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Abstract—In the present paper, we investigate the power
allocation problem in distributed sensor networks and give
a sensitivity analysis for perfect and imperfect knowledge of
system parameters. As it is common for sensors with weak
power-supplies, constraints by sum and individual power-range
limitations are imposed. The power allocation problem leads to
a signomial program, and is analytically solved by a Lagrangian
setup. Typical examples of such networks are passive radar
systems with multiple nodes, whose aim is to detect and classify
target signals. For each sensor node, an amplify-and-forward
strategy for the received target signal is proposed. This per-node
information is transmitted over a communication channel and
combined at a fusion center. The fusion center carries out the
final decision about the type of the target signal by a best linear
unbiased estimator and a subsequent classification. In contrast
to approaches in the literature, which combine discrete local
decisions into a single global one, the approach in the current
paper offers many advantages, ranging from the simplicity of
its implementation to the achievement of an optimal solution
in closed-form. Moreover, it allows for a sensitivity analysis of
the whole sensor network under variations of different system
parameters.

Index Terms—Closed-form optimization, energy-efficient
system-design, distributed radar, network resource management,
information fusion.

I. INTRODUCTION

D ISTRIBUTED passive multiple-radar systems (DPMRS)
are used for a variety of modern applications. Physicists

use this type of radar to detect or to determine specific char-
acteristics of particles, for example, in the neutrino telescope
‘IceCube Neutrino Observatory’ at the Amundsen-Scott South
Pole Station [2] in Antarctica, where a network with over
5000 nodes is implemented. They also use such radars for
radio astronomy to study celestial objects, for instance in the
‘Karl G. Jansky Very Large Array’ of the National Radio
Astronomy Observatory [3] in Socorro County, New Mexico.
Many other applications of DPMRSs are military [4] and
some are also for civil usage [5]. Because of the importance
of DPMRSs on the one hand, and power-sensitive nature of
sensor nodes (SNs) on the other hand, an energy-aware design
of the entire network is of high interest. The significance of
this approach becomes more clear if considering individual
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Fig. 1. Abstract representation of the distributed sensor network.

powering mechanisms for sensor nodes constituted by weak
batteries, intermittent power-supplies, or by inefficient energy
conversion techniques. Especially, large sensor networks for
space and extreme environment applications, where power
consumption is a crucial element, require an energy-efficient
operation. Thus, the task is to allocate power within the sensor
network such that the radar accuracy is improved at a constant
overall energy consumption [6]. The problem of finding an
optimum power allocation for a distributed radar system in
closed-form under certain constraints is extremely hard. The
main difficulty lies in finding an explicit representation of the
objective function, as mentioned in [7]. Recently, some novel
methods have been proposed to solve the power allocation
problem. In particular, the authors in [8] have investigated
game-theoretic approaches to solve the power allocation prob-
lem not focussing on DPMRSs. The power allocation for
localization purposes is investigated in [9], [10] and [11].
The capacity bound and the corresponding power allocation
in a single relay system is considered in [12] and [13]. The
optimal power allocation for an active radar instead of a
passive radar system is given in [14]. Moreover, an optimum
power allocation scheme for decode-and-forward parallel relay
networks, instead of amplify-and-forward sensor networks, is
investigated in [15].

The optimal power allocation for sensor networks, which
are used for passive radar applications, has been recently
investigated analytically in [1] and subsequently extended
in [16] with joint power constraints. This solution includes
a total power limitation for the entire sensor network as
well as an individual maximum-power limitation for each SN.
However, a limitation of the minimum transmission power for
each SN is not investigated, such that least reliable SNs remain
inactive and cannot participate in the sensing task. To ensure
for incessant and reliable radar sensing, especially crucial
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for signal-tracking and localization, an additional optimiza-
tion constraint must be included into the power optimization
problem for keeping all unreliable SNs in an operating mode
with a predefined minimum activity. Moreover, since the main
content of [16] targets at finding a theoretical solution to the
power allocation problem, it ignores practical limitations and
parameter uncertainties, e.g., perfect versus imperfect channel-
state knowledge. It is obvious that imperfect parameter knowl-
edge impairs the radar quality. But the specific value of the
deterioration depends on the underlying method of power
allocation and is sensitive to different system parameters.
Thus, the impact of parameter uncertainties is highly important
for development and implementation, and must be carefully
studied.

In this publication, we consider a sensor network where each
SN receives a signal from a jointly observed target source. The
particular information about the target signal at each SN is sent
to a fusion center, which combines the local observations into
a single reliable one. This setup is illustrated in Figure 1 whose
technical components will be specified later. In order to avoid
functional complexity of SNs and to obtain a simple system
model, each SN is assumed to be an amplify-and-forward
unit. Both the sensing and the communication channels are
subject to additive noise. The fusion center applies a linear
fusion rule to combine the distributed local observations. The
average deviation between the estimated and the actual signal
is utilized as a metric for defining the objective function.
Based on this system-setup we solve the power allocation
problem analytically. A sum-power constraint and individual
minimum and maximum transmission power constraints per
SN are considered. The power allocation problem leads to a
signomial program, and is analytically solved in closed-form
by a Lagrangian setup. This leads to an explicit policy for the
optimal power allocation provided that all system parameters
are perfectly known. Furthermore, we numerically investigate
the behavior of the proposed optimal power allocation when
the practical system is subject to parameter inaccuracies and
uncertainties. Solving the power allocation problem under the
new set of constraints and discussing its sensitivity against pa-
rameter imprecision are the main contributions of the present
paper.

This paper starts with an overview of the underlying tech-
nical system in the next section. Subsequently, the power
allocation problem is specified and analytically solved. Finally,
the achieved solution is numerically discussed and compared.

Mathematical Notations:

Throughout this paper, we denote the sets of natural, integer,
real and complex numbers by N, Z, R and C, respectively.
Note that the set of natural numbers does not include the
element zero. Moreover, R+ denotes the set of non-negative
real numbers. Furthermore, we use the subset FN ⊆ N, which
is defined as FN := {1, . . . , N} for any given natural number
N . We denote the absolute value of a real or complex-valued
number z by |z|. We also denote the cardinality (number of
elements) of a finite set K by |K|. The expected value of a
random variable v is denoted by E [v]. Moreover, the notation

Fig. 2. System model of the distributed sensor network.

V ? stands for the value of an optimization variable V where
the optimum is attained. Finally, vectors and matrices are
represented in bold typeface.

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

In the following, we shortly describe the underlying system
model that is depicted in Figure 2. The continuous-time system
is modeled by its discrete-time baseband equivalent, where
the sampling rate of the corresponding signals is equal to the
target observation rate, for the sake of simplicity. Moreover,
we disregard time delays within all transmissions and assume
synchronized data communication. A detailed description and
specification of the whole system can be found in [16].

At any instance of time, a network of K ∈ N independent
and spatially distributed sensors receives random observations.
If a target signal r ∈ C with R := E [|r|2] and 0 < R <∞
is present, then the received power at SN Sk is a part of
the emitted power from the target source. Each received
signal is weighted by the corresponding channel coefficient
gk ∈ C and is disturbed by additive white Gaussian noise
(AWGN) mk ∈ C with Mk := E [|mk|2] <∞. We assume
that the coherence time of all sensing channels is much
longer than the whole length of the classification process.
Thus, the expected value and the quadratic mean of each
coefficient during each observation step can be assumed to
be equal to their instantaneous values, i.e., E [gk] = gk and
E [|gk|2] = |gk|2. Furthermore, the channel coefficients as well
as the disturbances are assumed to be uncorrelated and jointly
independent. The sensing channel is obviously wireless.

All SNs continuously take samples from the disturbed
received signal and amplify them by uk ∈ R+ without any
additional data processing. Thus, the output signal and the
expected value of its instantaneous power are described by

xk := (rgk +mk)uk , k ∈ FK (1)

and

Xk := E [|xk|2] = (R|gk|2 +Mk)u2
k , k ∈ FK , (2)

respectively. The local measurements are then transmitted to
a fusion center which is placed in a remote location. The
communication to the fusion center is performed by using
distinct waveforms for each SN so as to distinguish the
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communication of different SNs. Each waveform has to be
suitably chosen in order to suppress inter-user (inter-node)
interference at the fusion center. Hence, all K received signals
at the fusion center are pairwise uncorrelated and are assumed
to be conditionally independent. Each received signal at the
fusion center is also weighted by the corresponding channel
coefficient hk ∈ C and is disturbed by additive white Gaussian
noise nk ∈ C with Nk := E [|nk|2] <∞, as well. We also
assume that the coherence time of all communication channels
is much longer than the whole length of the classification
process. Thus, the expected value and the quadratic mean of
each coefficient during each observation step can be assumed
to be equal to their instantaneous values, i.e., E [hk] = hk and
E [|hk|2] = |hk|2. Furthermore, the channel coefficients as well
as the disturbances are assumed to be uncorrelated and jointly
independent. The data communication between each SN and
the fusion center can either be wireless or wired.

The noisy received signals at the fusion center are weighted
by vk ∈ C and combined together in order to obtain a single
reliable observation r̃ of the actual target signal r. In this way,
we obtain

yk :=
(
(rgk +mk)ukhk + nk

)
vk , k ∈ FK , (3)

and hence,

r̃ :=

K∑
k=1

yk = r

K∑
k=1

gkukhkvk +

K∑
k=1

(mkukhk + nk)vk . (4)

Note that the fusion center can separate the input streams
because the data communication is either wired or performed
by distinct waveforms for each SN.

In order to obtain a single reliable observation at the fusion
center, the value r̃ should be a good estimate of the present
target signal r. Thus, the amplification factors uk and the
weights vk should be chosen such as to minimize the average
absolute deviation between r̃ and the true target signal r. The
corresponding optimization program is elaborated in the next
section.

A. Some remarks on the system model

Accurate information about all channel coefficients gk and
hk is needed to determine the optimum power allocation. In
many cases it is hard to properly estimate all parameters.
Nevertheless, all conclusions from the present investigations
may be taken as a bound on what can be achieved by a passive
radar system. Moreover, the sensitivity analysis in Section IV
shows which deviations are to be expected if parameters are
misestimated.

Since the coherence time of communication and sensing
channels is assumed to be much longer than the duration of the
classification process, the proposed power allocation method
is applicable only for scenarios with slow fading channels.

Note that only the linear fusion rule together with the
proposed objective function enable optimizing the power allo-
cation in closed-form. The optimum power allocation for other
policies is in general hard to determine.

In order to distinguish different modes of operation for each
SN, we say that a SN is inactive or idle if the allocated

power is zero. We say a SN is active if the allocated power
is positive. If a SN is allocated with the minimum output
power limitation, i.e., Xk = Pmin, we say the SN operates
with minimum awareness. Finally, we say a SN is saturated
if its allocated power is equal to the maximum output power
limitation, i.e., Xk = Pmax.

An overview of all notations that we will use hereinafter and
are needed for the description of each observation process is
depicted in Table I.

III. POWER OPTIMIZATION

In this section, we first introduce the power optimization
problem and subsequently develop its analytical solution. To
solve the optimization problem we apply the general method
of Lagrangian multipliers with equality constraints as well as
Karush-Kuhn-Tucker (KKT) conditions, see [17, p. 323–335]
and [18, p. 243–244].

A. The optimization problem

As mentioned in the last section, the value r̃ should be a
good estimate for the present target signal r. In particular, we
aim at finding estimators r̃ of minimum mean squared error
in the class of unbiased estimators for each r.

The estimate r̃ is unbiased simultaneously for each r if
E [r̃ − r] = 0, i.e., from equation (4) we obtain the identity

K∑
k=1

gkukhkvk = 1 . (5)

This identity is our first constraint in what follows. Note that
the mean of the second sum in (4) vanishes since the noise
is zero-mean. Furthermore, we do not consider the impact of
both random variables gk and hk as well as their estimates in
our calculations because the coherence time of both channels
is assumed to be much longer than the target observation time.
Note that equation (5) is complex-valued and may be separated
as

K∑
k=1

uk|vkgkhk| cos(ϑk + φk) = 1 (6)

and
K∑
k=1

uk|vkgkhk| sin(ϑk + φk) = 0 , (7)

where ϑk and φk are phases of vk and gkhk, respectively.
The average power consumption of each node is approx-

imately equal to its average output power Xk, if the input
signal is negligible in comparison to the output signal and
if the nodes have smart power components with low-power
dissipation loss. We assume that equality between Xk and the
average power consumption of each node is ensured. In the
present work, we assume that the average output power-range
of each SN is limited by Pmin ∈ R+ and Pmax ∈ R+ with
0 ≤ Pmin < Pmax. Furthermore, the average power consump-
tion of all SNs together is assumed to be limited by the sum-
power constraint Ptot with KPmin ≤ Ptot ≤ KPmax. Hence, the
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constraints

Pmin ≤ Xk ≤ Pmax

⇔ Pmin ≤ (R|gk|2 +Mk)u2
k ≤ Pmax , k ∈ FK (8)

and
K∑
k=1

Xk ≤ Ptot ⇔
K∑
k=1

(R|gk|2 +Mk)u2
k ≤ Ptot (9)

arise consequently. Note that Pmin > 0 is essential for a gapless
radar coverage to enable localization and tracking while the
sum-power constraint Ptot is a reasonable approach to compare
energy-efficient radar systems.

The objective is to minimize the mean squared error
E [|r̃ − r|2]. By using equation (4) and the identity (5) we may
write the objective function as

V := E
[
|r̃ − r|2

]
=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2 . (10)

Note that (10) is only valid if mk and nk are white and jointly
independent.

In summary, the optimization problem is to minimize the
mean squared error in (10) with respect to uk and vk, subject
to constraints (6), (7), (8) and (9). Note that the optimization
problem is a signomial program, which is a generalization of
geometric programming, and is thus non-convex in general,
see [19].

B. Optimum power allocation

In order to solve the optimization problem, we use the
method of Lagrangian multipliers and obtain the correspond-
ing constrained Lagrange function (relaxation with respect to
the range of uk and |vk|) as

L(uk, |vk|,ϑk; η1, η2, µk, λk, τ ; ρk, %k, ξ)

:=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

+

(
1−

K∑
k=1

uk|vkgkhk| cos(ϑk + φk)

)
η1

−
K∑
k=1

uk|vkgkhk| sin(ϑk + φk)η2

+

K∑
k=1

(
−Pmin − ρk + (R|gk|2 +Mk)u2

k

)
µk

+

K∑
k=1

(
Pmax − %k − (R|gk|2 +Mk)u2

k

)
λk

+

(
Ptot − ξ −

K∑
k=1

(R|gk|2 +Mk)u2
k

)
τ ,

(11)

where η1, η2, µk, λk and τ are Lagrange multipliers while ρk,
%k and ξ are slack variables.

Equation (7) is only then satisfied, if all phases ϑk + φk are
equal to qkπ, qk ∈ Z, for all k ∈ FK . If there were a better
solution for ϑk + φk, then the first partial derivatives of L

with respect to ϑk would vanish for that solution, due to the
continuity of trigonometric functions. But the first derivatives
would lead to equations η1 sin(ϑk + φk) = η2 cos(ϑk + φk)
which cannot simultaneously satisfy both equations (6) and (7)
for all η1 and η2. Thus, qkπ is the unique solution. Hence, we
may consequently write a modified Lagrange function as

L̃(uk, |vk|,qk; η1, µk, λk, τ ; ρk, %k, ξ)

:=

K∑
k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

+

(
1−

K∑
k=1

uk|vkgkhk| cos(qkπ)

)
η1

+

K∑
k=1

(
−Pmin − ρk + (R|gk|2 +Mk)u2

k

)
µk

+

K∑
k=1

(
Pmax − %k − (R|gk|2 +Mk)u2

k

)
λk

+

(
Ptot − ξ −

K∑
k=1

(R|gk|2 +Mk)u2
k

)
τ .

(12)

At any stationary point of L̃, all first partial derivatives with
respect to each |vk| and η1 must vanish, if they exist. This
leads to

∂L̃

∂|vl|
= 2
(
Mlu

2
l |hl|2 +Nl

)
|vl|

− η1ul|glhl| cos(qlπ) = 0 , l ∈ FK , (13)

and
∂L̃

∂η1
= 1−

K∑
k=1

uk|vkgkhk| cos(qkπ) = 0 . (14)

By multiplying (13) with |vl|, summing up the outcome over
all l, and using the identities (6) and (10), we obtain

η1 = 2V (15)

which is a positive real number due to definition of V . Because
of the last relationship and according to (13), the value of
cos(qkπ) must be a positive number and hence each qk must
be an even integer number. Thus, we can choose q?k = 0 for
all k ∈ FK without loss of generality and conclude

ϑ?k = −φk , k ∈ FK . (16)

This solution gives the identity cos(q?kπ) = 1 which can be
incorporated into (13) and (14).

From (13), we deduce the equation

|vl| =
η1

2

ul|glhl|
Mlu2

l |hl|2 +Nl
. (17)

Incorporating (17) into (14) yields the relationship

η1

2
=

(
K∑
k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (18)

In turn, we replace η1
2 in (17) with (18) and obtain

|vl| =
ul|glhl|

Mlu2
l |hl|2 +Nl

(
K∑
k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (19)
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TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of all nodes;
FK the index-set of K nodes;
Kmax the index-set of all saturated nodes;
Kmin the index-set of all nodes with minimum awareness;
Klin the index-set of all nodes within the output power range;
r, R target signal and its quadratic absolute mean;
r̃ the estimate of r;

gk , hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
Mk , Nk variances of mk and nk;
uk , vk non-negative amplifications and complex-valued weights;
ϑk phase of vk;
φk phase of gkhk;
yk input signals of the combiner;
Xk output power of kth SN;
Pmin minimum output power of each SN;
Pmax maximum output power of each SN;
Ptot sum-power constraint.

Note that for each feasible uk, k ∈ FK , equation (19)
describes a feasible value for each |vk|. Since for each uk > 0
the relation |vk| > 0 consequently follows, the feasible optimal
values of each |vk| > 0 are not on the boundary |vk| = 0.
Thus, finding optimal values for each uk, k ∈ FK , leads to
optimum values for each |vk|, k ∈ FK , due to the convexity
of (11) with respect to each |vk|. Hence, finding a unique
global optimum for uk, k ∈ FK , yields the sufficient con-
dition for the globally optimal solution of the minimization
problem (11).

By considering (15) and (18), we deduce the identity

V =
η1

2
=

(
K∑
k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

, (20)

where the objective and η1 consequently are described in terms
of uk. For the sake of simplicity and in order to compare the
results later on, we define two new quantities as

αk :=

√
|gk|2
Mk

⇒ αk ∈ R+ , (21)

and

βk :=

√
Nk(R|gk|2 +Mk)

Mk|hk|2
⇒ βk ∈ R+ . (22)

By using the new quantities as well as (2), the equation (20)
is equivalent to

V =
η1

2
=

(
K∑
k=1

α2
kXk

Xk + β2
k

)−1

. (23)

Since the minimization of the objective V in (23) is equiv-
alent to the minimization of Ṽ := −V −1, we only consider
the objective Ṽ in the following. Initially, we highlight three
important properties of Ṽ . First, the new objective function is
strictly decreasing with respect to each Xk, k ∈ FK , which
can easily be seen from the representation

Ṽ = −
K∑
k=1

α2
k

1 + β2
k/Xk

. (24)

Second, the objective function is twice differentiable with
respect to each Xk, k ∈ FK , because its first and second
derivatives exist. Third, the objective function is a jointly con-
vex function with respect to (Xk)k∈FK

which can be shown by
calculating the corresponding Hessian H := ( ∂2Ṽ

∂Xk∂Xl
)k,l∈FK

.
The Hessian is positive-definite because of

z′Hz =

K∑
k=1

2α2
kβ

2
kz

2
k

(Xk + β2
k)3

> 0 ,

∀ z := (z1, z2, . . . , zK)′ ∈ RK \ {0} . (25)

By considering (2), we obtain that the remaining sum-
power constraint in (12) is linear and thus also jointly convex
with respect to (Xk)k∈FK

. Hence, we are able to define a
modified convex minimization problem by the unconstrained
Lagrangian

L̂(Xk; µk, λk, τ) := −
K∑
k=1

α2
kXk

Xk + β2
k

+

K∑
k=1

(Pmin −Xk)µk

+

K∑
k=1

(−Pmax +Xk)λk +

(
−Ptot +

K∑
k=1

Xk

)
τ ,

(26)

where again µk, λk and τ are Lagrange multipliers. Note that
the Lagrange multiplier η1 is positive because of (15), and the
equality sin(ϑ?k + φk) = 0 holds due to (16). Hence, both con-
straints (6) and (7) are discarded in (26). Furthermore, the sum-
power constraint can be considered as an equality constraint
instead of an inequality constraint due to monotonicity of the
objective, see also complementary slackness theorem [18].

In order to solve the new convex optimization problem
in (26), we apply the KKT-conditions which are sufficient for
optimality in convex problems. These conditions are as follows
for any optimal point (X?

k , µ
?
k, λ

?
k, τ

?):

X?
l ≥ Pmin , l ∈ FK , (27a)

X?
l ≤ Pmax , l ∈ FK , (27b)
µ?l ≥ 0 , l ∈ FK , (27c)
λ?l ≥ 0 , l ∈ FK , (27d)

(Pmin −X?
l )µ?l = 0 , l ∈ FK , (27e)

(Pmax −X?
l )λ?l = 0 , l ∈ FK , (27f)

K∑
k=1

X?
k = Ptot , (27g)

and

∂L̂

∂Xl
= − α2

l β
2
l

(X?
l + β2

l )2
− µ?l + λ?l + τ? = 0, l ∈ FK . (27h)

If X?
l = Pmin for some l ∈ FK , then from (27c), (27f)

and (27h) the inequality 1√
τ? ≤

Pmin+β
2
l

αlβl
follows. If

X?
l = Pmax for some l ∈ FK , then from (27d), (27e)

and (27h) the inequality 1√
τ? ≥

Pmax+β
2
l

αlβl
follows. If

Pmin < X?
l < Pmax, then from (27e), (27f) and (27h)

both the equality X?
l = αlβl

(
1√
τ? −

βl

αl

)
and the double
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inequality Pmin <
αlβl√
τ? − β2

l < Pmax follow. In summary, we
may write

X?
k = max

{
Pmin,min

{
Pmax, αkβk

(
χ? − βk

αk

)}}
, k ∈ FK ,

(28)
where χ is a replacement for 1√

τ
and is called water-level. In

order to calculate the transmission power of each SN from (28)
we first have to determine the water-level. Unfortunately, the
water-level can only be determined if the operation mode of
each SN is somehow known. Therefore, we have to separate all
SNs into three groups. The first group contains all SNs, which
are saturated, and is denoted by the subset Kmax. The second
group contains all SNs, which operate within their output
power-range, and is denoted by the subset Klin. The third
group contains all other SNs, which operate with minimum
awareness, and is denoted by Kmin. Note that all subsets are
pairwise disjoint and their union is the subset of all SNs, i.e.,

Kmax := {k ∈ FK | X?
k = Pmax}, (29a)

Kmin := {k ∈ FK | X?
k = Pmin} (29b)

and

Klin := {k ∈ FK | Pmin < X?
k < Pmax} (29c)

= FK \ (Kmax ∪Kmin) .

Furthermore, because of the above discussion, the subsets
in (29) are equivalent to

Kmax =
{
k ∈ FK | Pmin+β

2
k

αkβk
≥ χ?

}
, (30a)

Kmin =
{
k ∈ FK | Pmax+β

2
k

αkβk
≤ χ?

}
(30b)

and

Klin =
{
k ∈ FK | Pmin+β

2
k

αkβk
< χ? <

Pmax+β
2
k

αkβk

}
(30c)

which simultaneously provide necessary and sufficient con-
ditions to select the specific subset for each SN. If the
membership of each SN is specified by one of the above
subsets, the water-level follows by (28) from (27g) as

χ? =

Ptot −
∑

k∈Kmax

Pmax −
∑

k∈Kmin

Pmin +
∑
k∈Klin

β2
k∑

k∈Klin

αkβk

=

Ptot − |Kmax|Pmax − |Kmin|Pmin +
∑
k∈Klin

β2
k∑

k∈Klin

αkβk

=

P ′tot − |Kmax|P ′max +
∑
k∈Klin

(β2
k + Pmin)∑

k∈Klin

αkβk
(31)

with P ′tot := Ptot −KPmin and P ′max := Pmax − Pmin. In the
following, we want to present the efficient Algorithm 1 which
optimally separates all SNs into the correct subsets Kmax, Kmin
and Klin. Note that the proposed algorithm can be implemented
more efficiently, but for sake of comprehensibility, we have
chosen the given representation. Since Algorithm 1 is an

Algorithm 1 Separation of sensor nodes
Kmax ← ∅
Premain ← P ′tot
repeat

Klin ← FK \Kmax
repeat

χ ←
Premain+

∑
k∈Klin

(β2
k+Pmin)∑

k∈Klin
αkβk

. see (31)

Xk ← αkβk
(
χ− βk

αk

)
, k ∈ Klin . see (28)

K− ← {k ∈ Klin | Xk ≤ Pmin} . see (29b)
Klin ← Klin \K−

until K− = ∅ or Klin = ∅
K+ ← {k ∈ Klin | Xk ≥ Pmax} . see (29a)
Kmax ← Kmax ∪K+

Premain ← Premain − |K+|P ′max
until K+ = ∅ or Kmax = FK
Klin ← Klin \K+

Kmin ← FK \ (Kmax ∪Klin)
return (Kmax,Klin,Kmin)

adapted version of an algorithm proposed and proved in [16],
we refer the reader to the paper [16] for a detailed proof.

First, the results from (31) and (28) are applied in the
inner loop to achieve an optimal solution neglecting the output
power-range constraint Pmax. In the first repetition, this is
performed on all SNs and in each further repetition on all
SNs included in the subset Klin. At the end of the inner loop,
the subset K+ contains all SNs which operate at their output
power-range limitation Pmax. They are added to the subset of
all saturated SNs Kmax. At last, the power used by those SNs
is subtracted from the available sum-power which gives the
remaining sum-power Premain. With these updated settings, the
procedure is repeated until the subset K+ of saturated SNs is
empty. Note that both Kmin and Kmax might be empty. It can
be shown that the water-level, and thereby, the power for each
non-saturated SN is increasing in each repetition of the outer
loop. Thus, it is possible that SNs with minimum awareness
may loose their current operating mode, and hence, all non-
saturated SNs are potential candidates to achieve a better
operating mode. In contrast, the water-level is decreasing in
each repetition of the inner loop. Thus, neglecting the output
power-range constraint Pmax in the inner loop is meaningful
and obvious. Finally, we obtain the (optimal) subsets of SNs
to continue solving the optimization problem in (26).

After determination of Kmax, Kmin and Klin, we use (31) to
calculate χ?, and in turn, by inserting χ? into (28) we obtain
X?
k . Subsequently from (2), (19) and (23), we infer

u?k =

√
Pmax

R|gk|2 +Mk
, k ∈ Kmax , (32)

u?k =

√
Pmin

R|gk|2 +Mk
, k ∈ Kmin , (33)
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u?k =

√√√√ 1

Mk|hk|2

(
χ?

√
|gkhk|2Nk
R|gk|2 +Mk

−Nk

)
, k ∈ Klin ,

(34)

V ? =

( ∑
k∈Kmax

α2
kPmax

Pmax+β2
k

+
∑
k∈Kmin

α2
kPmin

Pmin+β2
k

+
∑
k∈Klin

α2
k

(
1− βk

χ?αk

))−1

(35)
and

|v?k| =
V ?u?k|gkhk|

Mk(u?k)2|hk|2 +Nk
, k ∈ FK . (36)

The equations (16), (28) and (32)–(36) together with (31)
and Algorithm 1 describe the optimal solution of the power
allocation problem and hence are the main contribution of the
present subsection.

C. Discussion of the solution

By using the results from Subsection III-B, all K SNs are
active if Pmin > 0 is pre-defined. In contrast, if Pmin = 0 is
the requested case, then only |Kmax| + |Klin| SNs are active
and participate in the data fusion. In general, all SNs, which
are members of Kmax, are more reliable than those which are
members of Klin. In turn, SNs, which are members of Klin,
are more reliable than those which are members of Kmin. The
reliability of each SN is determined by the corresponding
ratio βk

αk
that can be interpreted as interference-power, see

equation (28). The SN with the smallest interference-power
is the most reliable one while the SN with the greatest
interference-power is the least reliable one among all SNs.
This means that for the identification of the most reliable
SNs in a certain network, that can be modeled as depicted
in Figure 2, only the ratios βk

αk
are important. Hence, sorting

all SNs by their interference-power yields an easy selection
method of most reliable SNs for practical applications. In
summary we can conclude that SNs with smaller interference-
power are allocated with more available sum-power than those
with greater interference-power.

By using the amplification factors from (32)–(34) and the
weights from (16) and (36), the single observation r̃ is an
estimator of minimum mean squared error in the class of
unbiased estimators for the target signal r. Hence, we obtain
the estimate

r̃ = r +

K∑
k=1

(mku
?
khk + nk)v?k (37)

from (4). The above equation shows that r̃ is equal to r
with some additional noise. Hence, r̃ − r is a zero-mean
Gaussian random variable with an absolute variance of V ?,
see (35). Note that r̃ is an unbiased estimator for r due to
constraint (5). By similar methods we can also minimize the
mean squared error without restricting ourself to unbiased
estimators. Obviously, the optimal value of V will then be
smaller than that in (35).

Note that the obtained results are quite similar but not
identical to the well-known water-filling solution, see [20].
The distinction arises from our definition of the water-level χ
which differs from the general description.

TABLE II
DEFAULT VALUES OF ALL PARAMETERS USED FOR EACH REFERENCE

CURVE.

Parameter Default value
K 20
R 1
σ2
g 2
σ2
h 2

σ2
∆g 0

σ2
∆h 0
M0 2
N0 2
Pmin 0.1
Pmax 2
Ptot 10

IV. SENSITIVITY ANALYSIS

In this section, we first simulatively investigate the behavior
of the optimal value in (35), with respect to |gk|2, |hk|2, Mk

and Nk. For the sake of simplicity, we use σ2
g := E [|gk|2],

σ2
h := E [|hk|2], M0 := E [|mk|2] and N0 := E [|nk|2] here-

inafter. Subsequently, we analyze the sensitivity of a sensor
network, which is indeed designed by the optimal strategy of
power allocation from Subsection III-B, but with an imperfect
knowledge about the channel-state. In particular, we investi-
gate different independent cases, where in turn the estimates
ĝk := gk + ∆gk and ĥk := hk + ∆hk are used instead of gk
and hk itself, respectively, in order to re-design the power al-
location of the same sensor network. Afterwards, we compare
the optimal value in (35) of the sensor network with optimal
known parameters to the conditional mean square error (MSE)

V̂ := E
[
|r̃ − r|2 | ∆gk,∆hk

]
(38)

of the re-designed sensor network with imperfect information.
In general, the estimate r̃ in (38) is biased compared to the
case with perfect information, i.e., E [r̃ − r] 6= 0. In addition,
the selection of most reliable SNs is no longer ensured.
Hence, the value in (38) is mostly greater than that of (35),
see also the definition (10). Furthermore, due to inaccurate
knowledge of sensing channels, the given power constraints
may be violated in the erroneous design. All these effects are
equivalently relevant for a discussion and comparison. Since
an analytical comparison seems to be out of reach, we set out
to use numerical methods to obtain the sensitivity analysis and
visualize corresponding simulation results.

In order to fairly compare all results, we simulate a reference
curve for each figure. All reference curves are based on
parameters under consideration with default values given in
Table II. Unless otherwise stated, we usually create a new
curve only by changing the value of a single parameter. The
specific new value of that parameter is noted in the legend
of the corresponding figure. All random processes gk, hk,
∆gk, ∆hk, mk, nk and r are randomly generated with zero
mean Gaussian distributions for each simulation step. All other
parameters are kept constant. The number of iterations per
simulation point is always 100000.
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Fig. 3. Behavior of V ? with respect to the variance σ2
g of sensing channels.

All curves show a decreasing property in σ2
g . The reference curve has the

default parameters σ2
h = 2, M0 = 2 and N0 = 2.

A. Behavior of V ?

In Figure 3, the decreasing property of V ? with respect to
the variance σ2

g of all sensing channels is shown. The reason
behind the decreasing property is that the whole network
observes the target signal more reliable for higher variances of
sensing channels. Furthermore, it can be seen that increasing
N0 has an equivalent effect on the objective as decreasing
σ2
h and vice versa. It is also interesting to note that the

objective shows highest sensitivity to the variation of M0 when
the sensing channel is rather weak (small σ2

g). The observed
sensitivity is reduced for higher variances of sensing channels.
Furthermore, the objective attains a more or less constant value
for very high variances of the sensing channel. The reason
is that the resulted objective is dominated by the quality of
the communication channel when the sensing channel gets
stronger.

Figure 4 illustrates that V ? is also decreasing with respect
to the variance σ2

h of all communication channels. Since
the diversity of the communication channel is high for a
high value of σ2

h, the data communication to the fusion
center is consequently better which results in a lower V ?.
Analogously, increasing M0 is equivalent to decreasing σ2

g and
vice versa. Similar to the discussion of the sensing channel, the
resulted objective becomes rather constant for a high quality of
communication channels, since the sensitivity of the objective
is already dominated by the quality of sensing channels and
a further improvement of the communication quality is rather
unimportant. This also results in a higher sensitivity of V ?

with respect to the sensing quality based on σ2
g and M0 for

the region of high σ2
h.

In Figure 5 it is shown that in contrast to the curves in
Figure 3 and Figure 4, the property of V ? is increasing with
respect to the noise power M0 and all curves behave almost
linear. The deviation of all curves is greater for large values
of M0 than for small values. Furthermore, the value of M0
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Fig. 4. Behavior of V ? with respect to the variance σ2
h of communication

channels. All curves show a decreasing property in σ2
h. The reference curve

has the default parameters σ2
g = 2, M0 = 2 and N0 = 2.

has more impact on the deviation of V ? caused by σ2
g than by

other parameters, as mentioned before. As already described
for Figure 3 and Figure 4, increasing N0 is equivalent to
decreasing σ2

h and vice versa.
From Figure 6 we observe that V ? is also increasing with

respect to the noise power N0. In general, all curves show a
similar behavior compared to those curves in Figure 5.

B. Sensitivity of V̂

A sensitivity analysis of V̂ is very important in order to
justify assumptions concerning the channel-state knowledge.
In Figure 7, we consider the case where the error variance
σ2

∆g := E [|∆gk|2] of estimated sensing channels is greater than
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Fig. 5. Behavior of V ? with respect to the variance M0 of noise signals.
All curves show an increasing property in M0. The reference curve has the
default parameters σ2

g = 2, σ2
h = 2 and N0 = 2.
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Fig. 6. Behavior of V ? with respect to the variance N0 of noise signals.
All curves show an increasing property in N0. The reference curve has the
default parameters σ2

g = 2, σ2
h = 2 and M0 = 2.

or equal to zero. In the case where σ2
∆g is equal to zero,

the identity V̂ = V ? holds. Otherwise, V̂ is always greater
than V ?, i.e., V̂ (σ2

∆g) ≥ V̂ (0). All curves pass through three
different regions whereas only the first and the second region
are visible in Figure 7. In the first region, i.e., for low values
of σ2

∆g , all curves are slowly increasing. The selection of
most reliable SNs is still mostly ensured in the first region
while the optimal power allocation is no longer insured. In
the second region, i.e., for mid-range values of σ2

∆g , all curves
are rapidly increasing since the correct sensor selection gets
out of control. In the last region, i.e., for high values of σ2

∆g ,
all curves are linearly increasing. In this region the optimal
sensor selection almost always fails. This means that SNs are
randomly selected and the allocated power is also random.
The increasing property (not constant) of all curves in the
third region is comparable with the increasing property in the
first region, because the roles of gk and ∆gk are exchanged.
The system is designed by ∆gk instead of gk and thus gk
itself acts as an estimation error of ∆gk. In summary, the best
operation region of the proposed system is the first region in
which σ2

∆g � σ2
g holds, while a system operation in the third

region, for which σ2
∆g � σ2

g holds, should be avoided. As
can also be seen, the deterioration of the performance is not
only amplified by high noise powers M0 and N0, but also
by low channel variances σ2

g and σ2
h. The form of the curves

is mainly dominated and prescribed by the channel variance
σ2
g . All curves in the middle of the figure run almost parallel

because the variance σ2
g of all those curves is the same.

In Figure 8, the other case is depicted in which the estima-
tion of the communication channel is noisy. Analogously, if
the variance σ2

∆h := E [|∆hk|2] of estimation error is equal
to zero, the equality V̂ = V ? holds. In general, all curves
again show similar behavior compared to those curves from
Figure 7. Interestingly, the curves in Figure 7 achieve mostly
a better performance than those in Figure 8. This states that
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Fig. 7. Behavior of V̂ with respect to the variance σ2
∆g of estimation errors.

All curves show an increasing property in σ2
∆g . The reference curve has the

default parameters σ2
g = 2, σ2

h = 2, M0 = 2 and N0 = 2.

the accurate estimation of all communication channels is more
crucial for the system performance than the estimation of the
sensing channels. The reason behind this fact can be seen from
the righthand side of equation (4). An estimation error in each
hk in connection with wrongly optimized uk and vk causes
additional noises which cannot be caused by an estimation
error in each gk. This asymmetrical property is beneficial, be-
cause the estimation of the sensing channels is in practice very
difficult while the estimation of the communication channels
can be arbitrarily accurate with the aid of pilot sequences for
each SN.

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

σ2
Δh

V̂

 

 

reference
σ2

g = 4
σ2

g = 1
σ2

h = 4
σ2

h = 1
M0 = 4
M0 = 1
N0 = 4
N0 = 1

Fig. 8. Behavior of V̂ with respect to the variance σ2
∆h of estimation errors.

All curves show an increasing property in σ2
∆h. The reference curve has the
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C. Summary

In case of perfect parameter knowledge, the variation of
each parameter shows the behavior of the objective with re-
spect to the parameter under consideration. As it was expected,
the objective is decreasing with respect to the variance of each
channel coefficient and increasing with respect to the variance
of each noise signal. In case of imperfect channel-state in-
formation, the mean square error is increasing with respect
to the variance of each estimation error. All corresponding
results show three functional regions which correspond to the
cases ‘the selection of more reliable sensor nodes is mostly
ensured but the power allocation is suboptimal’, ‘a selection
of more reliable sensor nodes is no longer guaranteed’ and
‘the sensor selection as well as the power allocation are just
randomly performed’. In the first and last region, the curves
are slowly increasing while in the second region a drastic
increase of the curves is visible. Hence, the first region is the
most beneficial region for a non-stop operation of the sensor
network. Furthermore, the curves demonstrate that an accurate
estimation of communication channels is more important in
comparison to the sensing channels. This property is in general
very crucial for radar systems, since the sensing channel
cannot be accurately estimated.

V. CONCLUSION

In the present work we have derived an optimal solution to
the power allocation problem for distributed passive multiple-
radar systems. Three different power constraints have been
considered and the corresponding optimal solution in closed-
form has been presented. The optimum point is attained when
sensor nodes are in one of three possible states, depending
on their degree of reliability. An efficient algorithm has
been developed to determine the respective optimum states
and operating modes of all sensor nodes. Furthermore, we
have analyzed the sensitivity of the optimal solution, based
on system simulations, by varying the variance of channel
coefficients and the noise. Perfect channel-state information is
the initial situation, which is compared to inaccurate parameter
estimation via the mean squared error. Comprehensive graph-
ical representations support our claim that accurate estimation
of communication channels is more important than accurate
estimation of sensing channels.
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