,..,Sy with identical stochastic
vectors of quantization probabilities a and f3,

a=(aW,..,a™y (30)
B=@BD,..My (€Y
optimal decision fusion with side information can be
performed by evaluating the log-likelihood ratio test

U, =1
6 = @) (32)
u, =20
where
T, - at®
0(v) =log (=2) + ) v, -1og (55 (33)
4 o] ‘B( )
is the decision threshold and
v, €{0,..,N}, k=1,...M (34)

denotes the number of sensors deciding for local
decision k € {1,...,M}. Per definition, the values
vy, ..., Uy are realizations of random variables V,, ..., Vy,
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where the vector V= (V,,.., V) follows a
multinomial distribution with parameters N and a or f3,
depending on the underlying hypothesis, i.e.

Hy:V ~ M(N; a®, ..., a®™), (35)

Hi:V ~M(N; D, ..., pM). (36)

For identical sensors, the global probability of false
alarm Pf of the optimal fusion rule (32) is given by

P = P(Ly > 6(V)|Hy) (37)

= ) [1= F, (0@) Ho)lpV (] Ho). (38)

Thzeglobal probability of miss B, is given by

B, =P(Ly, <6(V)|H,) (39)
= Fiy ()IH )PV (Dl (40)

veT
Accordingly, for computing the global error

probabilities Pr and B, of decision fusion with side
information and identical M-ary sensors, one only
needs to consider the |T| =~ (N+M —DM1/(M —
1)! possible outcomes of the multinomial distribution.

5. NUMERICAL RESULTS

We provide numerical results for the probability of
error of decision fusion with side information obtained
by exact calculation. Sensor networks consisting of
N = 2,...,50 identical binary and quaternary sensors
are assumed, i.e., M = 2 and M = 4. The hypotheses
H, and H; are assumed to be equally likely to occur,
ie, my =m; = 0.5. As an illustrative example, we
assume that both the sensor observations and the side
information follow a normal distribution, i.e., we
assume that the random variables X, Xy, ..., Xy are
conditionally distributed according to
Ho:X; ~ N'(0,07), (41)
Hy: Xj ~ N (), ajz) (42)
for j=0,1,..,N. The variance ajz describes the
Gaussian background noise and the mean y; indicates
the deterministic signal component under hypothesis
H;. The signal-to-noise ratio (SNR) is given by

u?

SNR; = 101%;(0—]"2 [dB] (43)
for j=0,1,..,N. We evaluate the decision fusion
performance for different combinations of values for
the sensor observation and the side information SNR.
The determination of the local sensor decision rules (4)
is done by maximizing the Chernoff information
between the stochastic vectors of quantization
probabilities @ and 8, an approach investigated in [9].
The results for binary sensors are depicted in Fig. 2 and
Fig. 3. For a sensor observation SNR of -5dB, a
significant reduction of the probability of error P, can
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==+ SNR -5 dB|
-=-=-SNROdB
~. ——SNR5dB

e

Probability of error P
>

-2
2 5 10 15 20 25 30 3 40 45 50
Number of sensors N
Fig. 2. Performance of binary sensor decision fusion in
terms of the probability of error at a sensor observation
SNR of -5 dB for different values of side information

SNR.
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Fig. 3. Performance of binary sensor decision fusion in

terms of the probability of error at a sensor observation

SNR of 0 dB for different values of side information

SNR.
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>
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Fig. 4. Performance of quaternary sensor decision

fusion in terms of the probability of error at a sensor

observation SNR of -5 dB for different values of side

information SNR.
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be obtained by using high quality side information. If
the sensor observation SNR is increased to 0 dB, the
influence of the side information decreases. The results
for quaternary sensors are shown in Fig. 4 and Fig. 5
and resemble very much the binary case.

0

10

==+ SNR -5 dB|
N ) -=-=-SNR0dB

e

Probability of error P

-4

o
2 5 10 15 20 25 30 35 40 45 50
Number of sensors N
Fig. 5. Performance of quaternary sensor decision
fusion in terms of the probability of error at a sensor
observation SNR of 0 dB for different values of side

information SNR.

6. CONCLUSIONS

In this paper, we have presented explicit
expressions for the global error probabilities of
decision fusion for distributed detection with side
information where the number of quantization levels at
the sensors is arbitrary. For the case of identical
sensors, computationally efficient expressions have
been obtained by using a representation in terms of the
multinomial distribution. Numerical results obtained by
considering the Gaussian detection problem illustrate
the influence of side information on decision fusion
performance. It was revealed that high quality side
information is particularly useful when the sensor
observation SNR is comparatively low.
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