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Likelihood-Based Adaptive Learning in
Stochastic State-Based Models
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Abstract—This paper presents an adaptive learning framework
for estimating structural parameters in stochastic state-based
models (SSMs). SSMs are a useful modeling tool in systems
biology and medicine. While models in these disciplines are
traditionally hand-crafted, an automated generation based on
experimental data becomes a topic of research interest. In
particular, our goal is to classify measured processes using
the generated models. An innovative likelihood-based adaptive
learning approach capable of learning the structural parameters,
i.e., the arc weights of SSMs from data and exploiting the
reliability of detected inputs is presented in this work. Its
convergence behavior is analyzed and an expression for the error
at steady state is derived. Simulations assess the performance
of the proposed and existing algorithms for a gene regulatory
network.

Index Terms—Bioinformatics and genomics, statistical learn-
ing, adaptive signal processing

I. INTRODUCTION

MODELLING of complex systems may be performed
using manifold approaches. One method often used in

molecular and systems biology are Petri nets (PNs) [1], [2].
They have the advantage of a precise mathematical description
of a model that can be illustrated at the same time. Various
forms of PNs have been reported and tools have been developd
for them [3], [4], [5], [6], [7], [8], [9], [10], [11]. In biomedical
applications, PNs are particularly popular because of their
ability to model concurrency which is a characteristic of
reactions in biochemical systems [2]. Furthermore, they can
be considered as a white box approach as their quantities and
structure are interpretable and understandable unlike classical
machine learning concepts such as neural networks.

Machine learning techniques have the potential to improve
medical research and practice in many ways [12]. One possible
way of integrating machine learning into the medical sector
is through clinical decision support systems [13], [14], [15].
To develop such tools, freely accessible databases such as the
MIMIC-III database may be targeted. It contains vital signs,
laboratory measurements, diagnostic codes and more for large
numbers of intensive care patients [16]. With this kind of high
dimensional data, methods to understand relationships and
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estimate unknown processes are essential. For instance, data
may be used to classify a given measurement as pathological
or healthy. Approaches on different abstraction levels allow
both individual decision support based on reliable models of
patient-adapted pathophysiological processes and the improve-
ment of drug design with models of in vitro experiments. Prior
work includes different metaheuristics applied for parameter
estimation [17] and a data assimilation approach based on
particle filtering to approximate Bayesian estimators [18]. Fur-
thermore, efforts to solve the network reconstruction problem
have been presented to find all possible PNs that fit the
observed experimental data [19], [20], [21].

This work proposes adaptive learning techniques capable of
identifying the topology of stochastic models from observed
data. Unlike [22], a more general and self-contained stochastic
system model is considered. We develop an adaptive learning
algorithm that exploits the reliability of detected inputs. We
also carry out a stochastic analysis of the proposed algorithm
and evaluate its performance through simulations.

This paper is structured as follows: In Section II, we
describe the system model. The proposed likelihood-based
learning algorithm is presented in Section III. In Section IV,
we study the adaptive techniques’ convergence behavior and
their performance is assessed by simulations in Section V
before Section VI concludes the paper.

II. STOCHASTIC STATE-BASED MODEL

A bipartite graph with two types of nodes – places and tran-
sitions – constitutes the stochastic state-based model (SSM)
used in this work. Similar to classical PNs [23], places
contain tokens whereas the firing of transitions changes the
network’s marking and introduces dynamics into the model.
Our SSM deploys an exponentially distributed random delay
until an enabled transition fires, resembling stochastic Petri
nets (SPNs) [23]. The transitions used here are single-servers
and the model is assumed to be ergodic.

An exemplary SSM is given in Fig. 1. Places and transitions
are denoted as pi and τj and their total numbers as P and
T , respectively. The marking of a place is m(pi) and the
network’s total marking is m = [m(p1), . . . ,m(pP )]>. The
weight of the arc connecting pi to τj is denoted as [Pre]i,j
while the arc from τj to pi has weight [Post]i,j . The incidence
matrix of the SSM is defined as A = Post−Pre, A ∈ NP×T0 .
We emphasize that this SSM is pure, i.e., no transition has
any place as both input and output place. Consequently, the
connection between pi and τj is uniquely described by [A]i,j .

Problem Statement: The goal is to estimate the SSM’s
structure, i.e., the arc weights A describing its topology, based
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on noisy measurements of the markings m̃k = mk + ηk at
discrete time instants k from the set of all sampling times K
influenced by additive white Gaussian noise (AWGN) ηk ∼
N (0, Σ), ηk ∈ RP . The number of places is implicitly given
by the dimension of m̃k. In this work, we will differentiate
between a case where the number of transitions and their
respective firing times are known during the learning process
and a case where no such information is available.

Ultimately, the estimated structure parameters are intended
for classification of the underlying processes. Therefore, an
approximation of the non-negative integer entries of A and
m is presented here. Furthermore, the conflict resolution and
memory policies are not considered. A further examination of
these properties to identify a valid PN is left for future work.

The achievable model complexity is limited by the sampling
rate. This is illustrated in Fig. 2, where m(p1) is plotted over
time. If only one transition fires between two consecutive
samples (e.g., at t1 and t2), its effect on the marking may
be estimated correctly. In case of multiple firings (e.g., at t3
and t4), the effects of multiple transitions are accumulated
and their joint influence is learned. In this work, we assume
the sampling rate is sufficiently high such that the true model
complexity may be achieved.
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Fig. 1. Stochastic state-based model
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Fig. 2. Exemplary process realization. The sampling times are indicated by
the dashed lines.

III. PROPOSED ADAPTIVE LEARNING APPROACHES

In [22], adaptive learning approaches for hybrid systems
are introduced. The foundation is a state space formulation
and the state equation is given as mk+1 = mk + A · uk
when considering only a stochastic system. The firing vector
uk states which transition fired at time instant k where element
[uk]i ∈ {0, 1} represents τi. Based on the instantaneous mean
squared error (MSE) as the objective function, an approach
called gradient descent with full knowledge (GDFK) is derived
and the resulting update equation reads as

Âk+1 = Âk − µ′ · ∇Âk
M̂SEk+1

= Âk − µ · (m̂k+1 − m̃k+1) · u>k ,
(1)

where µ denotes the step size. Here, uk is assumed to be
given ∀ k. To overcome the need to know all firing instants, a
maximum likelihood estimator (MLE) is proposed to estimate
the firing vectors uk. New transitions are detected in a fashion
resembling event-triggered control by monitoring a triggering

condition. If this condition is met, a new transition is initial-
ized. The approach is referred to as decision-aided adaptive
gradient descent (DAAGD). These techniques are applicable
to the proposed SSM by considering only the stochastic part
of the network.

A. Likelihood-Based DAAGD (LB-DAAGD)

The DAAGD algorithm with its firing MLE from [22] al-
ways takes a hard decision on the most likely firing vector ûk.
This is done by choosing the firing vector with the highest log-
likelihood ratio (LLR)

LLR(uk) = log
Pr (m̃k+1|m̃k,uk)

Pr
(
m̃k+1|m̃k, Fk

) , (2)

where, based on the Gaussian noise, Pr (m̃k+1|m̃k,uk) =
1

(2π)P/2 det(Σ′)1/2
e−

1
2 (∆m̃k−Âk·uk)

>·Σ′−1·(∆m̃k−Âk·uk) with
Σ′ = 2Σ and Fk is an indication that no transition fired,
i.e., uk = 0. Please note that as (2) is normalized by the
probability of no firing, it holds that LLR(ûk) ≥ 0.

The fact that these LLRs contain useful information about
the reliability of the detection of firings inspires the idea of
using them to improve the learning performance. Weighting
the coefficient updates based on the reliability of the estimate
ûk by defining a dynamic convergence factor and therefore
varying the step size allows us to incorporate this concept. In
each time instant, the convergence factor consists of a constant
factor µc and a weight depending on the LLR according to

µ(k) = µc · f
(

LLR
(
û(k)

))
. (3)

The LLR is mapped to the weighting interval via a function
f : R0 → [0, 1]. As a heuristic, we use f(x) = 1 − e−2α·x.
Thus, the LB-DAAGD identifies ûk by finding the firing vector
that maximizes the LLR expression in (2), predicts the next
marking according to m̂k+1 = m̃k + Âkûk and updates the
weights as stated in (1) using µ(k) from (3).

IV. STOCHASTIC ANALYSIS

This section studies the convergence behavior of the GDFK
and LB-DAAGD algorithms. Similar goals are pursued in
literature for other least mean squares (LMS)-type algorithms
using the independence theory [24], [25], [26].

The error in the weight estimates at time instant k is defined
as ∆Ak = Âk−A. Thus, subtracting A from (1) while using
µk = µ(k) and ûk yields

∆Ak+1 =∆Ak − µk · (m̂k+1 − m̃k+1) · û>k = . . .

=∆Ak − µk ·
(
∆Ak · uk + ∆Ak ·∆uk

+ A ·∆uk − η′k+1

)
· û>k

=∆Ak ·
(
I− µk · uk · û>k

)
+ µk · η′k+1 · û>k − µk · Âk ·∆uk · û>k ,

(4)

where ∆uk = ûk − uk and η′k = ηk − ηk−1 with η′k ∼
N (0, Σ′) and Σ′ = 2 ·Σ.

A. Convergence Behavior of GDFK

Proposition 1. The GDFK’s coefficients converge in the mean
for SSMs with live transitions and the algorithm is stable
provided that

0 < µ < 2. (5)
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Proof. The analysis of the GDFK algorithm is conducted by
setting µk = µ and ∆uk = 0 in (4). Using the independence
theory means assuming among others that the sequence of uk
is statistically independent and Gaussian-distributed as well
as independent of the coefficient error [26], which does not
hold in the present case. To proceed without making improper
assumptions on uk, there are two key ideas:
1.) So far, (4) is considered for all k ∈ K = {0, 1, 2, . . . ,K}.

Since uk = 0 for many k, there is no change in the coeffi-
cient errors in these time instants. Therefore, (4) holds for
a subset of time instants as well, namely k′ ∈ K′, where
K′ is a set containing only those time instants where a
firing occurs, i.e., ||uk′ || 6= 0 ∀ k′. Using only k′ ∈ K′,
the adaptive update equation (1) still holds and for all
k /∈ K′, Âk = Âk∗ with k∗ = max(k′ ∈ K′, k′ ≤ k).
Hence, it is sufficient to study ∆Ak′ , k

′ ∈ K′.
2.) Each column of A represents one SSM transition. Since

we assume that only one discrete transition fires per time
instant, at maximum one column of Âk is updated at
a time in (1). This allows separating the problem into
single transitions and studying the convergence of the
coefficients column-wise.

Consequently, we consider the τ th column a of A represent-
ing transition τ . Let K′τ be a set containing only those time
instants where τ fires, hence, [uk′ ]τ = 1 ∀ k′ ∈ K′τ . Then, we
adapt (4) and for all k′ ∈ K′τ it holds that

∆ak′+1 = ∆ak′ − µ · (m̂k′+1 − m̃k′+1) ·
[
u>k′
]
τ

= . . .

= ∆ak′
(

1− µ ·
[
uk′
]
τ

[
u>k′
]
τ

)
+ µ · η′k′+1

[
u>k′
]
τ

= ∆ak′ · (1− µ) + µ · η′k′+1,

(6)

where the index k′ + 1 actually refers to the next k′ in
K′τ , i.e., min(k∗ ∈ K′τ , k∗ > k′). For example, if K′τ =
{5, 7, 13, . . .}, then as k′ = 7 is considered in (6), k′ + 1
refers to 13.

Since the noise is assumed to have zero mean, the expec-
tation of (6) reads as E {∆ak′+1} = E {∆ak′} · (1− µ) =
E {∆a0} (1− µ)k

′+1. Then, the condition to guarantee con-
vergence of the weights in the mean is that (1−µ)k

′
vanishes

for k′ →∞, thus, −1 < 1− µ < 1 which leads to (5).
Please note that considering the limit of k′ → ∞ requires

that the set K′τ is infinite. In terms of the system model, that
means transition τ is live, i.e., regardless of the evolution, tran-
sition τ will not become unfirable on a permanent basis [24].
Therefore, we have shown the convergence of the GDFK’s
coefficients in the mean for SSMs with live transitions.

To investigate the stability, the same ideas are helpful. As
the mean value of ∆aSk′ is zero for large k′, the covariance
matrix of the coefficient errors of transition τ is

cov [∆ak′+1] = E
{

∆ak′+1 · (∆ak′+1)
>
}

= E
{

(1− µ)2 ·∆ak′ (∆ak′)
>

+ µ2 · η′k′+1

(
η′k′+1

)>}
= (1− µ)2 · cov [∆ak′ ] + µ2 ·Σ′.

(7)

The GDFK algorithm is said to be stable if the diagonal
elements of cov [∆ak′ ] converge. According to [25], a neces-

sary and sufficient condition for this is that all the eigenvalues
of the state matrix (1− µ)2 · I in (7) lie inside the open unit
disc. Therefore, −1 < (1−µ)2 < 1 which is equivalent to the
condition for convergence in (5).

Proposition 2. The total MSE at firing instants in steady state
(MSEss) consists of the minimum MSE (MSEmin) and the excess
mean squared error (EMSE) at firing instants in steady state
(MSEex,ss) and reads as

MSEss = MSEmin + MSEex,ss = 2 · tr [Σ] +
2µ

2− µ
tr [Σ] . (8)

Proof. We now consider the full coefficient matrix again
to obtain an expression for the EMSE. As K′ contains all
firing time instants of all SSM transitions now, it holds that
u>k′uk′ = 1. When studying the expectation of the coefficient
error matrix’ Frobenius norm for the firing instants k′ ∈ K′
and replacing the adaptation of (4) to GDFK ∆Ak′+1 =
∆Ak′

(
1− µ · uk′u>k′

)
+ µ · η′k′+1u

>
k′ , the cross terms of

the noise cancel and it is possible to further manipulate the
expression according to

ξk′+1 = E
{

tr
[
∆A>k′+1∆Ak′+1

]}
= E

{
tr
[ (

1− µ · uk′u>k′
)>

∆A>k′ ·∆Ak′
(
1− µ · uk′u>k′

) ]}
+ µ2 · E

{
tr
[
u>k′uk′

(
η′k′+1

)>
η′k′+1

]}
= E

{
tr
[
∆A>k′∆Ak′

]}
− 2µ · E

{
tr
[
uk′u

>
k′∆A>k′∆Ak′

]}
+ µ2 · E

{
tr
[
uk′u

>
k′∆A>k′∆Ak′uk′u

>
k′
]}

+ µ2 · E
{

tr
[
u>k′uk′

(
η′k′+1

)>
η′k′+1

]}
= E

{
tr
[
∆A>k′∆Ak′

]}
+ µ2 · E

{
tr
[(
η′k′+1

)>
η′k′+1

]}
− 2µ · E

{
tr
[
u>k′∆A>k′∆Ak′u

I
k′
]}

+ µ2 · E
{

tr
[
u>k′∆A>k′∆Ak′uk′

]}
= ξk′ +

(
µ2 − 2µ

)
MSEex(k′) + µ2 · tr

[
Σ′
]
. (9)

At steady state, ξk′ → ξk′+1. Therefore, we obtain an
expression for the EMSE at firing instants at steady state

MSEex,ss =
2µ

2− µ
tr [Σ] . (10)

Adding the minimum MSE which is just the noise influence
to the EMSE yields the total MSE at steady state as stated
in (8). As only the firing instants are considered in (9), the
EMSE expression in (10) is only valid for these time instants.
In non-firing instants, there is no EMSE contribution and the
MSE consists of the noise influence MSEmin only.

B. Convergence Behavior of LB-DAAGD

When considering the LB-DAAGD, the algebraic manipula-
tions allowing to move from (4) to (6) are not valid anymore,
thus, the expressions cannot be reshaped in a way that all
contributions of ûk are ruled out. In order to proceed with
the analysis, it is necessary to make assumptions. Note that
they might not be strictly justified but still lead to reasonable
results such as in [24]. Additionally, there cannot be a general
guarantee that the LB-DAAGD algorithm detects the correct
transitions due to the thresholding approach. It is bound to
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fail if the noise power is too high (σ2 >> ||a||). Therefore,
we assume that the signal-to-noise ratio (SNR) is sufficiently
high to allow a correct transition detection. Then, it is possible
that the learning scheme can compensate errors in the firing
estimation and still approach the correct weights similar to the
decision-directed method in adaptive equalization [26].

Based on (4), we assume independence of η′k+1 and ûk
as well as of ∆Ak and uk · û>k , respectively. Additionally,
µk · Âk · ∆uk · û>k is considered as negligible compared to
the other terms in (4) as indicated by the histograms in Fig. 3.
Then, we obtain the simplified expectation

E {∆Ak′+1} ≈ E {∆Ak′} ·
(
I− E

{
µk′ · uk′ · û>k′

})
= E {∆A0} · (I− µc ·R)

k′+1
,

(11)

with R = E
{
f(LLR(ûk′)) · uk′ · û>k′

}
and where again only

the firing instants are considered.
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1,000

2,000

(a)

−1 0 1
0
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(b)
Fig. 3. Histograms of the elements of (a) ∆Ak ·

(
I− µk · uk · û>k

)
and (b)

µk ·Âk ·∆uk · û>k from (4) with the LB-DAAGD for µc = 0.3, σ2 = 0.01,
MSEth = 0.08, α = 0.01 and k sufficiently large such that all transitions are
detected. The dominant peak at 0 in (b) with a value of more than 106 is not
shown to allow seeing the other values. Time instants with uk = ûk = 0
are discarded. Note the different y-axis scales.

Now µc has to be chosen such that (I− µc ·R)
k′ → 0

for k′ → ∞ to guarantee the convergence of the coefficient
error in the mean. This can be done by ensuring that the
absolute values of all eigenvalues of I − µc · R lie between
-1 and 1, hence, 0 < µc <

2
max(|λi|) with λi ∈ spec(R). For

LB-DAAGD, the properties of ûk and therefore the structure
of R are not easily defined, however, in the special case
of GDFK approach it simplifies to a diagonal matrix where
the entry [R]ii = p(Fi) ∈ [0, 1] corresponds to the firing
probability of τi. Consequently, max(|λi|) = 1 and the
convergence condition coincides with (5).

V. SIMULATION RESULTS

A (simplified) SSM model of a gene regulatory network of
a circadian clock mechanism from [27] is used for validation
of the learning schemes. A simple augmentation is used
to allow converting the impure into a pure model [23]. A
given realization is corrupted by noise and the approaches are
applied. The coefficient MSE is computed by comparing Âk

to the true A according to MSEk = 1
P ·T ||Âk − A||2F . For

DAAGD and LB-DAAGD, each transition is compared to the
transition that truly fired at the time instant of its detection.
Undetected transitions in A are compared to 0. To allow a
fair comparison, µ is set to 1 for each transition’s first firing
in GDFK as it is done in DAAGD. Additionally, a curve for the
gradient descent with imperfect knowledge (GDIK) is included
where the prior knowledge of firing instants is corrupted with a

GDFK GDIK DAAGD LB-DAAGD
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0 1 2 3 4 5
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Fig. 4. Coefficient MSE for the different learning schemes with µ = 0.1,
α = 0.01 and BERu = 10−3.
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Fig. 5. Prediction MSE during GDFK learning for (a) µ = 1 and (b) µ =
0.01 with σ2 = 0.03. The blue curve shows simulations results while the
dashed black curve depicts the theoretical value from (8).

given bit error rate (BERu). Fig. 4 presents the results averaged
over 50 realizations. The code is available online [28].

It is clear that the coefficient MSE converges to a steady
state for all techniques. Note that two transitions never fire
which contributes an error of 1.5 · 10−2 already. If they fired
later, the MSE would change again as the statistics of these two
transitions will be learned. For lower noise levels (Fig. 4a), the
performance is similar for all methods and only GDIK falls
short. As expected, for higher noise (Fig. 4b) GDFK with
perfect knowledge about the firing instants performs best while
the performance of DAAGD is considerably deteriorated.
Using the reliability information in LB-DAAGD, DAAGD is
clearly outperformed.

The theoretical expression of the MSE at steady state
from (8) is compared to simulation results of GDFK in
Fig. 5. Note that only values from firing time instants are
considered here. The prediction MSE is calculated according
to MSEk = (m̂k − m̃k)> · (m̂k − m̃k) and the results are
averaged over 50 realizations. Fig. 5 shows that while the
convergence speed is different, the simulation results approach
the theoretically computed value for both choices of µ.

VI. CONCLUSION

In this paper, we have studied and developed adaptive
learning techniques for the estimation of the relevant structure
parameters of an SSM. Three approaches with different levels
of prior knowledge and use of likelihood information are
considered and their convergence behavior as well as their
EMSE are analyzed. Simulations illustrate the algorithms’
capability to learn parameters of a gene regulatory network and
show the effectiveness of likelihood information that equips
the proposed LB-DAAGD algorithm.



5

REFERENCES

[1] P. J. Goss and J. Peccoud, “Quantitative modeling of stochastic systems
in molecular biology by using stochastic Petri nets,” Proceedings of the
National Academy of Sciences, vol. 95, no. 12, pp. 6750–6755, 1998.

[2] J. W. Pinney, D. R. Westhead, and G. A. McConkey, “Petri net
representations in systems biology,” 2003.

[3] W. M. Van der Aalst, “The application of Petri nets to workflow
management,” Journal of circuits, systems, and computers, vol. 8, no. 01,
pp. 21–66, 1998.

[4] J. Billington and M. Diaz, Application of Petri nets to communication
networks: Advances in Petri nets. Springer Science & Business Media,
1999, no. 1605.

[5] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 34, no. 1, pp. 38–51, 2004.

[6] A. Giua, M. Pilloni, and C. Seatzu, “Modelling and simulation of a bot-
tling plant using hybrid Petri nets,” International journal of production
research, vol. 43, no. 7, pp. 1375–1395, 2005.

[7] S. M. Vahidipour and M. Esnaashari, “Priority assignment in queuing
systems with unknown characteristics using learning automata and
adaptive stochastic Petri nets,” Journal of computational science, vol. 24,
pp. 343–357, 2018.

[8] S. Vahidipour, M. Esnaashari, A. Rezvanian, and M. Meybodi, “GAPN-
LA: A framework for solving graph problems using Petri nets and
learning automata,” Engineering Applications of Artificial Intelligence,
vol. 77, pp. 255–267, 2019.

[9] S. M. Vahidipour, M. R. Meybodi, and M. Esnaashari, “Cellular adaptive
Petri net based on learning automata and its application to the vertex
coloring problem,” Discrete Event Dynamic Systems, vol. 27, no. 4, pp.
609–640, 2017.

[10] Y. Xia, X. Luo, J. Li, and Q. Zhu, “A Petri-net-based approach to
reliability determination of ontology-based service compositions,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,
pp. 1240–1247, 2013.

[11] Y. Xia, Y. Liu, J. Liu, and Q. Zhu, “Modeling and performance
evaluation of BPEL processes: a stochastic-Petri-net-based approach,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 42, no. 2, pp. 503–510, 2012.

[12] Z. Obermeyer and E. J. Emanuel, “Predicting the futurebig data, machine
learning, and clinical medicine,” The New England journal of medicine,
vol. 375, no. 13, p. 1216, 2016.

[13] A. Johnson, M. Ghassemi, S. Nemati, K. Niehaus, D. Clifton, and
G. Clifford, “Machine learning and decision support in critical care,”
Proceedings of the IEEE, vol. 104, no. 2, pp. 444–466, 2016.

[14] T. Hemmerling, F. Cirillo, and S. Cyr, “Decision support systems in
medicine - anesthesia, critical care and intensive care medicine,” in
Decision Support Systems. InTech, 2012.

[15] S. Pappada, T. Papadimos et al., “Clinical decision support systems:
From medical simulation to clinical practice,” International Journal of
Academic Medicine, vol. 3, no. 1, pp. 78–8, 2017.

[16] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “MIMIC-III, a
freely accessible critical care database,” Scientific data, vol. 3, p. 160035,
2016.

[17] J. Sun, J. Garibaldi, and C. Hodgman, “Parameter estimation using
metaheuristics in systems biology: a comprehensive review,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
vol. 9, no. 1, pp. 185–202, 2012.

[18] M. Nagasaki, R. Yamaguchi, R. Yoshida, S. Imoto, A. Doi, Y. Tamada,
H. Matsuno, S. Miyano, and T. Higuchi, “Genomic data assimilation for
estimating hybrid functional Petri net from time-course gene expression
data,” Genome Informatics, vol. 17, no. 1, pp. 46–61, 2006.

[19] M. Durzinsky, A. Wagler, and R. Weismantel, “An algorithmic frame-
work for network reconstruction,” Theoretical Computer Science, vol.
412, no. 26, pp. 2800–2815, 2011.

[20] W. Marwan, A. Wagler, and R. Weismantel, “A mathematical approach
to solve the network reconstruction problem,” Mathematical Methods of
Operations Research, vol. 67, no. 1, pp. 117–132, 2008.

[21] M. Durzinsky, A. Wagler, and R. Weismantel, “A combinatorial approach
to reconstruct Petri nets from experimental data,” in International
Conference on Computational Methods in Systems Biology. Springer,
2008, pp. 328–346.

[22] P. Vieting, R. C. de Lamare, L. Martin, G. Dartmann, and A. Schmeink,
“An adaptive learning approach to parameter estimation for hybrid Petri

nets in systems biology,” in IEEE Statistical Signal Processing Workshop
(SSP), June 2018, pp. 543–547.

[23] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

[24] P. Diniz, Adaptive Filtering: Algorithms and Practical Implementation,
2nd ed. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[25] A. H. Sayed, Adaptive filters. Hoboken, NJ, USA: John Wiley & Sons,
2008.

[26] S. Haykin, Adaptive filter theory, 3rd ed. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1996.

[27] M. Blätke, M. Heiner, and W. Marwan, “Biomodel engineering with
Petri nets,” in Algebraic and Discrete Mathematical Methods for Modern
Biology. Elsevier, 2015, pp. 141–192.

[28] https://github.com/vieting/adaLearnSSM.


