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Abstract— A fundamental problem in code division multiple
access (CDMA) systems is the study of the capacity region
and its optimal utilization by a community of users. In this
paper, we use cooperative game theory to analyze the capacity
region. We introduce utility functions and formulate a Nash
bargaining problem in order to find an optimal element. The
Nash bargaining solution is uniquely defined by four axioms. In
this way, efficiency and fairness is obtained. It is shown that this
global approach can be decentralized while the solution remains
the same, which is important for practical application.

I. INTRODUCTION

The expensive investment in new UMTS networks requires
sophisticated techniques to guarantee an efficient use of the
scarce available resources. Unlike TD/FDMA systems the
capacity of a base station in a CDMA system is interference
limited.

Early analytical work on the capacity of a CDMA sys-
tem is {2], where the probability to maintain the signal-to-
interference requirements is computed. In [11], the authors
extend the work by calculating the total interference numer-
ically. In [5], the admissible transmission rates for a fixed
number of users are described as a convex set. This forms the
starting point for the present work. However, in [5] the results
are restricted to just one base station. An extension is given
in [1] where the capacity region for several cells is defined
and an interesting duality between the up- and downlink
solutions is revealed. In [4] the geometrical properties of the
capacity region are analyzed and optimal power assignment
schemes are investigated. Our approach is different from the
one in [4]. We use cooperative game theory to determine
an optimal power allocation. By using the theory developed
in [10] we obtain a Nash bargaining solution which provides
the desired properties. In this paper, bargaining theory is
applied to a general convex optimization problem. We also use
techniques related to [12] where a game-theoretic framework
for bandwidth allocation in broadband networks is considered.
Reference [9] was one of the first to apply game theoretic
methods to the problem of power control. A noncooperative
power control game is proposed where the outcome is a Nash
equilibrium. In [3] a similar game is formulated in terms of
known instead of complex network parameters. Further the
approach is extended to the case of multiple base stations.
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One deficiency of these games is that the resulting Nash
equilibrium is not Pareto optimal in general. In this paper,
we propose a cooperative game to chose an element of the
capacity region. In particular, by using bargaining theory,
we obtain a Pareto optimal element which further fulfills
axioms of efficiency and fairness and maximizes revenue. It
is important to note that the Pareto optimal Nash bargaining
solution and the Nash equilibrium are different, not related
concepts.

This paper is organized as follows. In Section II we present
the basic concepts of cooperative game theory. An application
of bargaining theory to a general convex optimization problem
is given in Section III. Section IV constitutes the paper’s core.
After introducing the capacity region for a UMTS-network, we
use the game-theoretic framework to choose a suitable element
of this region. Both a centralized and a decentralized approach
are considered. We present an overview of the results and some
proposals for possible extensions in Section V.

II. BASiC CONCEPTS FORM GAME THEORY

We start by reviewing some basic concepts of cooperative
bargaining theory [7]. An n-person bargaining problem is a
pair (U, u"), where U C R™ is a nonempty convex closed
and upper bounded set and ©° = (u§,...,ul) € R™ such that
u > u® componentwise for some u = (uJ,...,ul) € U, see
Fig. 1. The elements of U are called outcomes and u° is the
disagreement outcome. The interpretation of such a problem
is as follows. A number of n bargainers are faced with the
problem to negotiate for a fair point in the convex set U. If no
agreement can be achieved by the bargainers, the disagreement
utilities u?, ..., ul will be the outcome of the game. Let B,
denote the family of all n-person bargaining problems.

A bargaining solution is a function F' : B, — R™ such that
F(U,u% € U forall (U,u°) € B,. Nash suggested a solution
that is based on certain axioms, as given below.

(WPO) Weak Pareto optimality: F : B, — R" is called
weakly Pareto optimal, if for all (U,u%) € B,
it holds that there exists no u € U satisfying
u > F(U,u%.
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(SYM) Symmetry: F B, — R" is symmetric if
Fi(U,u®%) = F;j(U,u% for all (U,u’) € By,
that are symmetric with respect to a subset
JC{l,...,n} forall4,j € J (e, u) = u‘j)- and
(ul, Uy ooy Ui— 15 Ugy Uit ly e - - s Uj—1y Uiy U1y - -
cooup) €U foralli < jeJyuel).

(SCI) Scale covariance: F : B, — R" is scale co-
variant if F(p(U), p(u®)) = @(F(U,u?)) for all
v R — R* o(u) = @ with @; = a;u; + by,
ai,b; € Rya; >0,i=1,...,n.

(ITA)  Independence of irrelevant alternatives: F' : B, —

R™ is independent of irrelevant alternatives, if
F(U,u% = F(U,uP) for all (U, u®), (U,a’) €
B,, with u® = @, U C Uy and F(U,u°) € U.

Remark 1: Weak Pareto optimality means that no bargainer
can gain over the solution outcome. Symmetry, scale covari-
ance and independence of irrelevant alternatives are the so
called axioms of fairness. The symmetry property states that
the solution does not depend on the specific label, i.e., users
with both the same initial points and objectives will obtain
the same performance. Scale covariance requires the solutions
to be covariant under positive affine transformations. Inde-
pendence of irrelevant alternatives demands that the solution
outcome does not change when the set of possible outcomes
shrinks but still contains the original solution.

These four axioms imply Parefo optimality which means
that it is impossible to increase any player’s utility without
decreasing another player’s utility.

The Nash bargaining solution is defined as follows.

Definition 2: A function N : B, — R™ is said to be a Nash
bargaining solution (NBS) if

NU,u°%) = argmax{ H (uj — u?) |u eUu>u’ },
1<j<n

if U\{u’} # @ and N(U,u°) = u?, else.

The NBS calls for the maximization of the product of
the users’ gain from cooperation. In addition it is uniquely
characterized by the four axioms stated above. The proof of
the following theorem can be found in [10].

Theorem 3: Let ' : B, — R™ be a bargaining solution.
Then the following two statements are equivalent:

(a) F=N.

(b) F satisfies WPO, SYM, SCI, IIA.

III. THE BARGAINING SOLUTION FOR A MULTI-OBJECTIVE
CONVEX PROGRAMMING PROBLEM

The aim of this section is to use the game-theoretic
framework explained above to calculate a fair and efficient
solution for a multi-objective programming problem. In the
next section we apply this setting to the problem of optimizing
the admissible n-user region of a CDMA-system.
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Fig. 1. A Nash bargaining problem

Let X C R™ be a nonempty closed convex set and
f1,. .+, frx upper bounded real valued concave functions on X.
It is often impossible to maximize these functions simulta-
neously on X. An appropriate alternative to find an eligible
element in the set f(X) = {f(z) | z € X} is provided by the
game theory. We formulate a bargaining problem and give a
characterization for the NBS.

As the set f(X) is not convex in general, we cannot choose
it as the set of possible outcomes for our bargaining problem.
Instead we consider the following set U, which contains f(X),
but is unbounded below and thus convex. Let

U={uelR™|3ze Xst u< f(z)}

where f(x) = (fi(z),..., fo(x)). Further let u® € R™ so
that

Xo={zecX|flx)>u'}#0. )

Proposition 4: (U,uP) is a bargaining problem.

Proof: The set U is nonempty as X is nonempty.
Furthermore, U is bounded as fi,..., fr are bounded. To
show that U is convex let u,@ € U and X € (0,1). Then
there exists some x, & € X such that u < f(z), @ < f(&).
Thus

M+ (1 =Na < Af(x)+ (1 - Nf(@)
f concave
< fQx+ (1 -NE).
Further Az + (1 — A\)& € X as X is convex. This yields
Au + (1 — Ay € U which proves that U is convex.
From (1) it follows that w > u® for some u € U which
concludes the proof. [ |

Let u* = N (U, u°) denote the NBS of the problem (U, u?),
¢f. Definition 2. We call X* = {z € Xo | f(x) = u*} the
Nash bargaining solution set, where Xy is defined in (1). The
set X* consists exactly of those eligible elements of the set
X we wanted to specify.

The subsequent theorem evinces how the Nash bargaining
solution set can be calculated. The proof follows easily with
Definition 2, cf. [10].
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Theorem 5: Let J = {j €q{l,...,n}| max fi(z) > ug}
TEAp

If J = @ then u* = u° and X* = Xo.If J # & then uj :u?
for all j ¢ J and each element of the Nash bargaining solution
set X™ satisfies the following problem

max

ok (fy (:B) — u(])) .
jedJ

IV. THE NBS FOR THE ADMISSIBLE 7-USER REGION

We consider the uplink of a CDMA system with chip rate w,
e.g., w = 3.84 MChip/s for UMTS. We confine ourselves
to a single reference cell with an omnidirectional antenna.
Assume there are n active users in the cell demanding for
transmit capacity of di, ..., d,, bits per second at an individual
minimum bit error rate eq,...,e,. Let s; = w/d; denote the
spreading gain. Since the bit error rate is a function of the bit
energy-to-noise ratio, Ej, /Ny, individual quality demands can
be described by lower bounds e; as follows.

where C/I denotes the carrier-to-interference ratio at the base
station.

Let p; denote the transmit power of mobile ¢, and a; € [0, 1]
the transmission gain from mobile ¢ to the base station.

We assume that a; > 0 foralli = 1,..., n, which obviously
avoids meaningless assignments. Using the effective spreading
gain s = s;/e;, equation (2) reads as

C Pi0;
NIt Y e+ T

The numerator p;a; represents the received power of mobile ¢
at the base station, » i Pi@; collects the received interfer-
ence from all other mobiles, and 7° > 0 denotes the general
background and thermal receiver noise at the base station. It
also includes the system’s pilot signal pollution.

The required quality-of-service e; should be achieved at the
minimum possible power level such that (3) is satisfied. Since
the numerator of (3) is increasing in p; and the denominator is
increasing in p;, j # 1, it is clear that the minimum is attained
at the boundary such that a solution (p; ..., p,) of the system

’ Pia;
§; . 4
"Dz Pia +T0 Y
is needed. The unique solution is given as follows, for a proof
see [5].

i=1,...,n. 3

=1, i=1,..

Theorem 6: The unique solution to (4) is given by
Tk

ai(s;+1)(1 - >jeck) “S;%H)

p; = i=1...,n. (5

3

The analogue result has been shown for the case of multiple
base stations [1]. Our restriction to one base station may
be taken as an approximation for multiple base stations by
subsuming all interference from other cells and the background
noise into the single noise term .
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Fig. 2. One BS and several users

In what follows we assume that the transmit power for each
mobile is bounded by pp,q.. Thus by (5) the set where n users
are able to transmit at effective spreading gains sg, 1<i<n,
or corresponding data rates

di: id s 221,. , 1y
;€4
is given by
A= {s' T <p i=1 n}
= = Ly b T Ay
a0~ g )

where 8’ = (s),...,s]). The set A, is called the admissible
n-user region. Defining

S:
%

and v; = 7/(a;Pmaz) transforms A, to

Z.1
»1—2 — >y, i=1,...
$z( ' ‘Tj)_%,l 1a 777'}’
Jj=1

with & = (21,...,2p).
We may assume that d; € [dmin, dmaz] With dpmee >
dmin > 0. Since z; = w/(d;e;) + 1, it follows that

B={=

T min <z £ Ti,max

With i min = w/(dmaze:) + 1 and 2; may = w/{dmine:) + 1.
The set B is non-empty as(y; + n,...,v, + n) lies in B.
We further assume that d,,q, and d,,;, are chosen so that
there exists an element in B which lies in [ min, i maz]
componentwise.

In the following we analyze the constrained admissible
n-user region

1 %

n
1_2_"“—20a

=) Zg Ty

X:{meR”

J
Timin < Ti < Tijmag forall 1 <4 < n},

with z; defined in (6).

Theorem 7: X is convex, closed and nonempty.
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Proof: As mi is a convex function on R} and as the sum
of two convex functions is convex, we obtain the convexity of

on R”. The functions — (%; — Zi,min) , and — (%i,maz — L)
are convex as they are linear. The intersection of level sets
of a convex function is convex, cf. [8, Corollary 4.6.1]. This
yields the convexity of the sets

"1 Yi
ceR |1 — —~—-zo},
{ +l ;ZL] T;

{z € R" | & — T;,min > 0}, and
{x € R" | Z4maz — =i > 0}

for every 1 < ¢ < n. Furthermore, the intersection of an arbi-
trary collection of convex sets is convex, cf. [8, Theorem 2.1].
Thus X is convex. Clearly X is closed and non-empty. M

There are many solution concepts to single out a reasonable
element of X, e.g. bargaining theory, proportional fairness,
max-min fairness. Any one solution concept will usually vio-
late the axioms associated with some other concept. We choose
bargaining theory, because the properties of the resulting NBS
are the most desirable in this model.

It is natural to assume that each user aims at obtaining a
data rate greater than its minimum rate and as close to its
maximum value as possible. If d; tends to its maximum, then
—z; tends to its maximum, too. Therefore, with respect to the
framework described above, the performance function f; for
user ¢ is defined as

fi: X =R, z— —z; @)

Moreover

uO = (_ml,mama ey _mn,maz) (8)

represents the initial or minimum performance. Referring to
the game-theoretic framework in Section III we get

U={uecR"|3ze X st f(z)>u},

Xo={zeX|f(z) >u’} &

with f = (fi)i=1,...n- Using (7) and (6) we observe
that f(x) > u° transforms to d; > w/[(Timaez — 1)ei),
which means that for each user the minimum data rate
w/[(Zi,maz — 1)€s] = dmin is ensured, as desired. This shows
that the choice of u° in(8) sensible.

We are looking for an element of X which is a fair trade-off
for each user. As explained above this leads to finding the
NBS for the problem (U, u").

Lemma 8: The unique NBS to the bargaining problem
(U, u) defined in (8) and (9) is the solution to the following
convex optimization problem:
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max [ [} (Timaz — T3)
-3 %* — 2>

T

forall 1 <1< n,
forall 1 <i<mn,
forall 1 <i<n.

(P)

8. Ty ~ Ty min = 0

Timaz — Ti 2 0

Proof: Since
J={je{l,...,n}| max f;(z) >ul} = {1,...,n}
z€Xo
the assertion follows from Theorem 5. |

In general, a solution of (P) is hard to achieve. By using the
Kuhn-Tucker theory the NBS may be characterized as follows.

Theorem 9: A necessary and sufficient condition for
x* = (z%,...,2%) to be the unique NBS is the following.
There exist p; > 0, such that foreach 1 <¢<n

(a) o7 €
Q= Y010 Mg+ Y

® (=T &= B =0,

© |Jolz*)| + |Jo(z*)| =n,
where (e = {12 €01 -5, 2 =0)
and Jo(z*) = {1 < k < n |z} = Tpmin } -

i 1 2 3
{mi,mina “'%‘ + 3V & + 4ai$i,max} with

Proof: The main arguments of the proof are contributed
by the Kuhn-Tucker theory. Therefore we have to show that
the constraint qualification (CQ) holds, cf. [6]. The constraint
functions in (P) are concave and the interior of X is non-
empty. In this special case Slater has shown that (CQ) holds,
cf. [6, Lemma 5.2].

If 2; = Zjmaex fOr some % the objective function in (P)
equals zero. By assumption there exists an elements for which
IT71 (®i,maz — ;) > 0. Thus, the solution to (P) satisfies
T; 7 Zimaes and the second constraint yields

10

The function f(x) = Ina is strictly monotonic increasing,
so we may instead consider the objective function

n n

In (H (xi,mam - mz)) = Z In ($i,mam - -771)
=1 =1

which is well defined by (10). By the Kuhn-Tucker Theorem

we get the following necessary and sufficient conditions for

the optimum x*. There exist p;, fli, f; > 0, 1 <4 < n, such

that

Ti > Timag forevery i=1,...,n.

Df(z*) = Z wiDgi (™) + Z fiDgi(x™)
i=1 i=1

+ 3 mDgi(x*), 1)

=1
gi(x )ps = 0, Gi(x™)fi; = 0, ga(z™)s =0 (12)
o)+ | Jolw")| + [ Jo(@*)| = n, (13)
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where

f($) = - Zln (xi,maz - mz) 5
=1

n
1 P
gl(w) =1- ; :E—]— - gii; 91(513) = Ti — Ti,min,
gz(m) = Tj,mazx — T4 vi<i<n (14)

and Jo(z*) = {je{l,...,n}|gj(z*) =0}, Jo(z*) and
Jo(z*) in an analogous way.

It remains to show that conditions (11)-(13) yield (a)-(c).
Again, noting that T; < Z; ;s We get Jo(z*) = @and fi; =0
for all 1 < i < n. Therefore (c) follows with (13). Further,
using (14) condition (12) simplifies to

n
1 v
1- e =

(-2 - Z)m=0, (15)

j=1 7 ]
(T7 ~ T4 min) fis = 0. (16)

Equation (15) gives (b). Condition (16) is equivalent to

1,‘: = Z4,min OF /1: =0. (17)

Assume ji; = 0. We obtain z] with (11). Differentiating
f(x), gi(x) and g; (), equation (11) transforms to

1 1 T .
T — g, gl (Zw +m%>, 1<i<n. (18)
Z; Zi,mazx z; =1
Let
&= <Z g + M’Yi), 19)
Jj=1
then (18) yields
(1 — fi%i,maz) CE;kQ + o xf + 0% mag =0 (20)

for all 1 <4 < n. Thus,

a; 1
T = —?Z + 5\/0@ + 40T maq for all 1 < i < n.

which gives together with (17) condition (a). This concludes
the proof. n

Theorem 9 provides a characterization of data rates, that
are optimal in the Nash bargaining sense. The interpretation
of Lagrange multiplier p; is the prize of data rate of user 1.

The above approach requires complex communication be-
tween mobiles and base station. In the sequel we deal with an
approach purely based on local problems for each mobile. We
use a technique which is well known in the theory of nonlinear
programming as the concept of penalties, cf. [12]. As we use
negative penalties in our context, we rather refer to them as
incentives. In the local model, each mobile may optimize only
its own parameters. Unrestricted data rates cannot be offered
to each mobile. Giving incentives to the mobiles to use a low
data rate, yields a Pareto-optimal point, as is shown in the
following.
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We introduce n positive parameters, denoted by A;,

1 <i < n. User ¢ with data rate d; receives an incentive of

;i [w/(dse;) + 1] . The intention of each mobile station is to

maximize its utility which is defined as the sum of the utility
and the incentive corresponding to data rate d;.

The following optimization problem arises for each user ¢,

1<i<n.

max In (Z; maz — i) + A

(Ul) Ti — Ti,min >0,

—xz; > 0.

s.t.

Ti,max
The network’s aim is to give as little incentives to the users
as possible. Therefore the network’s optimization problem is
as follows.

max — p o q M
1—2?:1%—%§ >0 foralll<i<n,
for all 1 <i <mn,

Timaz — i 2 0 forall 1 S 7 S 7.

The following theorem states that for certain incentive param-
eters the unique NBS of the global problem {P) solves the
user problem (U;) and the network’s problem (V). The highly
technical proof is omitted here.

Theorem 10: Let x* be the unique NBS to the problem (P)
and set
1

2 <ai RV OL? + 4ai1'i,mam + 2xi,ma$) y

: . o7} 1 2
if 27 = -5+ 3V + 4045 maz,
1

2 (ai + \Y 0512 + 4ai$i,mam + zmi,mam) )
: — oy 1 2
if 27 = —% — 5/ + 40T mas,

2 : *
O [TF min, + iy i 3 = Ti,min,

with «; given in Theorem 9, 1 < ¢ < n. Then x* solves
the optimization problem (N) and z} solves (U;) for every
1< <n.

Implementation of the decentralized optimization problem
requires knowledge of the variables «; which are dependent
on the Lagrange multipliers p;, cf. (19). These can be obtained
using the gradient projection method. Having obtained the
optimal element of the capacity region, the power allocation
is calculated by (5). The comparison of diverse algorithms
converging to the unique Nash bargaining vector will be the
topic of further research.

The following remark shows that the decentralization is a
noncooperative implementation of a point that is optimal in
the Nash bargaining sense.

Remark 11: The presented decentralization results in a
noncooperative game. A noncooperative game is a triple
(A, ILica Sis {ui()}ica), where A is the set of players, S;
the strategy set of player 4 and u; : [[;c 4 Si — R the utility
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function of player <.
The underlying game of the above approach is

T = (A [T i {ui()iea)

€A
with
A={1,...,n},
Si = {w €eR | L3, min <z; < aji,max}, 1<+ < 7,
ul(x) =In (xi,mam - 331) + Nz, 1<i<n.

As mentioned in Section I, the solution that is most widely
used for noncooperative games is the Nash equilibrium. A
strategy ’ is called Nash equilibrium if for every i € A

ui(25, ®;) > ug(ws, x_;)  for every u; € S

where @’ ; = (z,...,%}_;,2j,; ..., ;). The interpretation
is that given the strategies of the other players, no user can
improve its utility by making individual changes. It is easy
to see that our game I" has a unique Nash equilibrium which
is Pareto optimal. With the incentives chosen according to
Theorem 10, the NBS 2* to the problem (P) is the Nash
equilibrium of the game I'. Thus, the decentralization is a
noncooperative implementation of a system’s optimal point.

V. CONCLUSION

In this paper, we propose an application of cooperative
game theory to the analysis of the admissible n-user re-
gion. We show that the game-theoretic framework provides a
promising and seminal approach to the question of fairness
and efficiency. Fairness is ensured by three axioms, while
efficiency is derived from a fourth condition on bargaining
solutions.

The search for a data rate vector which is fair to all users
is formulated as a bargaining problem. The unique NBS is
characterized. As this global approach requires communication
simultaneously between all mobile stations and the system, we
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decentralize the problem. It is written as an optimization prob-
lem for each user and, furthermore, as a network optimization
problem employing so called incentives. The NBS solves these
problems, if the incentive parameters are properly chosen so
that candidates for the global solution may only be found in
the local solution set.

Future research will deal with other solution concepts
like the Kalai-Smorodinski solution, proportional fairness and
max-min fairness. Furthermore, the investigations will be
extended to the multi-cell framework.
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