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Abstract—This paper presents an optimization approach for
a system consisting of multiple bidirectional links over a two-
way amplify-and-forward relay. It is desired to improve the
fairness of the system. All user pairs exchange information
over one relay station each with multiple antennas. Due to the
joint transmission to all users, the users are subject to mutual
interference. A mitigation of the interference can be achieved by
max-min fair precoding optimization where the relay is subject
to a sum power constraint. The resulting optimization problem
is non-convex. This paper proposes a novel iterative and low
complexity approach based on a modified Levenberg-Marquardt
method to find near optimal solutions. The presented method
finds solutions very close to the standard convex-solver based
relaxation approach.

Index Terms—Max-min beamforming, two-way relays, low
complexity

I. INTRODUCTION

THE bidirectional relay channel is a well-known coop-
erative wireless communication scenario where M user

pairs exchange information over an amplify-and-forward relay.
The relay can not jointly receive and transmit, hence, it can
be seen as a half-duplex relay. In the classical system, the
users compete with each other for the wireless resources. A
cooperative system can increase the fairness and/or system
throughput with a centralized coordination at the expense of
required global channel knowledge of all cooperative links.
The entire transmission from the sources to the destinations
via relay consists of two phases. In the first phase the users
transmit to the relay station. Then, the relay combines the
signals to a new signal. In the second phase the relay forwards
the combined and amplified signal to the users.

A. Related Work:

The first works regarding cooperative communication via
the relay channels consider so-called one-way relay channels
where the transmission is possible only in one direction. The
work of [1] presents an optimal solution for a transmission
of one source node to a destination node over multiple one-
way relays each equipped with a single antenna. This one-way
half-duplex relay system has the disadvantage of a capacity
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loss due to the half-duplex transmission at the relay nodes:
In the first phase the source node transmits the signal to the
relay, then the relay forwards the signal to the destination.
The uplink transmission needs further two phases. The two-
way relay channel can overcome this capacity loss. Such a
system combines the uplink and downlink transmission in
two hops. Several works [2]–[6] investigated the cooperative
communication over a bidirectional relay channel with two
users. In this single link scenario, an optimal solution can
be obtained [3], [6]. The generalization of the single link
scenario is the multiuser bidirectional relay channel where
multiple users compete for the wireless resources [7]–[12].
The transmission can be achieved over multiple relays each
equipped with a single antenna as in [8], [9], or over a single
relay equipped with multiple antennas as in [7], [10]–[12].
In this multi-link scenario it is often desired to improve the
fairness among the users by optimizing the precoding vectors
[8], [9], [12]. The resulting problem is called max-min signal-
to-interference-plus-noise ratio (SINR) optimization and is
non-convex in general. Several algorithms are based on convex
relaxations with convex solvers [12]. Two-way relaying is also
termed as analog network coding. The work [13] investigates
a scenario with a single source and a destination and selects
best relay from a set of multiple relays based on the minimum
symbol error rate. Also the work [14] considers the scenario
with a single source and destination. However, the authors
in [14] consider beamforming at a single RS with multiple
antennas. In [15], the authors extend their work to a scenario
with multiple users and BSs. In contrast to our paper, the
authors in [15] investigate the power minimization problem
and their approach is based on convex solvers.

B. Contribution

The power control problem at the users for fixed relay
precoders corresponds to a unicast power control problem
which can be solved efficiently [16]. Therefore, we do not
focus on the user power control problem in this paper. On the
other hand, the max-min SINR relay precoder optimization
problem is non-convex. However it can be straightforwardly
relaxed to a quasi-convex problem and solved via a bisection
over convex feasibility check problems. These convex solvers
often have a bad worst case complexity [17]. Therefore, this
paper proposes an iterative algorithm, without the requirement
of a convex solver as, e.g., [15], based on the Levenberg-
Marquardt (LM) method with inexact line search. To the best
of our knowledge, there exists no SINR balancing approach
in the literature which is based on the Levenberg-Marquardt
method. The derived approach requires an estimation of the
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Fig. 1: System setup of the considered network with a two-way RS.

balanced SINR, therefore, this paper also presents a novel
closed form solution for the upper bound of the balanced
SINR. The convergence of the presented LM method is proved
and numerical results show only a small performance loss
compared to convex solver based methods.

II. DATA MODEL AND SYSTEM SETUP

The most important notations of this paper are summarized
in Table I.

TABLE I: Summary of all notations in the paper.

Symbol/Notation Meaning
R set of all real numbers
R+ set of all non-negative real numbers
C set of all complex numbers

Rm×n set of all real-valued matrices of size m× n
Cm×n set of all complex-valued matrices of size m× n
| . | absolute value/magnitude
|| . || Euclidean norm
Tr{ . } trace of a matrix
[A]i,j element of i, j of matrix A

[A]i,: ith row of matrix A

[A]:,j jth column of matrix A
Im identity matrix of size m×m

( . )H hermitian operator
( . )T transpose operator
E{ . } expected value
A( . ) arithmetic mean
⊗ Kronecker product
O big O notation
� positive semi-definite

λmax( . ) maximum eigenvalue of a matrix
λmin( . ) minimum eigenvalue of a matrix
vec(A) vectorized version of a matrix

This paper considers a system consisting of two sets of
users U1 and U2. Each set contains M users where each user
is equipped with a single antenna. he relay station (RS) is
equipped with NR antennas. Each user of one set exchanges
information with one user from the opposite set. Figure 1
depicts the setting of the considered system including all
notations of channels and precoding matrices. The users of
first set transmit the signal vector x1 ∈ CM×1 and the users

of the second set transmit the corresponding signal vector
x2 ∈ CM×1. In the first phase, all 2M users transmit to the
RS. The received signal at the RS is given by

rR = H1x1 + H2x2 + nR. (3)

Let t ∈ {1, 2} and t̄ 6= t, in second phase, the relay station
transmits the signal sR = ΩrR. The users of the set with
index t receive the signal

rt = HT
t sR + nt = HT

t Ω[Htxt + Ht̄xt̄ + nR] + nt.

= HT
t ΩHtxt + HT

t ΩHt̄xt̄ + HT
t ΩnR + nt. (4)

With the definitions At = HT
t , Bt = Ht̄, and Ct = Ht, the

received signal can be simplified to:

rt = At Ω Ct xt + At Ω Bt xt̄ + At Ω nR + nt. (5)

A useful performance measure is the SINR given in Eq. (1)
Assuming the noise vectors nt and nR are Gaussian,

independent and identically distributed (iid) with zero mean
and have the variance E{ntnHt } = σ2I and E{nRnHR } = σ2

RI,
the weighted noise term can be simplified to

E{||[At Ω nR]i||2} = E{||[At Ω]i,: nR||2} (6)

= σ2
R [At Ω]i,:([At Ω]i,:)

H

= σ2
R||[At Ω]i,:||2.

Furthermore, we can simplify E{|[nt]i|2} =
E{[nt]i([nt]i)H} = σ2, ∀ t ∈ {1, 2} ∀ i ∈ {1, . . . ,M}
Hence, we can rewrite (1) to Eq. (2).

III. OPTIMIZATION OF THE RELAY TRANSMITTER

A. Optimization Problem

It is desired to improve the fairness among users. This
approach can be expressed by the following optimization
problem.

γ∗ = max
Ω

min
i∈{1,...M}
t∈{1,2}

γti (Ω) (7)

s.t. Tr{Ω Y ΩH} ≤ P

where Tr {Ω,Y ΩH} is maximum allowed transmit power
at relay station and Y = H1 HH

1 + H2 HH
2 + σ2

R I. Prob-
lem (7) is non-convex, due to the non-convex objective
function. In what follows, we show that problem (7) is a
fractional program with quadratic numerators and denom-
inators. Similar to [12], with ω = vec(Ω) and Nt

i =
σ2
R diag([At]

H
i,:[At]i,:, . . . , [At]

H
i,:[At]i,:︸ ︷︷ ︸

NR times

), the noise term can

be written as:

σ2
R [At Ω]i,:([At Ω]i,:)

H = σ2
R

NR∑
k=1

[Ω]H:,k[At]
H
i,:[At]i,:[Ω]:,k

(8)

= ωHNt
iω.
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γti (Ω) =
|[At Ω Bt]i,i|2∑M

j=1
j 6=i
|[At Ω Bt]i,j |2 +

∑M
j=1
j 6=i
|[At Ω Ct]i,j |2 + E{||[At ΩnR]i,:||2}+ E{|[nt]i|2}

. (1)

γti (Ω) =
|[At Ω Bt]i,i|2∑M

j=1
j 6=i
|[At Ω Bt]i,j |2 +

∑M
j=1
j 6=i
|[At Ω Ct]i,j |2 + σ2

R||[At Ω]i,:||2 + σ2
. (2)

The signal terms can be simplified as well. With qti,j =

[[At]i,:[Bt]1,j , . . . , [At]i,:[Bt]NR,j ]
H and Qt

i,j = qti,jq
tH

i,j , the
interference is

[At Ω Bt]i,j =

NR∑
k=1

[At]i,:[Bt]k,j [Ω]:,k (9)

⇒ |[At Ω Bt]i,j |2 = ωHQt
i,jω ; ∀i, j ∈ {1, . . . ,M}.

Similarly, we can write

|[At Ω Ct]i,j |2 = ωHSti,jω ; ∀i, j ∈ {1, . . . ,M} (10)

where Sti,j = si,js
H
i,j ;

si,j = [[At]i,:[Ct]1,j , . . . , [At]i,:[Ct]NR,j ]
H . The terms (8),

(9) and (10) can be combined to

ωHPt
iω = ωH

(
Nt
i +

M∑
j=1
j 6=i

(Qt
i,j + Sti,j)

)
ωH . (11)

It can also be shown that Tr {Ω Y ΩH} = ωH (YT ⊗
INR

)ω, in which ⊗ notifies the Kronecker product of two
matrices. Therefore, using (9) and (11), the original max-
min optimization (7) problem is also given as the following
fractional program

γ∗ = max
ω

min
i∈{1,...,M}
t∈{1,2}

ωHQt
i,iω

ωHPt
iω + σ2

(12)

s.t. ωH Zω ≤ P
where YT ⊗ INR

= Z. It is well know that this problem is
generally non-convex and it can be approximated by semidef-
inite relaxation [18].

B. Approximation of the Non-Convex Fractional Program

The fractional quadratic program (12) is non-convex and
NP-hard in general [18]. The state-of-the-art method to solve
quadratically constrained fractional programs is a relaxation to
a quasi-convex form based on a semi-definite program [18].
A bisection algorithm solves several convex feasibility check
problems and converges arbitrarily closely to the global opti-
mal value [19]. By dropping the non-convex rank-1 constraint,
the feasibility check problem is given by a semi-definite
program. A near optimal rank-1 solution can be recovered
by a randomization method [20]. Hence, the approximation of
the optimal solution is based on semi-definite relaxation. This
relaxation results in near optimal solutions, however, at the
expense of high worst case complexity [17].

In what follows a new approximation of the optimal solution
is presented. The approximation is based on an estimation of
the minimax upper bound of the optimal value.

Lemma 1: [21] Minimax inequality: Let X and Y be
arbitrary subsets of an Euclidian space and let f() be an
arbitrary function, then

min
y∈Y

max
x∈X

f(y,x) ≥ max
x∈X

min
y∈Y

f(y,x). (13)

Let I = {1, . . . , N}, N = 2M be the index set of all
SINRs, let Qj and Pj be matrices indexed according to this
new index set I, and let P be the convex domain of ω with
P = {ω ∈ CN2

R | ωH Zω ≤ P}, Problem (12) can be
equivalently expressed by

γ∗ = max
ω∈P

min
j∈I

ωHQjω

ωHPjω + σ2
. (14)

Proposition 1: Let λmax(A) be the largest eigenvalue of
matrix A and let Q̃j = Z−

1
2 QjZ

− 1
2 , P̂j = Z−

1
2 PjZ

− 1
2 ,

P̃j = P̂j + σ2

p I, the upper bound of (14) is given by

γ̂ = min
j∈I

λmax(P̃−1
j Q̃j) ≥ max

ω∈P
min
j∈I

ωHQjω

ωHPjω + σ2
. (15)

Proof: The proof follows directly from Lemma 1:

γ̂ = min
j∈I

max
ω∈P

ωHQjω

ωHPjω + σ2
≥ max

ω∈P
min
j∈I

ωHQjω

ωHPjω + σ2
.

(16)

Similar to the work of Havary-Nassab and et al. [1], by intro-
ducing a new variable with unit norm, i.e. w;

√
pw = Z

1
2ω

and the domain W = {w ∈ CN2
R | ||w||2 = 1}, (16) can be

recast into:

γ̂ = min
j∈I

max
w∈W

wHQ̃jw

wHP̃jw
. (17)

It is argued in [1] that the objective function in (17) is non-
decreasing w.r.t. to p, thus, the maximum over w is attained
at p = P . The Matrices P̃j are positive definite, therefore, the
upper bound is expressed by special eigenvalue problem (15).

The upper bound of problem (14) is a close bound. Regard
Lemma 1, as argued in [22], in the case Y is a compact and
convex set, X is a convex set and f() is a real valued function,
where f(y, ·) is upper semi-continuous and quasi-concave on
X for all y ∈ Y and f(·,x) is lower semi-continuous and
quasi-convex on Y for all x ∈ X , strong duality holds. Strong
duality is not given for problem (14) due to the non-convexity
of the SINR function on P for all y ∈ Y . Proposition 1
provides a bound in the vicinity of γ∗. The upper bound γ∗ is
not reachable in general, however, it is possible to find an ω̂
which yields an SINR close to the optimal value γ∗ = γ̂ − ε
for some ε ≥ 0.
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IV. ALGORITHM

Proposition 1 offers a direct solution for a close upper bound
of the balanced SINR. Compared to the work of Tao et al. [12],
this upper bound leads to an algorithm where the number of
bisection iterations can be reduced. Assuming the upper bound
γ̂ is tight, γ̂ ≈ γ∗, or γ∗ = γ̂ − ε, the problem (14) can be
approximated by:

find w ∈ W (18)

s.t.: wH(Q̃j − γ̂P̃j)w = 0 ∀j ∈ I.

Problem (18) is a nonlinear system of equations with fi(w) =
wH(Q̃j − γ̂P̃j)w and f(w) = [f1(w), . . . , f2M (w)]T . A
related problem which also solves (18) is

min
w∈P

||f(w)||2. (19)

Problem (19) is a simple least-squares problem. Multiple low
complexity algorithms to find near optimal solution exist.
Several approaches are based on the Newton’s method [23].
Let Dj(γ̂) = Q̃j − γ̂P̃j , the Jacobian matrix of f(w) is

∇f(w) =

 wHDH
1 (γ̂)

. . .
wHDH

2M (γ̂)

 . (20)

The Newton-like methods converge to a local optimal solution
if the Lipschitz condition holds [23].

Lemma 2: Let K =
√∑2M

j=1

∑2M
i=1 |[Di(γ̂)]:,j |2, the func-

tion f(w) is Lipschitz continuously differentiable.
Proof: The Lipschitz condition for the Jacobian matrix

∇f(w) is

||∇f(w1)−∇f(w2)|| ≤ K||w1 −w2||. (21)

The left side of (21) can be rephrased as

||∇f(w1)−∇f(w2)||2 =

2M∑
j=1

2M∑
i=1

|(w1 −w2)H [Di(γ̂)]:,j |2.

(22)
Using the inequality |xTy|2 ≤ xTx · yTy, Eq. (22) is upper
bounded by

2M∑
j=1

2M∑
i=1

(w1 −w2)H(w1 −w2) · [Di(γ̂)]H:,j [Di(γ̂)]:,j (23)

= K2||w1 −w2||2.

Hence, the Jacobian ∇f(w) is Lipschitz continuous. Conse-
quently, f(w) is Liptschitz continuously differentiable.

A. Unconstrained Optimization Based on the Levenberg-
Marquardt Method

In what follows, consider the general least squares system
as general form of (19). The LM algorithm is an improved
Newton based method to solve (19). It prevents the Newton
step to become unidentified because of a singular Jacobian
matrix. The LM update is given by:

δk = −(∇f(wk)T∇f(wk) + µkI)−1∇f(wk)T f(wk). (24)
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Fig. 2: Distance between the solution w and the optimal solution
w∗.

Recently, Fan et al. [24] have proved that the parameter µk =
||f(wk)|| can achieve super-linear convergence if ||f(wk)||
provides a local error bound.

Definition 1: Let w ∈ W and let w∗ ∈ W∗ be an optimal
solution where W∗ is the set of solutions. Let W ∩W∗ 6= ∅,
then ||f(w)|| provides an local error bound on W for f(w) =
0 if there exists constant c > 0 such that

||f(w)|| ≥ c · dist(w,w∗) ∀w ∈ W, ∀w∗ ∈ W∗. (25)

Proposition 2: Assuming the initial solution w0 of the
Levenberg-Marquardt algorithm is sufficiently close to W∗,
dist(w,w∗) ≤ 1, and let µk = ||f(wk)||, then sequence
{wk+1 = wk + δk} converges super-linearly.

Proof: First, we have to prove that ||f(w)|| provides a
local error bound. As shown in Fig. 2 we have

||w|| = 1 ≥ ||y|| = ||w −w∗||. (26)

Using Proposition 1, γ̂ is an upper bound of the minimum
SINR. Let

j∗ = argminj∈I
wHQjw

wHP̃jw
, (27)

then the matrix Dj∗(γ̂) is negative definite due to:

wHQj∗w

wHP̃j∗w
≤ γ̂ ⇔ wH(Q̃j∗ − γ̂P̃j∗)w ≤ 0, (28)

hence, wHDj∗(γ̂)w ≤ 0. The function ||f(w)||2, is lower
bounded by:

||f(w)||2 =

2M∑
j=1

|wHDj(γ̂)w|2 ≥ |wHDj∗(γ̂)w|2 ≥ 0.

Due to wHDj∗(γ̂)w ≤ 0 we can use the inequality
(wHDj∗(γ̂)w)2 ≥ ||w||4 λ2

max(Dj∗(γ̂)) and due to

1 = ||w|| = ||w||2 = ||w||4 ≥ ||y||
we have:

||f(w)||2 ≥ ||w||4︸ ︷︷ ︸
≥||y||

λ2
max(Dj∗(γ̂)).

Let c = λmax(Dj∗(γ̂)) and using (26) we have

||f(w)|| ≥ c · ||w −w∗||.
According to Lemma 2, ||f(w)|| is Lipschitz continuously dif-
ferentiable, consequently the two assumptions of [24, Theorem
2.1] hold and {wk+1 = wk + δk} converges superlinearly.

Having an initial solution w0 close to the set of solutions
W∗ satisfying (18) leads to a fast convergence of the classical
LM algorithm with µk = ||f(wk)||. Several simulation runs
have shown a fast convergence if w0 is chosen based on the
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upper bound (17) with a sufficiently large ε. However, in some
cases, the LM method still requires a lot of iterations. Global
convergence to a local optimal solution is not guaranteed.

Therefore, this paper uses a modified LM algorithm based
on a line search to find the optimal step size. Firstly, the
unconstrained case (w ∈ CN2

R ) is considered. Algorithm 1
presents the outline of the used modified LM method.

Algorithm 1 Modified Levenberg-Marquardt Method

Initialize: Find a w0 based on the upper bound (17), set
ε > 0 sufficiently large. Set a ν ∈ (0, 1) and the accuracy
εLM .
while ||∇f(wk)Hf(wk)|| ≥ εLM do

Set µk = ||f(wk)|| and compute δk by (24)
if ||f(wk + δk)|| ≤ ν||f(wk)|| then

wk+1 = wk + δk
end if
Compute step size αk by Wolfe line search [24].
wk+1 = wk + αkδk and k = k + 1

end while
return wk+1

Proposition 3: [24, Theorem 3.1] Let the sequence {wk}
be generated by Alg. 1 with inexact line search. Then sequence
{wk} converges to a stationary point of (19). If the stationary
point is a solution of (18), then {wk} converges super-linearly
to the solution.

Proof: The proof is straightforward. As in the proof
of Proposition 2, the assumptions of [24, Theorem 3.1] are
already satisfied, if w0 is sufficiently close to a solution
satisfying (18). In this case, the algorithm converges super-
linearly according to [24, Theorem 3.1].
Algorithm 1 has the advantage of a fast convergence if the
initial solution is close to the set of solutions satisfying (18).
In the other cases, Alg. 1 still converges to a solution of (19)
[24].

V. NUMERICAL RESULTS

To justify the efficiency of the proposed methods a huge
number of simulations (1000) each with a different realization
of channel coeffcients are generated. In these simulations the
number of users is chosen to be 2M = 6 while an RS with
NR = 6 antennas is assumed. The SNR in MAC phase is
chosen to be constant, SNRMAC = 10 log( P

σ2
R

) = 15dB.
Then we have varied peak power to noise ratio, 10 log( P

NRσ2 )

and P = 101.5. Also, the channel coefficients are assumed to
be Rayleigh distributed. The channels are generated similar to
[25]. First we have generated channel matrices, H1,H2, with
entries which are i.i.d Gaussian random variables with zero
means and unit variances. Then, we have made them correlated
in order to preserve more practical relevance as follows:

H1 = Θ
1/2
RS H1 Θ

1/2
1 , H2 = Θ

1/2
RS H2 Θ

1/2
2 (29)

where [Θ2]ij = (ρ2)|i−j|, [ΘRS ]ij = (ρRS)|i−j| and [Θ1]ij =
(ρ1)|i−j|. The value ρRS = 0.5883 is chosen for RS an-
tennas while users are assumed to be less correlated than
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Fig. 3: Numerical results for the worst user (achievable) rate of the
investigated algorithms for different peak power to noise ratio.
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Fig. 4: Numerical results for the computation time for different peak
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RS since they are spatially distributed within the cell, i.e.
ρ1 = ρ2 = 0.1. The numerical results are generated for the
following methods:
• Semidefinite relaxation based bisection algorithm as in

[12].
• LM method based bisection to adapt the transmit power

so that the power constraint is not violated. This bisection
approach is similar to the method presented in [12]. How-
ever, instead of the semi-definite program (SDP), the LM
method used to check whether the sum power constraint
is satisfied. The LM method has the following parameter
configuration: ν = 0.9, ε ∈ [0, 0.32 · γ̂] depending on the
SNR (high SNR: ε = 0), and α0 = 0.49.

Figure 3 shows the worst user (achievable) rate
(1/2 log2(1 + γti )) of the different algorithms. As it can
be observed, the method achieves rates close to the upper
bound based on the SDP. This figure further presents the
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Fig. 6: Numerical results for the mean number of line search
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derived upper bound of Proposition 1. The upper bound is
very tight in high SNR. Figure 5 depicts the mean total
number of iterations for the LM methods for different SNR
values. Especially in low and very high SNR, the LM method
converges fast in 30-60 iterations. The line search adaptation
converges also very fast. Figure 6 indicates a convergence
after at most 2− 3 iterations.

The part with largest complexity of the LM method is the
matrix inversion which has a complexity of O(n3) for an n×n
matrix. Table II compares the order of complexity of both
algorithms. The new method has much less complexity per
iteration compared to the convex solver based method. Figure
4, shows the computation time of the two presented methods.
It has to be emphasized that the SDP-based approach uses
optimized code and the proposed LM-based approach uses not
optimized code. However, the new proposed LM-method uses

TABLE II: Comparision of the complexity of the presented
algorithms εSDP = 1.489 · 10−8.

Method Complexity per iteration Number of iterations
SDP [20] O((N2

R)6) O(
√
2MNR log(1/εSDP ))

LM O((N2
R)3) see Fig. 5

much less computation time than the conventional SDP-based
technique.

VI. CONCLUSION

This paper presents a novel approach for a low complexity
algorithm for the non-convex max-min SINR optimization
problem in the bidirectional relay channel. The algorithm is
based on a novel closed form solution of the upper bound and
a modified Levenberg-Marquardt algorithm. The convergence
of the new method is proved. Numerical results indicate the
performance of the proposed method. The achievable rate of
the new algorithm is very close to the upper bound.
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