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Abstract—A common simplification in the statistical treatment
of linear time-varying (LTV) wireless channels is the approx-
imation of the channel as a stationary random process inside
certain time-frequency regions. We develop a methodology for the
determination of local quasi-stationarity (LQS) regions, i.e., local
regions in which a channel can be treated as stationary. Contrary
to previous results relying on, to some extent, heuristic measures
and thresholds, we consider a finite-length Wiener filter as
realistic channel estimator and relate the size of LQS regions in
time to the degradation of the mean square error (MSE) of the
estimate due to outdated and thus mismatched channel statistics.
We show that for certain power spectral densities (PSDs) of the
channel a simplified but approximate evaluation of the matched
MSE based on the assumption of an infinite filtering length
yields a lower bound on the actual matched MSE. Moreover,
for such PSDs, the actual MSE degradation is upper-bounded
and the size of the actual LQS regions is lower-bounded by
the approximate evaluation. Using channel measurements, we
compare the evolution of the LQS regions based on the actual
and the approximate MSE; they show strong similarities.

I. INTRODUCTION

AN important simplification in the statistical modeling
of linear time-varying (LTV) wireless channels is the

assumption of stationarity of the fading process in time and
frequency. A restriction to first- and second-order stationarity
results in wide-sense stationary (WSS) and uncorrelated scat-
tering (US) channels, i.e., WSSUS channels [1]. On the one
hand, this assumption is used due to the resulting mathematical
simplifications in the treatment of such channels, and, on the
other hand, it has some reasonable physical justification. The
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physical justification for the WSSUS assumption is that large-
scale effects such as shadow fading change the statistics of the
channel only slowly over time and frequency in comparison to
the coherence time and the coherence frequency, respectively.
In [1], this leads to the quasi-WSSUS model where the channel
is divided into WSSUS regions. In [2], a framework for the
treatment of non-stationary channels, which satisfy the dou-
bly underspread condition, is presented. Doubly underspread
channels are channels that are dispersion- and correlation-
underspread. The framework in [2] can be considered as a nat-
ural extension of the quasi-WSSUS model and the work in [1].

We define local quasi-stationarity (LQS) regions as regions
inside which the channel can be treated as a stationary process.
From the analysis of wireless channels measurements, it is
known that the assumption of LQS regions is a reasonable
approach to perform, e.g., channel estimation [3]–[5]. An
important open problem is the determination of the size of
these LQS regions. Note that elaborate tests for stationarity of
a random process exist, see [6]–[10] and references therein.
However, we seek for a method characterizing the degree
of non-stationarity [11] of doubly underspread random pro-
cesses since the wireless channel is inherently non-stationary.
Several such methods using various measures are available,
see, e.g., [3]–[5], [12], [13] as well as [14] for an overview.
The usual approach of selecting, to some extent, heuristic
measures and to compare them to suitably chosen thresholds
is far from being satisfactory [10]. We overcome this problem
by relating the non-stationarity characterization of the channel
to an algorithmic view. Our approach is connected to [15]
and [16] in the sense that they also consider the effects
of mismatched statistics in estimation theory. However, they
focus on minimum mean square error (MMSE) estimation,
whereas we restrict to a linear MMSE (LMMSE) estimator
which corresponds to a typical channel estimator.

Contributions of the Paper: We describe a methodology for
the determination of LQS regions of the channel fading pro-
cess, a non-stationary random process. The method is based on
the performance degradation of a realistic channel estimation
algorithm due to mismatched channel statistics. Our concept is
similar in nature to the comparison of power spectral densities
(PSDs) of stationary random processes presented for the case
of noiseless observations in [17]. We base our approach on
a Wiener, i.e., an LMMSE, filter using noisy observations to
estimate a non-stationary LTV frequency-flat fading channel.
Our contributions are as follows.
• We apply mismatched Wiener filtering to non-stationary

doubly underspread channels with an effectively finite
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correlation, i.e., an autocorrelation function that can be
approximated by zero for time differences outside a finite
interval. We obtain the mismatched mean square error
(MSE) of the channel estimate based on finite-length
(FL) filtering. Then we define the MSE degradation
as a measure to assess the performance degradation in
comparison to the matched case. This, in turn, yields
LQS regions that are related to the update interval of
the channel statistics. The update is required to operate
the channel estimator below a certain MSE degradation.

• As the MSE evaluation requires a large computational
effort, we also give a simplified but approximate expres-
sion based on infinite-length (IL) Wiener filtering. We
show that for certain rectangular PSDs of the channel
fading process the approximate matched MSE based on
infinite-length filtering is a lower bound to the actual
matched MSE based on finite-length filtering. We then
show that for this type of PSDs an upper bound on the
MSE degradation and a lower bound on the size of the
LQS regions, respectively, is obtained by the approximate
evaluation.

• We provide an exemplary analysis of the introduced
concepts using a rectangular PSD of the channel fading
process, on the one hand, and for actual channel mea-
surements, on the other hand. We observe that the actual
and the approximate evaluation of the MSE degradation
show a similar behavior regarding the size of the LQS
regions. Moreover, we compare the measurement-based
LQS regions to those using the widely used correlation
matrix distance (CMD) [14].

Organization: After introducing the system model in Sec-
tion II, we recall and investigate mismatched finite- and
infinite-length Wiener filtering for WSS channels in Sec-
tion III. In Section IV, the use of mismatched Wiener filtering
is extended to non-stationary wireless channels that are doubly
underspread and that have an effectively finite correlation.
These results yield and relate the actual and the approximate
MSE degradation which are used to evaluate the corresponding
LQS regions of the channel. Finally, in Section V, we provide
an exemplary analysis of the introduced concepts using a
rectangular PSD of the channel fading process as well as for
actual channel measurements.

Notation: We use lowercase and uppercase boldface letters
to designate vectors and matrices, respectively. A∗, AT , and
AH are the (element-wise) complex conjugate, the transpose,
and the conjugate transpose of the matrix A, respectively.
tr {A} denotes the trace of the matrix A, and ‖A‖F is
the Frobenius norm of A. For two matrices A and B,
A � B is the Hadamard (element-wise) product and A ⊗ B
denotes the Kronecker product. IN is the N × N identity
matrix. [A]k,l is the element of the matrix A in the kth row
and lth column, and [a]k is the kth element of the vector
a. |A| denotes the cardinality of the set A. The circular
convolution x(ν) ~ y(ν),−B/2 ≤ ν < B/2 is defined as∫ B/2
−B/2 x(ν̌)

∑∞
k=−∞ y̌(ν − ν̌ − kB)dν̌ with y̌(ν) = y(ν) for

−B/2 ≤ ν < B/2 and y̌(ν) = 0 else. The Kronecker delta is
represented by δ[m] for an integer m. x̂ denotes the LMMSE

estimate of x, and x̃ indicates a mismatched variant of x or x̂.
bxc and dxe denote rounding x down and up to the next inte-
ger, respectively. Sums and integrals are taken from −∞ to∞,
unless otherwise specified. The imaginary unit is denoted by j.

II. SYSTEM MODEL

We assume transmission over a non-stationary LTV
frequency-flat fading channel. In the complex baseband, the
matched-filtered, symbol-sampled received signal is modeled
by

y[m] = h[m]x[m] + n[m], m ∈ Z (1)

where the additive noise process {n[m]} is a zero-mean white
proper [18] complex Gaussian random process with known
variance σ2

n > 0 and the time-varying channel process {h[m]}
is a proper complex zero-mean random process. The transmit-
ted sequence {x[m]} consists of random data symbols and
periodically inserted deterministic pilot, i.e., training, symbols
with period L at positions m = kL for k ∈ Z. The received
signal at the pilot positions will be used to estimate the channel
process {h[m]}. The processes {h[m]}, {n[m]}, and {x[m]}
are assumed to be mutually independent. We assume real- and
positive-valued pilot symbols with magnitude σp > 0. This
causes no loss of generality, as the MSE does not depend on
the phase of the pilot symbols. Furthermore, we define the
ratio γ = σ2

p/σ
2
n.1

We introduce the (normalized) Doppler shift ν = ν′T with
the unnormalized Doppler shift ν′ and the symbol duration T
in order to simplify notation. In the remainder of this work,
we assume that channel sampling by pilot symbols satisfies
the Nyquist criterion

L <
1

2νmax
(2)

where L is the pilot spacing, i.e., every Lth symbol is a pilot
symbol, and νmax = ν′maxT is the maximal Doppler shift.
Here, νmax is defined by the support of the autocorrelation
function RS(ν1, ν2) = E {Sh(ν1)S∗h(ν2)} in ν1 and ν2 for
−1/2 ≤ ν1, ν2 < 1/2 with Sh(ν) =

∑
m h[m]e−j2πmν .2 The

assumption of a maximal Doppler shift is reasonable as any
movement, be it of the transmitter, the receiver, or the scatter-
ers in the environment, occurs with a finite velocity. Therefore,
the channel process {h[m]} is a bandlimited random process3

and a sufficient statistic of {h[m]} is obtained by regularly
sampling {h[m]} with period L.

A. Doubly Underspread Channels

In [2], the class of doubly underspread channels is intro-
duced for time- and frequency-varying channels. The doubly

1Strictly speaking, (1) is not a sufficient statistic of the received continuous-
time signal, as the channel widens the bandwidth of the (noise-free) received
signal. However, (1) holds approximately for Doppler dispersion-underspread
channels that are described in Section II-A. For a thorough discussion on
the discretization of delay-Doppler dispersion-underspread WSSUS time- and
frequency-selective LTV channels, see [19].

2In [20], a simple derivation of the sampling theorem for non-stationary
random processes is given.

3In this context, the term bandlimited refers to the support of RS(ν1, ν2)
in ν1 and ν2 for −1/2 ≤ ν1, ν2 < 1/2.
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underspread condition is usually satisfied for wireless channels
[21], see [3] for an example in an urban macrocell scenario.
We adapt the definition of doubly underspread channels in
[2] to the special case of only time-varying (frequency-flat
fading) channels as considered here. Such doubly underspread
channels are, on the one hand, dispersion-underspread with a
maximal Doppler νmax � 1, and, on the other hand, they are
correlation-underspread with a maximal (effective) correlation
in Doppler ∆ν,max � νmax. Here, ∆ν,max is defined by the ef-
fective support4 of the autocorrelation function RS(ν+∆ν , ν)
in the Doppler difference ∆ν for −1/2 ≤ ν + ∆ν , ν < 1/2.
The doubly underspread condition essentially means that the
stationarity time of the channel defined as Ns = 1/∆ν,max is
much larger than the coherence time of the channel Nc =
1/νmax, which itself is much larger than one, i.e., 1� Nc �
Ns. This definition of the doubly underspread condition is thus
connected to the symbol duration, which is a system parameter.
Note that LQS regions can be of significantly larger size than
the above mentioned (local) stationarity regions.

III. MISMATCHED WIENER FILTERING

We know from Section II-A that wireless channels can
be assumed as WSS inside certain regions. Therefore, we
first recall the concept of mismatched Wiener filtering for
WSS channels in the finite- and infinite-length setting. In this
work, mismatched Wiener filtering refers to the use of wrong
statistical knowledge of the channel, but not of the noise.
The mismatched statistics of the channel are also assumed
to correspond to a bandlimited WSS random process which is
sampled by the pilot symbols such that (2) is satisfied. The
Wiener filter considered here uses the noisy observations at
the pilot positions for the estimation of the channel process.
In the matched case, the Wiener filter is an LMMSE estimator
and thus minimizes the MSE among all linear estimators. In
this section, we restrict to WSS channels to allow for a com-
prehensive introduction to mismatched Wiener filtering. After
recalling results on mismatched Wiener filtering, we give an
alternative derivation of the MSE for infinite-length filtering.
Then, we study under which circumstances an increasing noise
power can lead to a decreasing MSE. Finally, we show how to
quantify the loss in MSE due to the linearity of the estimator.

A. Finite-Length Filtering

We first consider the finite-length filtering case with Np
pilot symbols, i.e., training symbols used to estimate the
channel, and the pilot spacing L. Denoting the block length
as N , we have Nd = N − Np data symbols. Without loss
of generality, we assume that the block starts with the pilot
symbol at m = 0. In this section, we assume that the channel
weights h[m] form a WSS random process. The length-N
column vector h ∈ CN×1 contains the channel weights
h[m] with [h]m+1 = h[m],m = 0, . . . , N − 1. Similarly,
y ∈ CN×1 is the vector of noisy observations given by
[y]m+1 = y[m],m = 0, . . . , N − 1. The vectors yp ∈ CNp×1,

4The effective support of a function f(x) in x is the domain [x1, x2] of
smallest size with |f(x)| ≤ ε, ∀x 6∈ [x1, x2] for small ε.

hp ∈ CNp×1, and np ∈ CNp×1 contain the noisy observations,
the channel, and the noise, respectively, at pilot positions only.
They are given by [yp]k+1 = y[kL], [hp]k+1 = h[kL], and
[np]k+1 = n[kL] for k = 0, . . . , Np−1, respectively. We thus
obtain

yp = hpσp + np (3)

where σp is the absolute value of the pilot symbols. Based
on the orthogonality principle for LMMSE estimation [22]5

E{(ĥ−h)yHp } = 0 with the linear estimate of the zero-mean
channel h denoted by ĥ = Wyp, we obtain the Wiener filter
coefficients W = Rh;ypR−1

yp where Rh;yp = E
{
hyHp

}
is the

cross-correlation matrix between the channel at all positions
and the observations at pilot positions, and Ryp = E

{
ypy

H
p

}
is the Hermitian autocorrelation matrix of the observations at
pilot positions. Denoting the corresponding mismatched cor-
relation matrices used for the mismatched estimate h̃ = W̃yp
as R̃h;yp and R̃yp , respectively, the mismatched Wiener filter
coefficients are obtained as

W̃ = R̃h;ypR̃−1
yp . (4)

We estimate the channel at all positions inside the considered
block, i.e., at pilot and data positions. With the autocorrelation
matrix of the channel Rh = E

{
hhH

}
and using the fact that

the noise is white and independent of the channel, we obtain
the mismatched MSE matrix [24, Section 5.3]

R̃e = E

{(
h̃− h

)(
h̃− h

)H}
= Rh + R̃h;hp

(
R̃hp + INpγ

−1
)−1 (

Rhp + INpγ
−1
)

×
(
R̃hp +INpγ

−1
)−1

R̃H
h;hp
− R̃h;hp

(
R̃hp +INpγ

−1
)−1

RH
h;hp

−Rh;hp

(
R̃hp + INpγ

−1
)−1

R̃H
h;hp

(5)

where Rhp
= E

{
hph

H
p

}
is the autocorrelation matrix of the

channel at pilot positions, and Rh;hp
= E

{
hhHp

}
is the cross-

correlation matrix between the channel at all positions and
the channel at pilot positions only. R̃h and R̃h;hp are the
corresponding mismatched correlation matrices. For matched
a-priori information about the channel, (5) simplifies to the
well-known result [25, Section 15.8]

Re = Rh −Rh;hp

(
Rhp

+ INp
γ−1

)−1
RH
h;hp

. (6)

In the finite-length filtering case, the MSE on the diagonal
of Re depends on the position of the estimate. We use the
average mismatched and matched MSE over all positions:

σ̃2
e,N,L =

1

N
tr
{

R̃e

}
; σ2

e,N,L =
1

N
tr
{

Re

}
. (7)

Using the real-valued and non-negative PSD of the channel
process Ch

(
ej2πν

)
, we obtain Rh from

[Rh]k,l =

∫ 1
2

− 1
2

Ch
(
ej2πν

)
ej2π(k−l)νdν, k, l = 1, . . . , N.

(8)

5Note that [22] only introduces the orthogonality principle for real random
vectors; we use the extension to proper complex random vectors [23].



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, XXX XXXX

The correlation matrices Rhp
and Rh;hp

are obtained as sub-
matrices of Rh by extracting L-spaced rows and/or columns.
More specifically, we have [Rhp ]k,l = [Rh](k−1)L+1,(l−1)L+1

for k, l = 1, . . . , Np and [Rh;hp
]k,l = [Rh]k,(l−1)L+1 for k =

1, . . . , N and l = 1, . . . , Np.

B. Infinite-Length Filtering

In the following, we derive the MSE of the infinite-length
Wiener filter using observations at pilot positions only. We
start by recalling the derivation of the Wiener filter transfer
function based on the orthogonality principle. The noisy
observations at pilot positions are

y[kL] = h[kL]σp + n[kL], k ∈ Z (9)

and estimation is performed on the lth position rela-
tive to the pilot symbol at position kL, with l =
0, . . . , L − 1. From the orthogonality principle [22]
E
{(
ĥ[kL+ l]− h[kL+ l]

)
y∗[kL− sL]

}
= 0, ∀s ∈ Z and

the linear estimate of the zero-mean channel h[kL+l] denoted
by ĥ[kL + l] =

∑
i wl[iL] y[kL − iL], we can obtain the

transfer function of the Wiener filter coefficients wl[kL]. The
transfer function Wl

(
ej2πLν

)
=
∑
k wl[kL]e−j2πkLν is a

function of the PSD of the channel based on the L-spaced
pilot symbols

Ch
(
ej2πLν

)
=
∑
∆k

Rh[∆kL]e−j2π∆kLν (10)

where Rh[∆m] = E {h[m]h∗[m−∆m]} is the autocorrela-
tion function of the channel process.6 The mismatched Wiener
filter, resulting in the mismatched estimate h̃[m], uses possi-
bly erroneous statistical a-priori information on the channel
process, i.e., C̃h

(
ej2πLν

)
[27]:

W̃l

(
ej2πLν

)
=

1

σp

C̃h
(
ej2πLν

)
C̃h (ej2πLν) + γ−1

ej2πlν . (11)

The PSD of the mismatched error process at a shifted position
l relative to the pilot grid is given by

C̃e,l
(
ej2πLν

)
= lim
Np→∞

1

Np
E

{∣∣∣W̃l

(
ej2πLν

)(
σpH0,Np

(
ej2πLν

)
+NNp

(
ej2πLν

) )
−Hl,Np

(
ej2πLν

) ∣∣∣2} (12)

for an absolutely summable channel autocorrelation function
and a stable filter. Here, we have the filter length Np and

Hl,Np

(
ej2πLν

)
=

dNp/2e−1∑
k=−bNp/2c

h[kL+ l]e−j2πkLν (13)

NNp

(
ej2πLν

)
=

dNp/2e−1∑
k=−bNp/2c

n[kL]e−j2πkLν . (14)

6Note that (10) and its inverse hold under certain technical conditions,
see, e.g., [26].

Using W̃l

(
ej2πLν

)
=
∣∣∣W̃l

(
ej2πLν

)∣∣∣ ej2πlν from (11), we
obtain

C̃e,l
(
ej2πLν

)
= σ2

p

∣∣∣W̃l

(
ej2πLν

)∣∣∣2 (Ch (ej2πLν)+ γ−1
)

+ Ch
(
ej2πLν

)
− 2σp

∣∣∣W̃l

(
ej2πLν

)∣∣∣Ch (ej2πLν) . (15)

By inserting (11) into (15), the PSD of the mismatched error
process follows as

C̃e,l
(
ej2πLν

)
= Ch

(
ej2πLν

)
+
(
Ch
(
ej2πLν

)
+ γ−1

)
×

C̃2
h

(
ej2πLν

)(
C̃h (ej2πLν)+γ−1

)2 − 2Ch
(
ej2πLν

)
C̃h
(
ej2πLν

)
C̃h (ej2πLν) + γ−1

. (16)

The resulting mismatched error PSD is independent of the
position l of the estimate due to infinite-length filtering and
the Nyquist criterion. We thus drop the index l from now on.

1) Symbol-Based Reformulation: By definition
Ch
(
ej2πLν

)
and C̃h

(
ej2πLν

)
are zero for |ν| ≥ 1/(2L);

therefore, C̃e
(
ej2πLν

)
is also zero for |ν| ≥ 1/(2L), see

(16). We thus have

C̃h
(
ej2πLν

)
=

1

L
C̃h
(
ej2πν

)
, − 1

2L
≤ ν < 1

2L
(17)

C̃e
(
ej2πLν

)
=

1

L
C̃e
(
ej2πν

)
, − 1

2L
≤ ν < 1

2L
(18)

and accordingly for the matched case. Here the factor 1/L
follows from the L-spaced discrete-time Fourier transform
(DTFT). The (position-independent) mismatched and matched
MSEs are obtained by an inverse DTFT, i.e., an integration
over the PSD of the corresponding error process, as

σ̃2
e,∞,L =

∫ 1
2

− 1
2

C̃e
(
ej2πν

)
dν ; σ2

e,∞,L =

∫ 1
2

− 1
2

Ce
(
ej2πν

)
dν.

(19)

The symbol-based mismatched error PSD C̃e
(
ej2πν

)
is ob-

tained from (18) and (16) as

C̃e
(
ej2πν

)
= Ch

(
ej2πν

)
+
(
Ch
(
ej2πν

)
+ Lγ−1

)
×

C̃2
h

(
ej2πν

)(
C̃h (ej2πν) + Lγ−1

)2 −
2Ch

(
ej2πν

)
C̃h
(
ej2πν

)
C̃h (ej2πν) + Lγ−1

(20)

=

(
Lγ−1

)2
Ch
(
ej2πν

)
+ Lγ−1C̃2

h

(
ej2πν

)(
C̃h (ej2πν) + Lγ−1

)2 (21)

and the symbol-based matched error PSD is [27]

Ce
(
ej2πLν

)
=

Ch
(
ej2πν

)
γ
L Ch (ej2πν) + 1

. (22)

Note that the pilot spacing L can be interpreted as a noise
power increase by a factor of L with respect to the L = 1
case.

2) Alternative Derivation of the MSE: Alternatively, we
can derive the MSE in the infinite-length case by studying
the asymptotic finite-length filtering MSE, i.e., by considering
N → ∞ in (7). Assuming that we have a block length
N = NpL, we give this derivation in Appendix A, i.e., we
show that

lim
N→∞

σ̃2
e,N,L = σ̃2

e,∞,L ; lim
N→∞

σ2
e,N,L = σ2

e,∞,L. (23)
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3) Properties of the Mismatched MSE: By differentiating
(21) with respect to Lγ−1, we obtain a decreasing error PSD
for an increasing noise power at a certain ν whenever

γ

L
<
C̃h
(
ej2πν

)
− 2Ch

(
ej2πν

)
C̃2
h (ej2πν)

(24)

is satisfied. Depending on the set of ν satisfying (24), a
decreasing MSE for an increasing noise power might occur.
This cannot be the case in the matched setting; however, it can
occur for a mismatched estimation. A similar observation is
made in [16] for mismatched continuous-time causal MMSE
estimation.

We note that in the noise-dominated case, i.e., Lγ−1 �
Ch
(
ej2πν

)
and Lγ−1 � C̃h

(
ej2πν

)
, with channel power gain∫ 1

2

− 1
2

Ch
(
ej2πν

)
dν =

∫ 1
2

− 1
2

C̃h
(
ej2πν

)
dν a mismatch has only

a minor influence on the resulting MSE, see (21) and (22).

C. Implications of the Linearity of the Estimator

Within this work we restrict to linear estimators. It is
thus of interest to assess the limitations of this approach by
quantifying the performance loss due to LMMSE estimation
instead of MMSE estimation. More specifically, we want
to characterize the additional MSE incurred by using the
LMMSE instead of the MMSE estimator. Adapting results
from [15] to our setting with complex random variables, we
obtain for a pilot spacing L = 1:

D(P‖Q) =

∫ ∞
0

mseQ|P (γ)−mseP |P (γ)dγ (25)

where D(P‖Q) is the Kullback-Leibler divergence between
the distributions P and Q. Here, mseQ|P (γ), a function of γ =
σ2
p/σ

2
n, is the total MSE of an unrestricted, i.e., not necessarily

linear, estimator treating the random vector to be estimated as
distributed according to Q instead of its actual distribution
P .7 Note that in this case the MSE is not normalized, i.e., the
sum MSE at all estimated time slots is used. We denote by
Ph the actual distribution of the relevant part of the channel
process {h[m]} and by PGh the proper Gaussian distribution
with the same first- and second-order moments as Ph. We
define the matched LMMSE lmmsePh

(γ) = msePG
h |Ph

(γ), the
matched MMSE mmsePh

(γ) = msePh|Ph
(γ), the mismatched

LMMSE l̃mmsePh
(γ) = mseP̃G

h |Ph
(γ), and the mismatched

MMSE m̃msePh
(γ) = mseP̃h|Ph

(γ). With (25), it follows for
L = 1 that∫ ∞

0

lmmsePh
(γ)−mmsePh

(γ)dγ = D(Ph‖PGh ) (26)∫ ∞
0

l̃mmsePh
(γ)−mmsePh

(γ)dγ = D(Ph‖P̃Gh ) (27)∫ ∞
0

l̃mmsePh
(γ)− m̃msePh

(γ)dγ

= D(Ph‖P̃Gh )−D(Ph‖P̃h). (28)

We can thus characterize the degradation of the MSE due to,
possibly mismatched, linear estimation compared to an unre-
stricted estimation. In [16], the implications of mismatched

7A proof of (25) for the multivariate case can be found in [16].

causal and non-causal linear estimation have been treated for
the continuous-time setting in a similar manner. Finally, it
should be mentioned that the (matched) LMMSE estimator
is optimal in the sense that it minimizes the maximal MSE
over all joint channel and observation distributions Ph,y with
fixed first- and second-order moments [28]. In other words,
the LMMSE estimator is the solution of [28, Theorem 1]

min
ĥ∈Sy

max
Ph,y∈SP

E

{∥∥∥ĥ− h
∥∥∥2
}

(29)

where SP is the set of all joint channel and observation
distributions having the fixed first- and second-order moments
and Sy is the set of random vectors that are arbitrary functions
of the observation.

IV. APPLICATION TO NON-STATIONARY CHANNELS

In Section III, we assumed the channel process to be WSS.
In a real scenario, the wireless channel is non-stationary.
However, the channel process can be assumed to be stationary
inside small regions, see Section II-A. Wiener filtering in these
assumed stationarity regions, i.e., N ≤ Ns, is appropriate.
Furthermore, due to the change of the channel statistics over
time, mismatched Wiener filtering with, e.g., outdated channel
statistics, might occur. Based on the mismatched MSE, we
have the possibility to evaluate the performance degradation of
a realistic channel estimator due to wrong statistical knowledge
of the channel. However, the resulting expressions for the
MSE, i.e., (7) with (5)/(6), require a large computational
effort, e.g., matrix inversions are required.

In contrast, the infinite-length filtering MSE, i.e., (19) with
(21)/(22), allows for a simplified evaluation. The infinite-
length Wiener filtering approach is strictly speaking not ap-
propriate because the statistics of the channel process can
change significantly over an infinite-length block. However, as
we will see in Section IV-A, common wireless channels have
an effectively finite correlation; thus, infinite-length filtering
can be considered as meaningful. In the subsequent analysis,
we will give an approximate evaluation of the MSE based on
infinite-length filtering. Furthermore, we will show how the
approximate evaluation of the MSE is related to the actual
MSE based on finite-length filtering.

A. Channels with an Effectively Finite Correlation

Due to the correlation-underspread property of the chan-
nel, i.e., Nc � Ns, the coherence time Nc is much smaller
than the stationarity time Ns. With a small coherence time,
we can motivate a time-varying autocorrelation function of
the channel that is approximately zero outside a finite in-
terval −N ′′, . . . , N ′′ of length N ′ = 2N ′′ + 1, i.e., that is
effectively supported on −N ′′, . . . , N ′′. Thus, we can assume
the channel to be effectively correlated over a finite interval
with N ′ � Nc.8 Furthermore, we will see in Section V
that the estimation of the statistics of non-stationary channels
from a single measurement run is based on a windowing
over the channel process and, thus, on the assumption of a

8Note that a strictly bandlimited signal cannot be strictly timelimited, but
only effectively timelimited. See [29] for a detailed discussion.
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Time

Nc

N

N ′′
Ns

N ′

Fig. 1. Visualization of the relevant time quantities: Nc is the coherence time
of the channel, Ns is the stationarity time of the channel, N ′ = 2N ′′ + 1 is
the effective support of the autocorrelation function of the channel, and N is
the block length. Exemplarily, the case Ns > N ′′ is shown.

finite correlation of the channel. Therefore, we perform an
evaluation for an effectively finite correlation of the channel.
We relate the block length N to the assumed finite correlation
length of the channel N ′ = 2N ′′+1 such that N ′′ ≥ N−1 is
satisfied. This implies that every pair of symbols in the block
is correlated.9 Moreover, we assume N ′ to be a multiple of L.
Recall that we perform estimation inside a stationarity region;
therefore, we choose N ≤ Ns. See Fig. 1 for a visualization
of the relevant time quantities.

In order to simplify the exposition, we restrict to a WSS
channel for the remainder of Section IV-A. Defining

C
(f)
h

(
ej2πν

)
=

N ′′∑
∆m=−N ′′

Rh[∆m] e−j2π∆mν (30)

with Rh[∆m] = E {h[m]h∗[m−∆m]}, we have the following
approximate relation due to the assumption of an effectively
finite correlation of the channel, cf. (10) for L = 1:

Ch
(
ej2πν

)
≈ C(f)

h

(
ej2πν

)
. (31)

We insert (30) into (31) and note that (30) is a discrete
Fourier transform (DFT); therefore, we can use samples of
C

(f)
h

(
ej2πν

)
to calculate Rh[∆m] based on an inverse DFT. By

substituting Rh[∆m] with the inverse DFT of C(f)
h

(
ej2π

k
N′

)
for k = −N ′′, . . . , N ′′, we obtain the Doppler-continuous
PSD of the channel as

Ch
(
ej2πν

)
≈

N ′′∑
∆m=−N ′′

1

N ′

N ′′∑
i=−N ′′

C
(f)
h

(
ej2π

i
N′
)
ej2π∆m

i
N′ e−j2π∆mν

=
1

N ′

N ′′∑
i=−N ′′

C
(f)
h

(
ej2π

i
N′
) N ′′∑
∆m=−N ′′

ej2π∆m( i
N′−ν). (32)

The mismatched case follows analogously.
1) Finite-Length Filtering: In the finite-length filtering case

of length N , we can insert (32) into (8). We then obtain the
correlation matrices using samples of the matched PSD of the
channel process for k, l = 1, . . . , N as

[Rh]k,l ≈
1

N ′

N ′′∑
i=−N ′′

C
(f)
h

(
ej2π

i
N′
)
ej2π(k−l) i

N′ . (33)

9The finite-length filtering approach with a block length N performs a
block-wise estimation. It thus only makes use of the correlation properties of
the channel for time differences of at most −(N − 1), . . . , N − 1, i.e., a
maximum of N − 1 time instants in each time direction, see Section III-A.

Analogously, we have [Rhp
]k,l = [Rh](k−1)L+1,(l−1)L+1 for

k, l = 1, . . . , Np and [Rh;hp ]k,l = [Rh]k,(l−1)L+1 for k =
1, . . . , N and l = 1, . . . , Np. The mismatched case follows
accordingly. In matrix notation, we obtain

Rh ≈ F̌Hh C
(f)
h F̌h

Rhp
≈ F̌Hh,LC

(f)
h F̌h,L ; R̃hp

≈ F̌Hh,LC̃
(f)
h F̌h,L

Rh;hp
≈ F̌Hh C

(f)
h F̌h,L ; R̃h;hp

≈ F̌Hh C̃
(f)
h F̌h,L. (34)

The matrices F̌h and F̌h,L are sub-matrices of the N ′ × N ′
DFT matrix F̌. The N ′ × N matrix F̌h is defined, for k =
1, . . . , N ′ and l = 1, . . . , N , by[

F̌h
]
k,l

=
1√
N ′

exp

(
−j2π (k − 1)(l − 1)

N ′

)
(35)

such that it contains the first N columns of F̌. The N ′ ×Np
matrix F̌h,L is defined, for k = 1, . . . , N ′ and l = 1, . . . , Np,
by [

F̌h,L
]
k,l

=
1√
N ′

exp

(
−j2π (k − 1)(l − 1)L

N ′

)
(36)

i.e., it contains only the columns of F̌h coinciding with pilot
positions. The following properties hold for k = 1, . . . , N ′:

F̌Hh F̌h = IN ;
[
F̌hF̌

H
h

]
k,k

=
N

N ′
(37)

F̌Hh,LF̌h,L = INp
;

[
F̌h,LF̌Hh,L

]
k,k

=
Np
N ′

. (38)

The N ′ × N ′ matrices C
(f)
h and C̃

(f)
h are diagonal matrices

containing regular samples of the matched and mismatched
PSD of the channel process, respectively:

[
C

(f)
h

]
k,k

=

C
(f)
h

(
ej2π

k−1
N′

)
, for k = 1, . . . , N

′+1
2

C
(f)
h

(
ej2π

k−1−N′
N′

)
, for k = N ′+3

2 , . . . , N ′

(39)

and accordingly for the mismatched case.
2) Infinite-Length Filtering: In the infinite-length filtering

case, we can insert (32) and its mismatched equivalent into
(21) for the mismatched case and into (22) for the matched
case. We then obtain the PSD of the corresponding error
process. As this would still necessitate the integration over
the PSDs of the error processes to obtain both MSEs in (19),
we choose a different approach. Rewriting (30), we obtain

C
(f)
h

(
ej2πν

)
=
∑
∆m

Rh[∆m] rectN ′′ [∆m] e−j2π∆mν

= Ch
(
ej2πν

)
~

sin(πνN ′)

sin(πν)
, − 1

2
≤ ν < 1

2
(40)

with rectN ′′ [m] = 1, |m| ≤ N ′′ and rectN ′′ [m] = 0
else. From (21), we can deduce that the maximal Doppler
of C̃e

(
ej2πν

)
is equal to the maximum of the maximal

Dopplers of Ch
(
ej2πν

)
and C̃h

(
ej2πν

)
. This implies that the

corresponding coherence times, given by the inverses of the
maximal Dopplers, are the same as well.

However, having equal coherence times of two random
processes does not mean that the random processes have an
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effectively finite correlation over the same interval. Thus, an
effectively finite correlation of the channel process over a
certain interval does not imply that the error process can be
accurately described by a finite correlation over the same in-
terval. We want to describe the implications of approximating
the error process as finitely correlated over the same interval.
To this end, we will relate the resulting MSE to the one of
the finite-length case in Section IV-D. Approximating the error
process as finitely correlated over an interval of length N ′, i.e.,

C̃e
(
ej2πν

)
≈ C̃(f)

e

(
ej2πν

)
(41)

with

C̃(f)
e

(
ej2πν

)
= C̃e

(
ej2πν

)
~

sin(πνN ′)

sin(πν)
, − 1

2
≤ ν < 1

2
(42)

we obtain analogously to (32)

C̃e
(
ej2πν

)
≈ 1

N ′

N ′′∑
k=−N ′′

C̃(f)
e

(
ej2π

k
N′
) N ′′∑
∆m=−N ′′

ej2π∆m( k
N′−ν)

=
1

N ′

N ′′∑
k=−N ′′

C̃(f)
e

(
ej2π

k
N′
) sin (π (νN ′ − k))

sin
(
π νN

′−k
N ′

) .

(43)

From (43), we see that only samples of C̃
(f)
e

(
ej2πν

)
are

required for the approximate reconstruction of C̃e
(
ej2πν

)
.

The required samples of C̃(f)
e

(
ej2πν

)
are given with (41),

(21), (31), and the mismatched version of (31), for k =
−N ′′, . . . , N ′′, as

C̃(f)
e

(
ej2π

k
N′
)
≈ C̃e

(
ej2π

k
N′
)

≈

(
Lγ−1

)2
C

(f)
h

(
ej2π

k
N′

)
+ Lγ−1

(
C̃

(f)
h

(
ej2π

k
N′

))2

(
C̃

(f)
h

(
ej2π

k
N′

)
+ Lγ−1

)2

(44)

and accordingly for the matched case.

B. Time-Dependent Power Spectral Density

The local scattering function (LSF) is an extension of the
scattering function in the context of WSSUS channels to the
non-stationary case [2]. In the special case of a frequency-
flat fading channel, it is thus a time-dependent PSD in the
Doppler domain. We adapt the continuous-time approach in
[2] to discrete-time channels. This is reasonable as we assume
to have a maximum Doppler shift that allows to sufficiently
sample the underlying continuous-time channel, i.e., to yield
a sufficient statistic by sampling. Furthermore, channel mea-
surements rely on the same argument and are only available
at discrete time instants. We thus obtain the LSF

Ch
(
m; ej2πν

)
=
∑
∆m

Rh[m;∆m]e−j2π∆mν (45)

where Rh[m;∆m] = E {h[m]h∗[m−∆m]} is the time-
dependent autocorrelation function of the channel. Note that
a WSS channel has a constant LSF over time, i.e., it is

independent of m, and thus (45) reduces to Ch
(
m; ej2πν

)
=

Ch
(
ej2πν

)
. Furthermore, a (zero-mean) WSS channel is un-

correlated in the Doppler domain [2].
In [19], the PSD of a discrete-time channel is related

to the PSD of the underlying continuous-time channel. The
straightforward generalization to the non-stationary setting is

Ch
(
m; ej2πν

)
=

1

T

∑
∆m

Γh

(
m;

ν −∆m

T

)
(46)

where Γh(m; ν′) =
∫

E {h(t)h∗(t−∆t)} e−j2π∆tν
′
d∆t de-

notes the time-dependent PSD of the continuous-time channel
h(t) and T is the symbol period, i.e., h[m] = h(mT ).

The LSF has some deficiencies with respect to the PSD
of a stationary process, e.g., it is not guaranteed to be real-
valued and non-negative. For doubly underspread channels,
it is possible to define generalized LSFs (GLSFs) which are
smoothed versions of the LSF and do not have the above
deficiencies [2]. We adapt the approach in [2], [13] to the
discrete-time and frequency-flat fading case; we define the
GLSF by a 2-dimensional convolution:

C
(Φ)
h

(
m; ej2πν

)
=
∑
m̌

∫ 1
2

− 1
2

Ch
(
m̌; ej2πν̌

)
× Φ

(
m− m̌; ej2π(ν−ν̌)

)
dν̌ (47)

with

Φ
(
m; ej2πν

)
=

S∑
s=1

γs
∑
∆m

g∗s [−m]gs[−m−∆m]e−j2π∆mν

(48)

the windowing functions gs[m] normalized to unit-energy, the
number of windows S, and γs ≥ 0 with

∑S
s=1 γs = 1 for

s = 1, . . . , S. The parametrization of the windowing functions
is particularly important for the estimation of the GLSF: they
should be localized in time and Doppler, whereas their length
and number are subject to bias-variance trade-offs [2], [30]. In
[2], it is shown that GLSFs of doubly underspread channels
are real-valued, non-negative, and approximately equivalent to
the LSF. For further details on the meaning of approximate
equivalence, we refer to [2]. In the following, we use the term
(time-dependent) PSD instead of the term GLSF.

C. Mean Square Error

The MSE evaluation for non-stationary channels is
based on the time-dependent PSD of the channel pro-
cess, i.e., C(Φ)

h

(
m; ej2πν

)
. Due to the effectively finite corre-

lation of the channel process, we only need samples of the PSD
in the Doppler domain, i.e., C(Φ)

h [m; k] = C
(Φ)
h

(
m; ej2π

k
N′

)
for k = −N ′′, . . . , N ′′, see (32).

1) Finite-Length Filtering: For the finite-length filtering
case, we use (5) with (34). We obtain the actual FL-based
mismatched MSE at time instant m using statistical knowledge
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at time instant m′ as

σ̃2
e,N,L[m,m′] =

1

N
tr
{

R̃e[m,m
′]
}

≈ 1

N
tr
{

F̌Hh C
(Φ)
h F̌h + F̌Hh C̃

(Φ)
h F̌h,L

×
(
F̌Hh,LC̃

(Φ)
h F̌h,L+INp

γ−1
)−1 (

F̌Hh,LC
(Φ)
h F̌h,L+INp

γ−1
)

×
(
F̌Hh,LC̃

(Φ)
h F̌h,L+INp

γ−1
)−1

F̌Hh,LC̃
(Φ)
h F̌h

− F̌Hh C̃
(Φ)
h F̌h,L

(
F̌Hh,LC̃

(Φ)
h F̌h,L+INp

γ−1
)−1

F̌Hh,LC
(Φ)
h F̌h

− F̌Hh C
(Φ)
h F̌h,L

(
F̌Hh,LC̃

(Φ)
h F̌h,L+INp

γ−1
)−1

F̌Hh,LC̃
(Φ)
h F̌h

}
(49)

where R̃e[m,m
′] is the mismatched MSE matrix. Here, we use

that the time-dependent PSD is real-valued. The difference to
Section IV-A1 lies in the substitution of (39) by the (diagonal)
time-dependent PSD matrices with

[
C

(Φ)
h

]
k,k

=

{
C

(Φ)
h [m; k − 1], for k = 1, . . . , N

′+1
2

C
(Φ)
h [m; k − 1−N ′], for k = N ′+3

2 , . . . , N ′

(50)[
C̃

(Φ)
h

]
k,k

=

{
C

(Φ)
h [m′; k − 1], for k = 1, . . . , N

′+1
2

C
(Φ)
h [m′; k − 1−N ′], for k = N ′+3

2 , . . . , N ′

(51)

where we drop the time argument for the matrices C
(Φ)
h and

C̃
(Φ)
h to simplify notation. Based on (6) and (34), the actual

FL-based matched MSE at time instant m follows as

σ2
e,N,L[m] =

1

N
tr {Re[m]}

≈ 1

N
tr
{

F̌Hh C
(Φ)
h F̌h−F̌Hh C

(Φ)
h F̌h,L

×
(
F̌Hh,LC

(Φ)
h F̌h,L + INp

γ−1
)−1

F̌Hh,LC
(Φ)
h F̌h

}
(52)

where Re[m] is the matched MSE matrix which follows from
the mismatched one for C̃

(Φ)
h = C

(Φ)
h .

2) Infinite-Length Filtering: For the infinite-length filtering
case, we define the time-dependent error PSD at time instant m
using statistical knowledge of the channel from time instant m′

as C̃e
(
m,m′; ej2πν

)
. Using (43), we obtain the mismatched

MSE based on (19) as

σ̃2
e,∞,L[m,m′] =

∫ 1
2

− 1
2

C̃e
(
m,m′; ej2πν

)
dν

≈
∫ 1

2

− 1
2

1

N ′

N ′′∑
k=−N ′′

C̃(f)
e

(
m,m′; ej2π

k
N′
) sin (π (νN ′ − k))

sin
(
π νN

′−k
N ′

) dν

=
1

N ′

N ′′∑
k=−N ′′

C̃(f)
e

(
m,m′; ej2π

k
N′
)

(53)

i.e., the integration in (19) is replaced by a summation. We
denote this approximate evaluation, i.e., the use of (41), by
“ap”. Thus, with (44), the approximate IL-based mismatched

MSE at time instant m using channel statistics of time instant
m′ is

σ̃2
e,ap,L[m,m′]

=
1

N ′

N ′′∑
k=−N ′′

(
Lγ−1

)2
C

(Φ)
h [m; k] + Lγ−1C

(Φ)
h

2
[m′; k](

C
(Φ)
h [m′; k] + Lγ−1

)2 .

(54)

The approximate IL-based matched MSE at time instant m

σ2
e,ap,L[m] =

1

N ′

N ′′∑
k=−N ′′

C
(Φ)
h [m; k]

γ
LC

(Φ)
h [m; k] + 1

(55)

is obtained analogously. With σ̃2
e,ap,L[m,m′] and σ2

e,ap,L[m],
we have approximate, but simplified, expressions of the MSEs.

D. Relations Between the Actual FL-Based and the Approxi-
mate IL-Based MSE

In the following, we justify the use of the approximate
IL-based MSE by relating it to the actual FL-based MSE.
More specifically, we give a condition on the sampled PSD
of the channel C(Φ)

h [m; k] for which σ2
e,N,L[m] ≥ σ2

e,ap,L[m]
is satisfied.

We consider a rectangular sampled PSD of the channel
C

(Φ)
h [m; k] with a maximal Doppler satisfying10

1

2L
− 1

2N ′
< νmax[m] <

1

2L
. (56)

Note that a rectangular PSD should be seen as an approxima-
tive PSD since its corresponding correlation function (sinc) is
only slowly diminishing. The limitation to maximal Doppler
frequencies close to the Nyquist limit in (56) is not a severe
restriction. It is relevant in the case of joint processing of
pilot and data symbols [31], e.g., using iterative receivers. The
reason is that then channel sampling is performed close to the
limit imposed by the Nyquist criterion (2). Rectangular PSDs
of the channel restricted to (56) can be used to model a change
in the channel power gain Ph[m] =

∑N ′′

k=−N ′′ C
(Φ)
h [m; k]/N ′

as well as a small variation in the maximal Doppler νmax[m]. In
Appendix B, we show that the approximate IL-based matched
MSE σ2

e,ap,L[m] is a lower bound to the actual FL-based
matched MSE σ2

e,N,L[m] for a rectangular PSD of the channel
satisfying (56).

Consider the case of a rectangular mismatched PSD of
the channel with (56), an arbitrary matched PSD of the
channel, and a pilot spacing L = 1. Under these conditions,
it can be shown that the actual and the approximate MSE are
equivalent, i.e., σ̃2

e,N,L=1[m] = σ̃2
e,ap,L=1[m]. This result is

not surprising as the correlation matrices R̃hp
and R̃h;hp

in
(34) are, in this case, scaled identity matrices; therefore, each
channel entry is estimated based on its own observation only,
see (4).

A sampled PSD of the channel with a rectangular shape
satisfying (56) is of particular interest. Subject to a fixed
channel power gain Ph[m], it results in a maximal approximate

10We use νmax[m] with a time argument to indicate that the maximal
Doppler can change over time.
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IL-based matched MSE. In contrast, a sampled PSD of the
channel with a single peak minimizes the approximate IL-
based matched MSE subject to a fixed channel power gain.
The proofs are provided in Appendix C. Note that the closer
N − 1 is to N ′′, the more similar the approximate MSE is to
the actual MSE. The reason is that the additional observations
used by infinite-length filtering are then reduced.

E. Local Quasi-Stationarity

We aim to relate the size of LQS regions to the performance
degradation of a channel estimator. Therefore, we introduce
the degradation of the MSE due to the use of mismatched
channel statistics, i.e., channel statistics from another time
instant. The MSE degradation at time instant m using, possibly
mismatched, statistical knowledge of the channel correspond-
ing to time instant m′ is defined as

ηN,L[m,m′] =
σ̃2
e,N,L[m,m′]

σ2
e,N,L[m]

− 1. (57)

The approximate IL-based MSE degradation ηap,L[m,m′] fol-
lows accordingly. We define the difference between the ap-
proximate IL-based and the actual FL-based MSE degradation
as

∆η,N,L[m,m′] = ηap,L[m,m′]− ηN,L[m,m′]

=
σ̃2
e,ap,L[m,m′]σ2

e,N,L[m]− σ̃2
e,N,L[m,m′]σ2

e,ap,L[m]

σ2
e,N,L[m]σ2

e,ap,L[m]
.

(58)

With (58), it follows that the approximate IL-based MSE
degradation upper-bounds the actual FL-based MSE degrada-
tion if and only if

σ̃2
e,ap,L[m,m′]

σ2
e,ap,L[m]

≥
σ̃2
e,N,L[m,m′]

σ2
e,N,L[m]

. (59)

Consider now the case that the matched and the mismatched
PSD are both rectangular with a maximal Doppler νmax[m]
satisfying (56). This is representative for a setting with a mis-
match in the channel power gain Ph[m] or a small mismatch
in νmax[m]. In this case, it can be shown that the MSEs are
equal to

σ2
e,N,L[m] = Ph[m]− P×,N,L[m] (60)

σ̃2
e,N,L[m,m′] = Ph[m]− P̃×,N,L[m,m′] (61)

σ2
e,ap,L[m] = Ph[m]− dN,LP×,N,L[m] (62)

σ̃2
e,ap,L[m,m′] = Ph[m]− dN,LP̃×,N,L[m,m′] (63)

where P×,N,L[m] and P̃×,N,L[m,m′] are defined in accor-
dance with (52) and (49), respectively. With (91) from Ap-
pendix B, we have

dN,L =
N

L2 tr
{

F̄Hh F̄h,LF̄Hh,LF̄h

} ≥ 1 (64)

which is a factor arising from the bounding of the last term(s)
of the actual FL-based MSEs. See also Appendix B. With (58),

Time m′

MSE degradation ηN,L[m,m
′]

ηth

CN,L[m]:
MN,L[m]: ∪

m
0

Fig. 2. Visualization of the definition of LQS regions.

it then follows that

∆η,N,L[m,m′]

= (dN,L − 1)Ph[m]
σ̃2
e,N,L[m,m′]− σ2

e,N,L[m]

σ2
e,N,L[m]σ2

e,ap,L[m]
≥ 0 (65)

holds, i.e., the actual FL-based MSE degradation is always
upper-bounded by the approximate IL-based MSE degradation
if the matched and the mismatched PSD are both rectangular
and satisfy (56).

Having defined the MSE degradation as a measure to
characterize non-stationarity, we proceed to the definition of
LQS regions. In order to reflect the performance degradation
the system engineer is willing to accept, we define a threshold
on the MSE degradation. This threshold is chosen as the
maximal MSE degradation, due to mismatched statistics of
the channel, that is deemed acceptable. The resulting LQS
regions in time are then related to the required update rate of
the channel statistics for the channel estimator. Defining the
set

MN,L[m] = {m′ | ηN,L[m,m′] < ηth} (66)

we obtain the (time-dependent) actual FL-based LQS time

TLQS,N,L[m] = |CN,L[m]|T (67)

where T is the symbol duration and CN,L[m] is the connected
subset of MN,L[m] containing m and having maximum car-
dinality.11 The approximate IL-based LQS time TLQS,ap,L[m]
follows accordingly. Fig. 2 depicts the definition of LQS
regions. We mentioned that for certain PSDs of the channel
the actual FL-based MSE degradation is upper-bounded by the
approximate IL-based MSE degradation. Therefore, in such
cases, the size of the actual FL-based LQS regions is lower-
bounded by the size of the approximate IL-based LQS regions.

V. ANALYSIS

In this section, we will exemplarily apply the developed
concepts for a non-stationarity analysis to a rectangular PSD
with varying νmax[m], on the one hand, and to a realistic setting
based on a measured channel, on the other hand.

11Note that our definition of locally quasi-stationary random processes is
different to the definition of locally stationary random processes introduced
in [32]. In contrast to this work, [32] imposes a structure on the covariance
of the random process.
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Fig. 3. LQS times for the SNR ρ = 10 dB and ηth = 0.1.

A. Exemplary Analysis for a Rectangular PSD of the Channel

We consider a setting with a rectangular PSD and vary-
ing maximal Doppler shift νmax[m]. More specifically, we
assume a fixed channel power gain Ph = Ph[m] =∑N ′′

k=−N ′′ C
(Φ)
h [m; k]/N ′ and the following evolution of

νmax[m] for m = 0, . . . , Ntrack − 1:

νmax[m]=

{
νincm+ ν0, for 0 ≤ m ≤

⌈
Ntrack

2

⌉
−1

νinc (Ntrack−1−m)+ν0, for
⌈
Ntrack

2

⌉
≤ m < Ntrack

(68)
where Ntrack is the total track time, ν0 is the initial Doppler,
and νinc describes the increase in the Doppler. This evolution
is representative for, e.g., a fixed transmitter and fixed scat-
terers in the environment with only a mobile receiver. The
receiver starts with an initial velocity and then has a constant
acceleration until a peak velocity is reached; afterwards, the
velocity linearly reduces back to the initial velocity.

Consider the following parameters: the block length
N = 120, the pilot spacing L = 3, the signal-to-noise ratio
(SNR) ρ = Phγ = 10 dB, the fixed channel power gain
Ph = 1, the total track time Ntrack = 201, the effective corre-
lation length of the channel N ′ = 303, and ν0 = 1

2N ′ . Finally,
νinc is chosen such that, exemplarily, νmax[m] reaches a peak
value of 1/(2L)−1/(4N ′), see (56).12 With these parameters,
we obtain the size of the LQS regions in time as shown in
Fig. 3. It can be observed that the size of the actual FL-based
LQS regions is always lower-bounded by the size of the
approximate IL-based LQS regions. Furthermore, for a fixed
channel power gain, the LQS times generally decrease with
a decreasing Doppler. The reason is that for a small maximal
Doppler the channel power gain is concentrated inside a small
fraction of the samples of the PSD of the channel. Thus, the
MSE is more sensitive to a mismatch in the maximal Doppler
when the maximal Doppler is small. Finally, we observe
strong variations in the LQS times around the middle of the
track, where the peak value of νmax[m] is reached.

B. Exemplary Analysis of a Measured Channel

We now use the developed concepts for the non-stationarity
analysis of a measured channel. First, we have to find an

12Note that, strictly speaking, the choice of N ′ is only appropriate when
νmax[m] is large.

estimate of the time-dependent PSD of the channel sampled
in the Doppler domain, i.e., C(Φ)

h [m; k], from a single mea-
surement run of the channel. We use the doubly underspread
condition and the effectively finite correlation of the channel to
perform a weighted averaging inside local regions, i.e., finite
intervals. The application of the multitaper estimator [13],
[30], [33] to our setting with frequency-flat fading yields the
time-dependent PSD estimate

Ĉ
(Φ)
h [m; k] =

1

S

S−1∑
s=0

∣∣∣H(gs)[m; k]
∣∣∣2 (69)

for k = −bN ′/(2L)c , . . . , dN ′/(2L)e− 1, and Ĉ(Φ)
h [m; k] =

0 else. Furthermore, we have

H(gs)[m; k] =

√
Tm

T

dNw/2e−1∑
m̌=−bNw/2c

g∗s [m̌]h((m+ m̌)Tm)e−j2πL
km̌
N′

(70)

where h(mTm) denotes a measured sample of the continuous-
time channel. We choose the measurement samples to be
the pilot symbols, i.e., Tm = LT . This choice leads to the
normalization factor

√
Tm/T =

√
L, cf. (46). Denoting the

minimum value of N ′′ by N ′′min, the window length in time Nw
has to satisfy N ′′min ≤ (Nw− 1)L < Ns, i.e., the estimator has
to capture the relevant correlation coefficients of the channel
while being restricted to an interval of constant statistics.

The channel measurements used in the subsequent analysis
were performed in an urban macrocell scenario in Ilmenau,
Germany; they are also available for download [34]. For the
sake of completeness, we shortly describe the considered
scenario; a more elaborate presentation is given in [3]. We
consider vertically polarized propagation at a carrier frequency
of 2.505 GHz. We choose a uniform linear array at base station
1 at a height of 25 m as the transmitter and a uniform circular
array (the lower one) of the mobile terminal on the mobile
terminal reference track 9a-9b [3] as the receiver. The specific
link consists of one antenna element of the uniform linear
array at the base station and the antenna element at the mobile
terminal oriented towards the right with respect to the direction
of motion.

We first verify the doubly underspread condition ∆ν,max �
νmax � 1 to ensure a meaningful local averaging over time
[2]. In [3], we have shown that in the considered scenario
the doubly underspread condition is satisfied with ∆ν,max ≈
0.03/L and νmax ≈ 0.31/L, or equivalently Ns ≈ 32.89L
and Nc ≈ 3.26L. For the windows gk[m] used in (69), we
choose discrete prolate spheroidal sequences [35] with length
Nw = 31 and a time-halfbandwidth product of 2. We obtain
a coherence time Tc = NcT = Tm/(νmaxL) ≈ 0.04 s, a win-
dowing time NwTm = NwLT = 0.41 s, and a stationarity time
Ts = NsT = T/∆ν,max ≈ 0.43 s. Therefore, the measurement
data satisfies Nc � Ns, and we have (Nw − 1)L < Ns. The
number of windows is S = 2. We preprocess the data by
estimating a noise level in the time-delay domain of the chan-
nel; all channel weights below this threshold are discarded.
Furthermore, we remove the very small time-dependent mean
of the channel. It is estimated using 31 time instants and a
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Fig. 4. Magnitude of the average correlation coefficients of the channel.

frequency bandwidth of 5 MHz, i.e., 32 samples in frequency.
Inside this bandwidth, the channel statistics can be assumed
to be constant [3]. Then we use (69) to estimate the PSD and
average the estimate over a bandwidth of 5 MHz to improve
the estimation. No claims of optimality are made for these
parameters. The magnitude of the correlation coefficients of
the channel process averaged over the whole track are shown
in Fig. 4. A strong decrease in the correlation coefficients to
values below 0.1 can already be observed for a time offset of
±20 measurement samples, i.e., pilot symbols. Therefore, the
assumption on an effectively finite correlation of the channel
process with N ′′ ≥ N ′′min = 20L is justified. Furthermore,
(Nw − 1)L ≥ N ′′min � Nc holds.

In the following analysis, we choose the pilot spacing
L = 3, the block length N = 47, the threshold ηth = 0.1, and
the average SNR ρavg = γ

∑M
m=1 |h(mTm)|2/M = 10 dB,

where M is the total number of samples. The correlation
length of the channel is chosen as N ′ = 2N ′′ + 1 =
183, i.e., N ′′ = 91 ≥ N ′′min. Note that the estimated correlation
coefficients for symbol offsets close to (Nw−1)L = 90 suffer
from a reduced accuracy; we thus choose the block length
N = 47. In Fig. 5, the actual FL-based matched MSE is
compared to the approximate IL-based matched MSE; both are
normalized to the mean value of the actual FL-based matched
MSE over the track. One can see that here the approximate
matched MSE lower-bounds the actual one, see Section IV-D.
In Fig. 6, we show an exemplary evolution of the size of the
LQS regions dLQS, i.e., TLQS mapped to the driven distance.
From Fig. 6, we can see that both LQS regions, i.e., the actual
one dLQS,N=47,L=3 and the approximate one dLQS,ap,L=3 show
strong similarities in their evolution over the distance. As
discussed in Section IV-E, the size of the actual FL-based
LQS regions is lower-bounded by the size of the approximate
IL-based LQS regions up to a few exceptions. Furthermore,
we evaluate the LQS regions dLQS,CMD based on the CMD,
which is commonly used to analyze the spatial properties of
the channel [14], [36]. To this end, we use the measure

ηCMD[m,m′] = 1−
tr
{

C
(Φ)
h C̃

(Φ)
h

}
∥∥∥C(Φ)

h

∥∥∥
F

∥∥∥C̃(Φ)
h

∥∥∥
F

(71)

and the same threshold ηth = 0.1. In this example, we observe
significant differences between the LQS distances based on
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Fig. 5. Normalized matched MSEs for the average SNR ρavg = 10 dB.
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the CMD and those based on the MSE degradation.

VI. CONCLUSION

We have developed a methodology for the determination
of LQS regions, i.e., local regions, for example in time, in
which a channel can be treated as stationary. In contrast
to previous results in the literature, we consider a realistic
channel estimation algorithm. We relate the size of LQS
regions to the degradation of the MSE of the channel estimate
due to mismatched channel statistics, i.e., channel statistics
from another time instant. The channel estimator is a finite-
length Wiener filter estimating a time-varying frequency-flat
fading channel. As the evaluation of the MSE turns out to
be computationally complex, we also give an approximate
expression based on infinite-length filtering. We have shown
that for certain PSDs of the channel the approximate evaluation
of the matched MSE based on infinite-length filtering is a
lower bound to the actual matched MSE based on finite-length
filtering. Moreover, for such PSDs of the channel, the actual
MSE degradation is upper-bounded and the size of the actual
LQS regions is lower-bounded by the approximate evaluation.
Exemplarily, we have evaluated the actual and the approximate
MSE degradation using channel measurements in an urban
macrocell scenario. We have observed that the size of the
resulting LQS regions based on the actual and the approximate
MSE degradation show strong similarities in their evolution.
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APPENDIX A
ALTERNATIVE DERIVATION OF THE INFINITE-LENGTH

FILTERING MSE FOR WSS CHANNELS

In order to show (23) for a block length N = NpL, we start
by decomposing the correlation matrices as

Rh = FHh ΛhFh

Rhp = FHhp
ΛhpFhp ; R̃hp = FHhp

Λ̃hpFhp

Rh;hp
= FHh ΛhFh,L ; R̃h;hp

= FHh Λ̃hFh,L. (72)

We use the N×N discrete Fourier transform (DFT) matrix Fh
with [Fh]k,l =

√
1/N exp(−j2π(k− 1)(l− 1)/N) for k, l =

1, . . . , N and the Np ×Np DFT matrix Fhp
with [Fhp

]k,l =√
1/Np exp(−j2π(k − 1)(l − 1)/Np) for k, l = 1, . . . , Np.

The N × Np matrix Fh,L contains L-spaced columns of
Fh, i.e., [Fh,L]k,l =

√
1/N exp(−j2π(k − 1)(l − 1)L/N)

for k = 1, . . . , N and l = 1, . . . , Np. The following property
holds:

Fh,LFHhp
= 1L ⊗ INp

1√
L

(73)

with the length-L column-vector 1L containing 1 in every en-
try. Note that Λh and Λ̃h have dimension N×N , and that Λhp

and Λ̃hp have dimension Np×Np. With the decompositions in
(72) and FHhp

Λ̃hp
Fhp

+INp
γ−1 = FHhp

(
Λ̃hp

+ INp
γ−1

)
Fhp

,
the mismatched MSE in (5) can be expressed as

R̃e = FHh ΛhFh + FHh Λ̃hFh,LFHhp

(
Λ̃hp

+ INp
γ−1

)−1

×
(
Λhp

+ INp
γ−1

) (
Λ̃hp

+ INp
γ−1

)−1

Fhp
FHh,LΛ̃H

h Fh

− FHh Λ̃hFh,LFHhp

(
Λ̃hp

+ INp
γ−1

)−1

Fhp
FHh,LΛH

h Fh

− FHh ΛhFh,LFHhp

(
Λ̃hp

+ INp
γ−1

)−1

Fhp
FHh,LΛ̃H

h Fh.

(74)

Defining Λ̃Z = Λ̃hp + INpγ
−1, ΛZ = Λhp + INpγ

−1, and

Z̃Λ = Λh +
1

L
Λ̃h

((
1L1HL

)
⊗
(
Λ̃−1
Z ΛZΛ̃−1

Z

))
Λ̃H
h −

1

L
Λ̃h

×
((

1L1HL
)
⊗ Λ̃−1

Z

)
ΛH
h −

1

L
Λh

((
1L1HL

)
⊗ Λ̃−1

Z

)
Λ̃H
h

(75)

and using (73), the mismatched MSE matrix can be written
as R̃e = FHh Z̃ΛFh. The average mismatched MSE over all
positions in (7) can thus be expressed as

σ̃2
e,N,L =

1

N
tr
{

FHh Z̃ΛFh

}
=

1

N
tr
{

Z̃Λ

}
. (76)

Autocorrelation matrices, which are Hermitian and Toeplitz
for WSS processes, have an asymptotically equivalent13 circu-
lant matrix for absolutely summable autocorrelation functions
[37, Lemma 4.1 & 4.6]. With the asymptotic equivalence

13A formal definition of asymptotically equivalent sequences of matrices is
given in [37, Section 2.3].

of, e.g., R̃h and the circulant matrix FHh C̃hFh, we have

lim
Np→∞

‖R̃hp
− FHhp

C̃hp
Fhp
‖F√

Np
= lim
Np→∞

‖Λ̃hp
− C̃hp

‖F√
Np

= 0

(77)

lim
N→∞

‖R̃h − FHh C̃hFh‖F√
N

= lim
N→∞

‖Λ̃h − C̃h‖F√
N

= 0 (78)

where the diagonal matrices C̃hp
and C̃h of size Np × Np

and N ×N , respectively, are defined as

[
C̃hp

]
k,k

=

C̃h
(
ej2πL

k−1
N

)
, for k = 1, . . . ,

⌈
Np

2

⌉
C̃h

(
ej2πL

k−1−Np
N

)
, for k =

⌈
Np

2

⌉
+ 1, . . . , Np

(79)

[
C̃h

]
k,k

=


LC̃h

(
ej2πL

k−1
N

)
, for k = 1, . . . ,

⌈
Np

2

⌉
LC̃h

(
ej2πL

k−1−N
N

)
, for k = N−

⌊
Np

2

⌋
+1, . . . , N

0, else
(80)

with C̃h
(
ej2πLν

)
< ∞. The asymptotic equivalence for the

matched case is obtained accordingly.14 We now define

Z̃C = Ch +
1

L
C̃h

((
1L1HL

)
⊗
(
C̃−1
Z CZC̃−1

Z

))
C̃H
h −

1

L
C̃h

×
((

1L1HL
)
⊗ C̃−1

Z

)
CH
h −

1

L
Ch

((
1L1HL

)
⊗ C̃−1

Z

)
C̃H
h

(81)

with C̃Z = C̃hp
+ INp

γ−1 and CZ = Chp
+ INp

γ−1. Using
[37, Theorem 2.1] with σ2

n > 0, it follows that Λ̃−1
Z and

C̃−1
Z are asymptotically equivalent. With

∥∥(1L1HL
)
⊗A

∥∥
F

=
L ‖A‖F for an arbitrary matrix A, it follows that the ma-
trices resulting from the Kronecker products in (75) are
asymptotically equivalent to the corresponding ones in (81).
Now, invoking again [37, Theorem 2.1], it follows that the
matrices resulting from the matrix multiplications in (75) are
asymptotically equivalent to the corresponding ones in (81).
Thus, Z̃C is asymptotically equivalent to Z̃Λ, and we have

lim
N→∞

‖Z̃Λ − Z̃C‖F√
N

= 0. (82)

With [37, Theorem 2.2] and (82), the average mismatched
MSE over all positions in (76) for N →∞ follows as

lim
N→∞

σ̃2
e,N,L = lim

N→∞

1

N
tr
{

Z̃Λ

}
= lim
N→∞

1

N
tr
{

Z̃C

}
. (83)

We now rewrite the trace of (81) without Kronecker products.
Instead, we will obtain a sum of products of diagonal matrices.
Due to the zero entries and the factor L in (80), we can use

14It is shown in [38] that (77) and (78) also hold for square summable
autocorrelation functions and a different construction of the circulant matrices.
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(81) with (79) and (80) to state

tr
{

Z̃C

}
= tr

{
LChp + LC̃hpC̃−1

Z CZC̃−1
Z C̃H

hp

−LC̃hp
C̃−1
Z CH

hp
− LChp

C̃−1
Z C̃H

hp

}
= tr

{
LChp

+ LC̃hp

(
C̃hp

+ INp
γ−1

)−1(
Chp

+ INp
γ−1

)
×
(
C̃hp + INpγ

−1
)−1

C̃H
hp
− LC̃hp

(
C̃hp + INpγ

−1
)−1

CH
hp

−LChp

(
C̃hp

+ INp
γ−1

)−1

C̃H
hp

}
. (84)

Finally, we evaluate (83) with (84), and we obtain

lim
N→∞

σ̃2
e,N,L = lim

N→∞

L

N

d N
2L e−1∑

k=−b N
2L c

(
Ch

(
ej2πL

k
N

)

+

(
Ch

(
ej2πL

k
N

)
+ γ−1

)
C̃2
h

(
ej2πL

k
N

)
(
C̃h

(
ej2πL

k
N

)
+ γ−1

)2

−
2Ch

(
ej2πL

k
N

)
C̃h

(
ej2πL

k
N

)
C̃h

(
ej2πL

k
N

)
+ γ−1

)
. (85)

Identifying (16) in (85), we can write

lim
N→∞

σ̃2
e,N,L = lim

N→∞

L

N

d N
2L e−1∑

k=−b N
2L c

C̃e

(
ej2πL

k
N

)

= L

∫ 1
2L

− 1
2L

C̃e
(
ej2πLν

)
dν = σ̃2

e,∞,L (86)

for Riemann integrable error processes. The proof for matched
Wiener filtering follows as a special case. In conclusion, we
have proven (23).

APPENDIX B
LOWER BOUND ON THE ACTUAL FL-BASED MATCHED

MSE FOR A RECTANGULAR PSD OF THE CHANNEL

We derive a lower bound on the actual FL-based matched
MSE (52) for the special case of a rectangular PSD satisfying
(56). We will show that this lower bound is equal to the
approximate IL-based matched MSE (55). Remember that we
have assumed a finite correlation of the error process in the
derivation of the approximate MSE, see (53). Starting from
(52), we obtain

σ2
e,N,L[m] =

1

N
tr
{

F̌Hh C
(Φ)
h F̌h − F̌Hh C

(Φ)
h F̌h,L

×
(
F̌Hh,LC

(Φ)
h F̌h,L + INpγ

−1
)−1

F̌Hh,LC
(Φ)
h F̌h

}
(a)
=

1

N
tr
{

F̌Hh C
(Φ)
h F̌h −

[
C

(Φ)
h

]2
1,1

F̄Hh F̄h,L

×
(

F̄Hh,LF̄h,L

[
C

(Φ)
h

]
1,1

+ INpγ
−1

)−1

F̄Hh,LF̄h

}
(b)
=

1

N
tr
{

F̌Hh C
(Φ)
h F̌h − L

[
C

(Φ)
h

]2
1,1

F̄Hh F̄h,L

×
(

INp

[
C

(Φ)
h

]
1,1

+ INp
Lγ−1

)−1

F̄Hh,LF̄h

}

(c)

≥ 1

N
tr
{

F̌Hh C
(Φ)
h F̌h −

NL

Np

[
C

(Φ)
h

]2
1,1

F̄Hh,LF̄h,L

×
(

INp

[
C

(Φ)
h

]
1,1

+ INpLγ
−1

)−1

F̄Hh,LF̄h,L

}
(d)
=

1

N
tr
{

F̌hF̌
H
h C

(Φ)
h

− N

NpL

[
C

(Φ)
h

]2
1,1

([
C

(Φ)
h

]
1,1

+ Lγ−1

)−1

INp

}
(e)
=

1

N ′
tr
{

C
(Φ)
h

}
− 1

L

[
C

(Φ)
h

]2
1,1

([
C

(Φ)
h

]
1,1

+ Lγ−1

)−1

(f)
=

1

N ′

N ′′∑
k=−N ′′

C
(Φ)
h [m; k]

γ
LC

(Φ)
h [m; k] + 1

= σ2
e,ap,L[m]. (87)

We first state

F̌h,L = 1L ⊗ F̄h,L ; F̄Hh,LF̄h,L = INp

1

L
(88)

where the N ′

L × Np matrix F̄h,L is specified by the entries[
F̄h,L

]
k,l

=
√

1/N ′ exp(−j2π(k − 1)(l − 1)L/N ′) for k =

1, . . . , N ′/L and l = 1, . . . , Np. In (a), we use (88) to obtain

F̌Hh,LC
(Φ)
h F̌h,L = F̄Hh,LC̄hF̄h,L

F̌Hh C
(Φ)
h F̌h,L = F̄Hh C̄hF̄h,L (89)

where the (N ′/L) × N matrix F̄h contains only the rows
of F̌h corresponding to the non-zero columns of C

(Φ)
h , and

the (N ′/L) × (N ′/L) diagonal matrix C̄h contains only the
non-zero rows and columns of C

(Φ)
h . Furthermore, in (a), we

use C̄h = IN′
L

[
C

(Φ)
h

]
1,1

due to a rectangular PSD of the

channel with (56). In (b), we use (88). In order to show (c),
we define f̄h,k and f̄h,L,k to be the kth column of F̄h and
F̄h,L, respectively. Note that

∥∥f̄h,k∥∥2

F
=
∥∥f̄h,L,k∥∥2

F
= 1/L

holds and that all non-zero eigenvalues of F̄h,LF̄Hh,L =∑Np

k=1 f̄h,L,k f̄
H
h,L,k are equal to 1/L. With the Rayleigh-Ritz

theorem [39, Theorem 4.2.2], we have∥∥F̄Hh,Lx
∥∥2

F
= xHF̄h,LF̄Hh,Lx ≤ 1

L2
= f̄Hh,L,kF̄h,LF̄Hh,Lf̄h,L,k

=
∥∥F̄Hh,Lf̄h,L,k

∥∥2

F
, ∀k = 1, . . . , Np (90)

for an arbitrary vector x with ‖x‖2F = 1/L. It follows that

1

N
tr
{
F̄Hh F̄h,LF̄Hh,LF̄h

}
=

1

N

N∑
k=1

f̄Hh,kF̄h,LF̄Hh,Lf̄h,k

(90)

≤ f̄Hh,L,1F̄h,LF̄Hh,Lf̄h,L,1 =
1

Np
tr
{
F̄Hh,LF̄h,LF̄Hh,LF̄h,L

}
.

(91)

In (d) of (87), we use (88). In (e), we use (37) and the
following equality, which holds for an arbitrary square matrix
A and a diagonal matrix D of appropriate size:

tr {AD} = tr {A�D} . (92)

Finally, in (f), we reformulate the second term in (e) by making
use of the fact that only N ′/L values of C(Φ)

h [m; k] are non-
zero.
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APPENDIX C
CHANNEL PSDS MINIMIZING AND MAXIMIZING THE

APPROXIMATE IL-BASED MATCHED MSE

We show that a PSD with one peak minimizes and a
rectangular PSD satisfying (56) maximizes the approximate
IL-based matched MSE (55) subject to a fixed channel power
gain Ph = Ph[m] =

∑N ′′

k=−N ′′ C
(Φ)
h [m; k]/N ′ and (2). We

can rewrite the approximate IL-based matched MSE (55) by
defining the concave and monotonically increasing function
f(x) = xL/(xγ + L), x ≥ 0:

σ2
e,ap,L[m] = g(c) =

1

N ′

N ′′∑
k=−N ′′

f (c[k]) (93)

where we define the vector c with [c]k+N ′′+1 = c[k] =

C
(Φ)
h [m; k] for k = −N ′′, . . . , N ′′ and we drop the time

argument to simplify notation. As f(x) is concave in x, g(x)
is also concave in x [40, Section 3.2.1].

To show which PSD minimizes σ2
e,ap,L[m], we define the

vector b with [b]k+N ′′+1 = b[k] = c[k]/(PhN
′) for k =

−N ′′, . . . , N ′′ and
∑N ′′

k=−N ′′ b[k] = 1. We can thus write c =
PhN

′ b. Therefore, we have

g(c) = g (PhN
′ b)

(a)

≥
N ′′∑

k=−N ′′
b[k] g (PhN

′ 1k)

(b)
=

N ′′∑
k=−N ′′

b[k]
1

N ′
f (PhN

′) =
1

N ′
f (PhN

′) (94)

where 1k is a zero-vector except for a 1 in the kth entry, (a)
follows from Jensen’s inequality, and (b) from (93). Thus, a
single peak with amplitude PhN ′ minimizes (93).

We now show which PSD maximizes σ2
e,ap,L[m]. With the

concavity of f(x) and Jensen’s inequality, it follows that

g(c) =
1

N ′

N ′′∑
k=−N ′′

f (c[k]) =
1

L

L

N ′

⌊
N′
2L

⌋∑
k=−bN′

2L c
f (c[k])

≤ 1

L
f

 L

N ′

⌊
N′
2L

⌋∑
k=−bN′

2L c
c[k]

 =
1

N ′

⌊
N′
2L

⌋∑
k=−bN′

2L c
f (LPh)

(95)

holds since only N ′/L elements of c are allowed to be
non-zero. Therefore, we can state that (93) is maximized by
choosing c[k] = LPh, k = −bN ′/(2L)c, . . . , bN ′/(2L)c and
c[k] = 0 else.
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