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2.  DECISION FUSION 
The problem of decision fusion for distributed 

detection with side information at the fusion center and  ܯ-ary decisions at the local sensors can be stated as 
follows (see Fig.1). We consider a binary hypothesis 
testing problem with hypotheses ܪ଴ and ܪଵ indicating 
the state of the monitored environment. The associated 
prior probabilities are ߨ଴ = ଵߨ and (଴ܪ)ܲ =  In .(ଵܪ)ܲ
order to detect the true state of nature, a network of  ܰ 
sensors ଵܵ, … , ܵே obtains random observations  ( ଵܺ, … , ܺே)ᇱ ∈ ଵࣲ × … × ࣲே (1) 
which are generated according to either ܪ଴ or ܪଵ. The 
random observations ଵܺ, … , ܺே are assumed to be 
conditionally independent across sensors given the 
underlying hypothesis, i.e., the joint conditional 
probability density function of all the observations 
factorizes as  

,ଵݔ)݂ … , (௞ܪ|ேݔ = ෑ ௝݂ே
௝ୀଵ ,(௞ܪ|௝ݔ)  ݇ = 0,1 (2) 

without the conditional independence assumption (2), 
analysis and design of distributed detection systems 
becomes intractable [6]. 

 
2.1.  Local Sensor Decision Rules 

According to the distributed nature of the problem, 
the sensors compress their respective observations ௝ܺ 
independently by forming local decisions  

௝ܷ = )௝ߜ ௝ܺ),  ݆ = 1, … , ܰ (3) 

thus, the local decision ௝ܷ of sensor ௝ܵ does only 
depend on its own observation ௝ܺ and not on the 
observations of the other sensors. In the general case of  ܯ-ary quantization at the local sensors, the local 
sensor decision rules ߜ௝ are mappings  ߜ௝: ௝ࣲ → ℳ = {1, … ,  (4) {ܯ

where  ℳ denotes the finite alphabet set. As Warren 
and Willett have shown, local sensor decision rules 
leading to jointly optimal configurations are monotone 
likelihood ratio partitions of the sensor observation 
spaces ଵܺ, … , ܺே, provided that the observations are 
conditionally independent across sensors [7]. Hence, it 
is sufficient to consider sensor decision rules ߜ௝ that can 
be parameterized by a vector of real quantization 

thresholds ௝߬ = ( ௝߬(ଵ), … , ௝߬(ெିଵ))ᇱ with ௝߬(௞) ≤ ௝߬(௞ାଵ) 
leading to the conditional quantization probabilities  ߙ௝(௞) = ܲ( ௝ܷ = (଴ܪ|݇ = ܲ( ௝߬(௞ିଵ) < ௝ܮ ≤ ௝߬(௞)|ܪ଴), ߚ௝(௞) = ܲ( ௝ܷ = (ଵܪ|݇ = ܲ( ௝߬(௞ିଵ) < ௝ܮ ≤ ௝߬(௞)|ܪଵ). 

In the above equations, ௝߬(଴) = −∞, ௝߬(ெ) = ∞, and ܮ௝ = log ( ௝݂( ௝ܺ|ܪଵ)/ ௝݂( ௝ܺ|ܪ଴)) is the local log-
likelihood ratio of observation ௝ܺ. The stochastic 

vectors of quantization probabilities  ߙ௝ = ,௝(ଵ)ߙ) … , ௝ߚ ௝(ெ))ᇱ (5)ߙ = ,௝(ଵ)ߚ) … ,  ௝(ெ))ᇱ (6)ߚ

are computable given the local observation statistics ௝݂(ݔ௝|ܪ௞) and the vector of quantization thresholds ௝߬ 
for each  ݆ = 1, … , ܰ. Upon local decision making, the 
sensors transmit the local decisions ଵܷ, … , ܷே to the 
fusion center. 

 
2.2.  Optimal Decision Fusion With Side 
Information 

At the fusion center, the received decisions ଵܷ, … , ܷே are fused with respect to the available side 
information ܺ଴ ∈ ଴ࣲ into the final detection result ܷ଴ = )଴ߜ ଵܷ, … , ܷே, ܺ଴), where the fusion rule ߜ଴ is a 
binary-valued mapping  ߜ଴: ℳே × ଴ࣲ → {0,1} (7) 
we assume that the available side information described 
by the random variable ܺ଴ ∈ ଴ࣲ and the local decisions ଵܷ, … , ܷே from the sensors are conditionally 
independent given the underlying hypothesis. Decision 
fusion performance is measured in terms of the global 
probability of error  

௘ܲ = ଴ߨ ௙ܲ + ଵߨ ௠ܲ (8) 

which is a weighted sum of the global probability of 
false alarm ௙ܲ = ܲ(ܷ଴ =  ଴) and the globalܪ|1
probability of miss ௠ܲ = ܲ(ܷ଴ =  ଵ) at the fusionܪ|0
center. Optimal decision fusion with side information 
under the minimum probability of error criterion can be 
performed by evaluating a log-likelihood ratio test with 
a variable threshold according to  

ℓ଴ݑ଴ = ଴ݑ≶1 =  (9) (࢛)0߬

where  ℓ଴ = log ൬ ଴݂(ݔ଴|ܪଵ)଴݂(ݔ଴|ܪ଴)൰ (10) 

is the realization of the log-likelihood ratio ܮ଴ of the 
side information ܺ଴ and  ߬(࢛) = log ( (ଵߨ଴ߨ + ෍ log (ே

௝ୀଵ
 ௝(௨ೕ)) (11)ߚ௝(௨ೕ)ߙ

is the decision threshold for the received values  ࢛ = ,ଵݑ) … , ே)ᇱݑ ∈ ℳே (12) 
of local decisions. The probability density functions ଴݂(ݔ଴|ܪ௞),  ݇ = 0,1, describe the conditional 
distributions of the side information at the fusion center 
under the two hypotheses. It is important to note that 
once the quantization probabilities (5) and (6) of the 
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local sensor decisions ଵܷ, … , ܷே are determined, the 
optimal decision fusion rule with side information (9) is 
also determined. 
 
3.  PERFORMANCE EVALUATION 

When using the decision fusion rule according 
to (9), the global probability of false alarm ௙ܲ is 
determined by the conditional probability  ௙ܲ = ,ࢁ)଴ߜ)ܲ ܺ଴) = = ଴) (13)ܪ|1 ଴ܮ)ܲ >  ଴) (14)ܪ|(ࢁ)߬
where ࢁ = ( ଵܷ, … , ܷே)ᇱ is the discrete random vector 
of local decisions. Applying the theorem of total 
probability, we obtain  ௙ܲ = ෍ ℳಿ∋࢛ܲ ଴ܮ) > ࢁ)ܲ(଴ܪ|(࢛)߬ = = ଴) (15)ܪ|࢛ ෍ ℳಿ∋࢛ܲ ଴ܮ) > ଵ(௨భ)ߙ(଴ܪ|(࢛)߬ ⋯ = ே(௨ಿ) (16)ߙ ෍ ℳಿ∋࢛] 1 − ଴ܮ)ܲ ≤ ଵ(௨భ)ߙ[(଴ܪ|(࢛)߬ ⋯  ே(௨ಿ) (17)ߙ

= ෍ ℳಿ∋࢛] 1 − [(଴ܪ|(࢛)߬)௅బܨ ෑ ௝(௨ೕ)ேߙ
௝ୀଵ , (18) 

where ܨ௅బ(ℓ଴|ܪ௞) is the conditional cumulative 
distribution function of the log-likelihood ratio ܮ଴ of 
the side information ܺ଴ under hypothesis ܪ௞. 
Analogously, we obtain for the global probability of 
miss  ௠ܲ = ,ࢁ)଴ߜ)ܲ ܺ଴) = = ଵ) (19)ܪ|0 ଴ܮ)ܲ ≤ = ଵ) (20)ܪ|(ࢁ)߬ ෍ ℳಿ∋࢛ܲ ଴ܮ) ≤ ࢁ)ܲ(ଵܪ|(࢛)߬ = = ଵ) (21)ܪ|࢛ ෍ ℳಿ∋࢛ܲ ଴ܮ) ≤ ଵ(௨భ)ߚ(ଵܪ|(࢛)߬ ⋯  ே(௨ಿ) (22)ߚ

= ෍ ℳಿ∋࢛௅బܨ (ଵܪ|(࢛)߬) ෑ ௝(௨ೕ)ேߚ
௝ୀଵ . (23) 

In order to exactly evaluate the decision fusion 
performance in terms of the global probability of error ௘ܲ, one has to sum up over all |ℳே| =  ே possibleܯ
realizations  ࢛ = ,ଵݑ) … , ே)ᇱݑ ∈ ℳே of local decisions 
to obtain the global probability of false alarm (18) and 
the global probability of miss (23). In the special case 
of identical sensors, the computational complexity can 
be reduced significantly by using a representation in 
terms of the multinomial distribution. 
 
4.  IDENTICAL SENSORS AND MULTINOMIAL 
DISTRIBUTION 

In the special case of identical sensors, i.e., identical 
stochastic vectors of quantization probabilities ߙଵ =⋯ = ଵߚ ே andߙ = ⋯ =  ே, the conditionalߚ
distributions of local sensor decisions can be 
interpreted in terms of the multinomial distribution. 

The multinomial distribution allows for 
computationally feasible expressions for the global 
error probabilities. 

 
4.1.  Multinomial Distribution 

A discrete random vector  ࢂ = ( ଵܸ, … , ெܸ)ᇱ ∈ ℕ଴ெ is 
multinomially distributed with parameters  ܰ ∈ ℕ and ݌ଵ, … , ெ݌ ≥ 0, ∑ ௞ெ௞ୀଵ݌ = 1, if it has the probability 
mass function (see, e.g., [8])  (࢜)ࢂ݌ = ܲ( ଵܸ = ,ଵݒ … , ெܸ =  ெ) (24)ݒ

= ൞ ܰ!∏ ௞ெ௞ୀଵݒ ! ෑ ௞௩ೖ,ெ௞ୀଵ݌ if ෍ ௞ெݒ
௞ୀଵ = ܰ0 , ݁ݏ݅ݓݎℎ݁ݐܱ  (25) 

the notation is  ࢂ ∼ ℳ(ܰ; ,ଵ݌ … ,  ࣮  ெ). The support݌
of the multinomial distribution is given by  ࣮ = ,ଵݒ)} … , ெ)ᇱݒ ∈ ℕ଴ெ| ෍ ௞ெݒ

௞ୀଵ = ܰ} (26) 

and has the cardinality  |࣮| = ൬ܰ + ܯ − ܯ1 − 1 ൰ (27) 

this is usually much smaller than ܯே, the cardinality of 
the support of the discrete random vector of local 
decisions  ࢁ = ( ଵܷ, … , ܷே)ᇱ. The asymptotic behavior 
of (27) can be approximated by using Stirling’s formula  ܰ! ≃ ேାଵଶܰߨ2√ exp ( − ܰ) (28) 

according to  |࣮| ≃ (ܰ + ܯ − 1)ெିଵ(ܯ − 1)!  (29) 

obviously, this value is much smaller than ܯே. For 
example, for  ܰ = 100 and  ܯ = 4, one obtains |࣮| = 176851 ≪ 4ଵ଴଴. 
 
4.2.  Global Error Probabilities for Identical 
Sensors 

For sensors ଵܵ, … , ܵே with identical stochastic 
vectors of quantization probabilities ߙ and ߙ  ,ߚ = ,(ଵ)ߙ) … , ᇱ((ெ)ߙ ߚ (30) = ,(ଵ)ߚ) … ,  ᇱ (31)((ெ)ߚ
optimal decision fusion with side information can be 
performed by evaluating the log-likelihood ratio test  ℓ଴ݑ଴ = ଴ݑ≶1 =  (32) (࢜)ߠ0

where  (࢜)ߠ = log ( (ଵߨ଴ߨ + ෍ ௞ெݒ
௞ୀଵ ⋅ log (  (33) ((௞)ߚ(௞)ߙ

is the decision threshold and  ݒ௞ ∈ {0, … , ܰ}, ݇ = 1, … ,  (34) ܯ
denotes the number of sensors deciding for local 
decision  ݇ ∈ {1, … , ,ଵݒ Per definition, the values .{ܯ … , ,ெ are realizations of random variables ଵܸݒ … , ெܸ 
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