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Abstract— In this paper, we define the power region as the
set of power allocations for K users such that everybody
meets a minimum signal-to-interference ratio (SIR). The SIR is
modeled in a multiuser CDMA system with fixed linear receiver
and signature sequences. We show that the power region is
convex in linear and logarithmic scale. It furthermore has a
componentwise minimal element. Power constraints are included
by the intersection with the set of all viable power adjustments.
In this framework, we aim at minimizing the total expended
power by minimizing a componentwise monotone functional. If
the feasible power region is nonempty, the minimum is attained.
Otherwise, as a solution to balance conflicting interests, we
suggest the projection of the minimum point in the power region
onto the set of viable power settings. Finally, with an appropriate
utility function, the problem of minimizing the total expended
power can be seen as finding the Nash bargaining solution, which
sheds light on power assignment from a game theoretic point of
view. Convexity and componentwise monotonicity are essential
prerequisites for this result.

I. INTRODUCTION

In interference limited wireless communication systems,
like code division multiple access (CDMA), mobile users
regulate transmission power to adapt to varying radio channel
and propagation conditions. The main purpose is to minimize
interference to other users while maintaining ones own data
rate at the lowest possible energy consumption. A number of
recent papers is dealing with the intertwining effect of power
adjustment and feasible data rates per user in wireless net-
works, hence defining a concept of overall network capacity,
see e.g., [1], [2], [3], [4], [5], and references therein.

A companion problem is the design of efficient power
control algorithms, preferably such that each user needs only
local information to update his power settings, but global
convergence is assured, see [6], [7], [8].

A game-theoretic approach to power control has been
studied in a number of papers, see e.g., [9], [10], [11].
Non-cooperative games have been used to derive a Nash
equilibrium. Our approach applies cooperative game theory
and results in a Nash Bargaining solution.

Refined models also include stochastic fading effects of
the channel. The usual approach here is to minimize power
consumption subject to certain outage probability constraints.
Appropriate models, structural properties of the corresponding
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e region, adequate power control algorithms and their
gence are investigated in [6], [12], [13], [14], [15], [16].
is paper, we investigate properties of the power region
existence of energy minimal power settings assuming
channel information and fixed signature and linear

r sequences in CDMA systems. To summarize, the main
utions are as follows.
ection II we first define the power region for K users
set of power settings 0 ≤ p ∈ R
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er region. In practice, however, power is limited. This

uded in our model by introducing the feasible power
as the intersection with a convex and downward closed
viable power adjustments. In the case that there is no
e power allocation, we suggest the projection of p∗ onto
ble power adjustments as a solution which balances
n conflicting interests of users. The solution can be
ted by applying cyclic projections onto simple affine
.
lly, by use of an appropriate utility function we show
ion IV how optimal power allocation can be interpreted
operative game. It turns out that the Nash bargaining

n coincides with the solution of the original power
ization problem.

II. SYSTEM MODEL

synchronous multiuser CDMA communication system
users and processing gain N let si ∈ R

N , i =
K , denote the N -dimensional signature sequence of

Let Gij denote the fixed path gain from user j to
igned base station of user i. Usually Gij is subject to
ading effects which are assumed to be known to the
itter. Suppose the symbol of user i is decoded using a
eceiver represented by some vector ci ∈ R

N . By · ′ we
the transpose of some vector or matrix. The signal-to-



interference ratio of user i is then given as

SIRi(p) =
Gii(c

′
isi)

2pi∑
j �=i Gij(c′isj)2pj + σ2(c′ici)2

,

where σ2 denotes the variance of the additive Gaussian noise
and p = (p1, . . . , pK) the vector of transmit powers. In the
following we assume that the receiver sequences ci are fixed.
Summarizing the known channel and receiver effects into
Aij = Gij(c

′
isj)

2 we obtain the following SIRi of user i

SIRi(p) =
Aiipi∑

j �=i Aijpj + Ciiσ2
.

with Cii = (c′ici)
2. Now given quality-of-service requirements

γ1, . . . , γK for each user, we define the power region PSIR as
the set of power settings p ∈ R

K such that each user i meets
his minimum SIR requirement γi, i.e.,

PSIR =
{
p ≥ 0 | SIRi(p) ≥ γi, i = 1, . . . , K

}
. (1)

Here and in the following orderings ’<’ and ’≤’ between
vectors are always meant componentwise. Obviously it may
happen that not all requirements γi can be simultaneously
satisfied in which case PSIR is empty.

We now prove convexity and log-convexity of the power
region PSIR. The set PSIR is called log-convex, if for any
p(1), p(2) ∈ PSIR and any 0 ≤ α ≤ 1 the point p(α) =

p(1)α
p(2)1−α

∈ PSIR, where powers pα = (pα
1 , . . . , pα

K)
are applied componentwise. Taking logarithms componentwise
gives log p(α) = α log p(1) + (1 − α) log p(2), which means
that the set PSIR is convex in logarithmic scale.

In general, neither log-convexity of some set implies con-
vexity nor vice versa.

Proposition 1 The power region PSIR is convex and log-
convex.

Proof: Consider the sets

Pi =
{
p | Aiipi − γi

∑
j �=i

Aijpj ≥ γiCiiσ
2
}
, i = 1, . . . , K,

which are closed convex affine halfspaces in R
K . Obviously,

PSIR =
⋂K

i=1 Pi, and from Theorem C in Section III of [17]
it follows that PSIR is a closed and convex polytope.

To prove log-convexity we show that

SIRi(p
(α)) ≥

(
SIRi(p

(1))
)α(

SIRi(p
(2))

)1−α

≥ γα
i γ1−α

i = γi

(2)

for all i = 1, . . . , K , which entails p(α) ∈ PSIR. The first
inequality in (2) follows from Hölder’s inequality since∑

j �=i

Aijp
(1)
j

α
p
(2)
j

1−α
+ Ciiσ

2

≤
(∑

j �=i

Aijp
(1)
j + Ciiσ

2
)α(∑

j �=i

Aijp
(2)
j + Ciiσ

2
)1−α

,

hence yielding SIRi

(
p(α)

)
≥

(
SIRi(p

(1))
)α(

SIRi(p
(2))

)1−α

resembling the method in [18].
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III. ENERGY EFFICIENT POWER ALLOCATION

convenience of notation we quote the following result
3]. It deals with solutions of the equation

[I − A]x = c (3)

A is a non-negative but not necessarily irreducible
, as is reqired in Perron-Frobenius theory.

ition 2 Let A ∈ R
n×n be non-negative.

there are x > 0 , c > 0 satisfying (3), then ρ(A) < 1.
ρ(A) < 1, then I − A is non-singular and for every
> 0, the unique solution x ∈ R

n of (3) is positive.
ρ(A) < 1, then for every c ≥ 0, the unique solution
∈ R

n of (3) is non-negative.
c > 0 and there exists y > 0 such that [I −A]y ≥ c,
en (3) has a unique solution x and 0 < x ≤ y.

above is now applied to PSIR. The inequalities defining
be rewritten as a system of linear inequalities. For this

e write B = (bij)
K
i,j=1, with

bij =

{
Aij/Aii, i �= j,

0, i = j,

= (τ1, . . . , τK)′, where τi = Ciiσ
2/Aii > 0. Then for

> 0 it holds that p ∈ PSIR if and only if

[I − diag(γ)B] p ≥ diag(γ)τ , (4)

diag(γ) denotes the matrix with diagonal entries γi and
gonal entries equal to zero.
stem (4) has a solution p > 0, then there is a unique
n p∗ ≤ p satisfying [I − diag(γ)B] p∗ = diag(γ)τ , as

from Proposition 2. Moreover, for any given γ > 0,
uation [I − diag(γ)B] p = diag(γ)τ has a positive
n p if and only if the spectral radius ρ(diag(γ)B) < 1,
that case, the solution is unique. Denote it by π(γ) =
, . . . , πK(γ))′. Thus

π(γ) = [I − diag(γ)B]
−1

diag(γ)τ (5)

l components positive.
marizing our results so far, we have the following

ition 3 If PSIR �= ∅, then there is a unique power
ion p∗ = π(γ) such that SIRi(p

∗) = γi for all i =
K and p∗ ≤ p for all p ∈ PSIR.

gy efficient power allocation can be formalized with
lp of some function h : R

K
+ → R as the following

zation problem.

minimize h(p) over all p ∈ PSIR (6)

Proposition 3 it is clear that for any componentwise
ne function h the minimum is attained at π(γ) when-

SIR �= ∅. Examples of such functions h are

h(p) = ‖p‖q =
( K∑

i=1

|pi|
q
)1/q

,



the �q-norms, q ≥ 1, with the special case h(p) =
∑K

i=1 pi

for q = 1.
In practice, however, power is limited. Hence, mobiles may

select their power adjustment only from a bounded set Pmax,
say. In the following we assume that Pmax is convex and
closed under simultaneous decrease of power (see [3]), i.e.,

if p ∈ Pmax and 0 < q ≤ p, then q ∈ Pmax. (7)

Typical examples of structure (7) are individual power con-
straints

0 ≤ pi ≤ pi,max, i = 1, . . . , K, (8)

or a limited total power budget as

K∑
i=1

pi ≤ pmax, pi ≥ 0, i = 1, . . . , K, (9)

or a combination hereof by intersecting both sets.
Under constraints (8) a relevant example of a component-

wise monotone function is

h(p) = −
K∏

i=1

(
epi,max − epi

)
(10)

Its meaning will be clear from a game theoretic interpretation
of power allocation with certain utility functions in Section
IV.

Energy efficient feasible power allocation can now be writ-
ten as

minimize h(p) over all p ∈ PSIR ∩ Pmax,

where by assumption PSIR ∩Pmax is a convex subset of R
K .

If PSIR ∩ Pmax �= ∅ it follows from Proposition 2 and (7)
that π(γ) from (5) is the optimal power allocation for any
componentwise monotone function h.

In the important case that PSIR �= ∅ but PSIR ∩ Pmax = ∅
there exists no feasible power allocation to satisfy all SIR
requirements simultaneously. A solution p̂ ∈ Pmax which
balances the conflicting interests of users is the projection of
π(γ) onto the convex set Pmax,

p̂ = Proj
(
π(γ) | Pmax

)
.

As follows from the classical projection theorem for Hilbert
spaces (see [19]), p̂ is unique. It represents the feasible power
adjustment coming closest to the required but infeasible p∗ =
π(γ).

For the above constraints (8) and (9) p̂ can be computed
by a convergent cyclic projection algorithm as investigated in
[20]. In this approach, starting with p∗, points are iteratively
projected onto convex sets whose intersection forms the set
where the projection onto is sought. Here only projections
onto affine halfspaces of the form H = {p | a′p ≤ β} are
needed. The general solution in this case is given by

Proj(p | H) = p −
1

a′a

(
a′p − β

)+
a,

where x+ = max{0, x} denotes the positive part of x ∈ R.
By selecting a = ei (the i-th unit vector) and β = pi,max

we ob
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Fig. 1. A Nash bargaining problem

tain the projection onto the set (8). The choice a =
, 1)′ and β = pmax yields the projection onto (9).
proceed by interpreting optimal power allocation as a
ative game, and by embedding this approach into the
framework.

POWER ALLOCATION AS A COOPERATIVE GAME

start by reviewing some basic concepts of cooperative
ing theory [21]. A K-person bargaining problem is a
, u0), where U ⊂ R

K is a nonempty convex, closed
per bounded set and u0 = (u0

1, . . . , u
0
K) ∈ R

K such
≥ u0 componentwise for some u = (u1, . . . , uK) ∈ U,
. 1.
elements of U are called outcomes and u0 is the
ement outcome. The interpretation of such a problem
llows. A community of K bargainers is faced with the

to negotiate for a fair point in the convex set U. If no
ent can be achieved by the bargainers, the disagreement
u0

1, . . . , u
0
K will be the outcome of the game. Let BK

the family of all K-person bargaining problems.
aining solution is a function F : BK → R

K such
(U, u0) ∈ U for all (U, u0) ∈ BK . Nash suggested a
n that is based on four axioms, as given below.

Weak Pareto optimality:
K → R

K is called weakly Pareto optimal, if for all
) ∈ BK there exists no u ∈ U satisfying u > F (U, u0).

Symmetry:
K → R

K is symmetric if Fi(U, u0) = Fj(U, u0)
(U, u0) ∈ BK that are symmetric with respect to a
J ⊆ {1, . . . , K} for all i, j ∈ J (i.e., u0

i = u0
j and

, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . . . . , uK) ∈
all i < j ∈ J, u ∈ U ).

cale covariance:
K → R

K is scale covariant if F (ϕ(U), ϕ(u0)) =
, u0)) for all ϕ : R

K → R
K , ϕ(u) = ū with ūi =

bi, ai, bi ∈ R, ai > 0, i = 1, . . . , K .

ndependence of irrelevant alternatives:
K → R

K is independent of irrelevant alternatives, if
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(u1 − u0
1)(u2 − u0

2) = const
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1, u

∗
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U

Fig. 2. The Nash Bargaining Solution

F (U, u0) = F (Ū , ū0) for all (U, u0), (Ū , ū0) ∈ BK with
u0 = ū0, U ⊆ Ū and F (Ū , ū0) ∈ U .

Remark. Weak Pareto optimality means that no bargainer can
gain over the solution outcome. Symmetry, scale covariance
and independence of irrelevant alternatives are the so called
axioms of fairness. The symmetry property states that the
solution does not depend on the specific label, i.e., users with
both the same initial points and objectives will obtain the same
performance. Scale covariance requires the solutions to be
covariant under positive affine transformations. Independence
of irrelevant alternatives demands that the solution outcome
does not change when the set of possible outcomes shrinks
but still contains the original solution.
These four axioms imply Pareto optimality which means
that it is impossible to increase any player’s utility without
decreasing another player’s utility.

The Nash bargaining solution is defined as follows.

Defi nition 4 A function N : BK → R
K is said to be a Nash

bargaining solution (NBS) if

N(U, u0) = argmax
{ ∏

1≤j≤K
uj �=u0

j

(
uj − u0

j

) ∣∣u ∈ U, u ≥ u0
}

,

whenever U\{u0} �= ∅ and N(U, u0) = u0, otherwise.

The NBS aims at maximizing the product of the users’
gain from cooperation, see Fig. 2. In addition it is uniquely
characterized by the four axioms stated above. The proof of
the following theorem can be found in [22].

Theorem 5 Let F : BK → R
K be a bargaining solution.

Then the following two statements are equivalent:

(a) F = N.
(b) F satisfies WPO, SYM, SCI, IIA.

In the following we consider the feasible power region

P = PSIR ∩ Pmax

with P
(8).
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are different concepts to select a particular candidate of
bargaining theory, proportional fairness, and max-min

s. Because of its clear axiomatic foundation we follow
ing theory and derive the NBS as an optimum point.
smit power of each mobile station is bounded by pi,max.
limited battery power each user aims at using the lowest
possible. Hence we introduce a utility function fi for
obile station 1 ≤ i ≤ K as follows

fi : P → R, p �→ epi,max − epi .

k now is to find an element of the feasible power region
at the utility of each player is maximized. This task

er is impossible to solve. As an alternative, we need to
element in the utility set f(P) that is superior to other
ts. The utility set is defined as the image of the utility
ns

f(P) = {epmax − ep | p ∈ P},

ep = (ep1 , . . . , epK ) is defined componentwise and
(ep1,max , . . . , epK,max) accordingly.

rly we should choose a Pareto optimal element. The
n arises at which of the infinitely many Pareto optimal
the system should be operated. From the perspective of
e sharing, one of the natural criteria is the notion of
s. This, in general is a loose term and there are many

of fairness. One of the commonly used notions is that
-min fairness which penalizes large users. Max-min

s corresponds to a Pareto optimal point, see [23]. How-
is not easy to take into account that users might have

nt requirements. A much more satisfactory approach is
of fairness from game theory as introduced above.

r common solution concept of fairness is proportional
s. Proportional fairness leads in fact to the NBS, as
easily seen by the definition of proportional fairness.

ore we confine ourselves to a game theoretic approach

ur cooperative game, players are formed by mobile
s, and they have to agree upon some element of the
set f(P). The bargaining set U is now obtained by
ing f(P) to

U =
{
u ∈ R

K | ∃p ∈ P s.t. u ≤ f(p)
}

. (11)

hown in [24] the convexity of U follows since fi are
e functions. Fig. 3 generically depicts the utility set
extension. Observe that the outcome of the cooperative
ies in f(P), so that the enlargement to U is mainly of
al reasons to assure convexity.
eover

u0 = −epmax (12)

nts the disagreement outcome, where each user has
smit with its maximum power if the mobile stations



f(P)

U

Fig. 3. The extension U of the utility set f(P)

fail to achieve an agreement. In summary, (U, u0) is a K-
person bargaining game. In the following the NBS of this game
is determined. It turns out that the NBS coincides with the
previously defined minimum power solution under function h
in (10). The proof follows easily from Definition 4.

Proposition 6 The unique NBS to the bargaining problem
(U, u0) defined in (11) and (12) is the solution to the following
optimization problem:

max

K∏
i=1

(epi,max − epi) (13)

such that

SIRi(p) ≥ γi,

pi ≥ 0,

pi,max − pi ≥ 0, 1 = 1, . . . , K.

Problem (13) is equivalent to minimizing function (10)
subject to constraints (8). If the constraining set is nonempty,
the solution is given by p∗ = π(γ) from (5), as is shown in
Section III.

V. CONCLUSION

This paper deals with the power control problem for a
multiuser CDMA channel. It is shown that the power region
is both convex and log-convex. It furthermore contains a
uniformly minimal element p∗, at which any componentwise
montone function attains its minimum. If there is no feasible
power allocation we suggest the point of minimum distance
to p∗ in the viable power region as a solution to the feasible
minimum power problem. This point can be easily computed
by a cyclic projection algorithm. The paper concludes with
showing that for an appropriate utility function the minimum
power problem with restricted power budget is obtained as the
Nash bargaining solution for an adaptively defined cooperative
game.
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