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Abstract. Deep learning architectures are vulnerable to adversarial per-
turbations. They are added to the input and alter drastically the output
of deep networks. These instances are called adversarial examples. They
are observed in various learning tasks from supervised learning to unsuper-
vised and reinforcement learning. In this chapter, we review some of the
most important highlights in theory and practice of adversarial examples.
The focus is on designing adversarial attacks, theoretical investigation
into the nature of adversarial examples, and establishing defenses against
adversarial attacks. A common thread in the design of adversarial attacks
is the perturbation analysis of learning algorithms. Many existing algo-
rithms rely implicitly on perturbation analysis for generating adversarial
examples. The summary of most powerful attacks are presented in this
light. We overview various theories behind the existence of adversarial
examples as well as theories that consider the relation between the gen-
eralization error and adversarial robustness. Finally, various defenses
against adversarial examples are also discussed.
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1 Introduction

Artificial intelligence is on the rise and Deep Neural Networks (DNNs) are
an important part of it. Whether it is in speech analysis [29] or visual tasks
[34,27,69,59], they shine with a performance beyond what was imagined a decade
ago. Their success is undeniable, nevertheless a flaw has been spotted in their
performance. They are not stable under adversarial perturbations [70]. Adversarial
perturbations are intentionally worst case designed noises that aim at changing the
output of a DNN to an incorrect one. The perturbations are most of the time so
small that an ordinary observer may not even notice it, and even the state-of-the-
art DNNs are highly confident in their, wrong, classification of these adversarial
examples. This phenomena is depicted in Figure 1, borrowed from [24], where
a subtle adversarial perturbation is able to change the classification outcome.
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“panda” perturbation “gibbon”

Fig. 1: A demonstration from [24] of adversarial examples generated using the
FGSM. By adding an imperceptibly small vector, we can change GoogLeNet’s
classification of the image.

Robustness to adversarial perturbations is different from robustness to random
noise [19], a trait that can be achieved by DNNs. The existence of adversarial
perturbations was known for machine learning algorithms [9], however, they
were first noticed in deep learning research in [70]. These discoveries generated
interest among researchers to understand the instability of DNNs, to explore
various attacks and devise multiple defenses. Although it is very difficult to keep
up with the pace of results in this area, there are many excellent surveys on
the topic. For instance, the surveys [1,79] cover many interesting instances for
which adversarial examples exist. In this chapter, we overview as well some of
the most important findings regarding adversarial examples for DNNs. However,
we adopt a different approach. Instead of creating a catalog of existing attacks
and defenses, we present an adequately general framework which can recover
many existing attacks. Theoretical findings regarding the nature of adversarial
examples are additionally addressed. In this light, we address three problems
in this chapter, namely, adversarial attacks, their theoretical explanation and
adversarial defenses.

The first question is about generating adversarial examples and designing
attacks. This is discussed in the first part of this chapter. Historically these
examples were first found for classification tasks and were based on first order
approximations of DNNs. These methods require knowledge of model parameters
and are therefore sometimes called white-box attacks. We overview some of the
most important attacks including iterative and non-iterative methods, as well as
single and multiple pixel attacks. Instead of listing different attacks, our goal is to
present a unifying framework for generating adversarial examples. The framework,
which goes beyond classification problems, is based on a convex optimization
formulation of adversarial input generation. We overview, furthermore, black-
box attacks where only partial knowledge of model parameters is available for
generating adversarial examples. Universal adversarial perturbations and the
transferability of adversarial examples are other topics discussed in this part.

The second question is about the nature of adversarial examples. Why are
DNNs and other machine learning models vulnerable to adversarial examples?
In the second part, we overview some of the attempts to investigate theoretically
this question. In many works, the adversarial vulnerability is attributed to
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some properties of machine learning models. Some examples are linearity of
models, curvature of decision boundaries of classifiers and low `1-norm of weight
matrices. After reviewing some of these theories, we discuss statistical learning
theoretic approaches that explore the relation between adversarial robustness
and generalization capabilities of machine learning models. Out of this study
come new guidelines for designing adversarially robust algorithms, which brings
us to the third question of this chapter. How can we design effective defenses
against adversarial examples?

The defenses take up different approaches from modifying the training process
by changing the training set to adding new regularizations or considering new
DNN architectures or a combination of preceding approaches. Some of the most
recent contributions in this direction are discussed in the last part.

1.1 Notation and Preliminaries

We introduce first the notation used in this chapter and some of the basic
definitions needed throughout this chapter. The letters x,y, . . . are used for
vectors, A,B, . . . for matrices and X ,Y, . . . for sets. We denote the set {1, . . . , n}
by [n] for n ∈ N. For any vector x = (x1, . . . , xn)T ∈ Rn and p ∈ N, the `p-norm
of x is defined by

‖x‖p :=

(
n∑
i=1

xpi

)1/p

.

When p tends to zero, the above definition converges to the number of non-zero
entries of the vector. This is called, with an abuse of terminology, the `0-norm.
The explicit definition is given as

‖x‖0 :=

n∑
i=1

1(xi 6= 0).

The `0-norm gives the sparsity order of the vector x. The `∞-norm of a vector x
is obtained when p→∞. It is defined as

‖x‖∞ := max
i∈[n]
|xi|.

The norm of a matrix X ∈ Rm×n is similarly defined. The Frobenius norm of X
is denoted by ‖X‖F and defined as:

‖X‖F :=

 m∑
i=1

n∑
j=1

X2
ij

1/2

.

The Shatten p-norm of the matrix X is equal to the `p-norm of the singular value
vector (σ1, . . . , σmin(m,n)) of X, namely:

‖X‖p :=

min{m,n}∑
i=1

σpi

1/p

.
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The Frobenius norm of X is equivalent to the `2-norm of the singular value vector.
The `1-norm of the singular value vector is called the nuclear norm. The `0-norm
is similarly defined and gives the rank of X.

Consider a function f : Rn → Rm given by f(x) = (f1(x), . . . , fm(x)) for m
function fi : Rn → R. The Jacobian of f at x is denoted by Jf (x) and defined as

Jf (x) :=
(
∂f
∂x1

(x), . . . , ∂f
∂xm

(x)
)

=

[
∂fi
∂xj

(x)

]
i∈[n],j∈[m]

.

2 Adversarial Perturbation Design

Adversarial attacks follow ubiquitously the same pattern. An adversarial attacker
is assumed to have access to the system input. This can be the input of DNNs.
It applies perturbations to the system inputs under an additional and important
constraint. The perturbations should be restricted in some sense. For image-
based tasks, this means that an ordinary observer should not be capable of
spotting, at least immediately, a significant change in the image and its label.
More generally, this constraint makes it hard for the administrator to detect
the perturbations. Finally, and most importantly, the system performance, for
example its classification accuracy, should be severely degraded. The attacks in
[24,48,58] follow similar guidelines. Two categories of adversarial attacks can be
envisaged, white-box and black-box attacks. In white-box attacks, the architecture
of the target algorithms are known to the attacker, although there are attacks
with only partial knowledge of the architecture. In contrast stand black-box
attacks, which require no information about the target neural network, see for
instance [63].

In the pioneering work of [70], the attack is based on finding adversarial
perturbations that maximize the prediction error at the output. The perturbations
are approximated by minimizing the `2-norm of the perturbation. If the multi-
class classifier mapping is defined by f : Rn → [K], Szegedy et al. in [70]
minimize the `2-norm of the perturbation η such that the classifier output is
changed to the target label l ∈ [K], i.e., f(x + η) = l. The perturbation η is
constrained to be inside the box [0, 1]n. The adversarial example is obtained
by adding the perturbation η to the input vector x. In the next attack, the
FGSM in [24], the sign of the gradient of the cost function is used for designing
perturbations which were scaled to have bounded `∞-norm, and therefore to be
almost undetectable. If the cost function used for training is given by c(x), the
perturbation is given by η = ε sign(∇c(x)). The `∞-norm of the perturbation
is ε. An example of the FGSM is shown in Figure 1. Iterative procedures or
randomizations can significantly strengthen adversarial attacks. An iterative
linearization of the DNN is proposed in the algorithm DeepFool [48] to generate
minimal `p-norm perturbations for p > 1. The iterative approach continues to
add perturbations with bounded `p-norm until the classifier’s output is altered.
An iterative version of FGSM, called Basic Iterative Method (BIM) is proposed
in [35]. The Projected Gradient Descent (PGD) attack is an extension of previous
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techniques, proposed in [43], where randomness is additionally introduced in the
computation of adversarial perturbations. The PGD attack can bypass many
defenses and is employed in [43] to devise a defense against adversarial examples.
An iterative algorithm based on PGD combined with randomization is introduced
in [5] and has been used to dismantle many defenses so far [4]. Another popular
way of generating adversarial examples is by constraining the `0-norm of the
perturbation. Manipulating only few entries, these types of attacks are known as
single pixel attacks [67] and multiple pixel attacks [53].

In what follows, to generate adversarial examples, we provide a unifying
framework that incorporates the above techniques. The main ingredient of this
framework is perturbation analysis. Given a classifier function, the perturbation
analysis of this function quantifies how much its output is perturbed when a
known perturbation is applied to its input. An approximation of this output error
is usually obtained using a first-order Taylor approximation of the function, under
the assumption that the input perturbations are of small norms. Adversarial
examples suitably fall into this framework, as they are perturbed versions of
original inputs, the perturbations are small and the function at hand comes
naturally from the model. Consider, for example, the FGSM given in [24]. The
proposed attack aims at maximizing the training loss function that is approxi-
mated by its first-order Taylor approximation. Similarly, the authors of [48,24]
constructed adversarial examples by maximizing the error, on a relevant function,
that occurs as a consequence of input perturbations. Iterative methods like the
DeepFool method [48], the BIM [35], the PGD method [43], and the gradient-
based norm-constrained method (GNM) [8], maximize the output perturbation
using successive first order approximations. A summary about the connections
and differences between these methods is provided in [8]. It is based on this
framework that we formulate the problem of generating adversarial examples in
this section.

Let us first fix the terminology used in this section. The input of classifiers
is denoted by x. Then, adversarial examples are constructed by adding an
adversarial perturbation η, of the same dimension as x, to that input. For a
multi-class classification with K classes, a classifier maps inputs to the discrete
set of labels [K]. Classifiers modeled by DNNs based their decision usually on a
set of functions, often differentiable, known as score functions. These functions
can replace the non-differentiable classification function for which a first-order
Taylor approximation is not possible because the gradients are not properly
defined. The score functions and classification functions are defined below.

Definition 1 (Score functions and classifier functions). A classifier is
defined by the mapping k : RM → [K] that maps an input x ∈ RM to its
estimated class k (x) ∈ [K]. The mapping k(·) is itself defined by

k(x) = argmax
l∈[K]

{fl (x)} , (1)

where fl(x) : RM → R’s represent the probability of class belonging. The function
f(x) given by the vector (f1(x), . . . , fK(x))T is known as score function and can
be assumed to be differentiable almost everywhere for many classifiers.
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Finding adversarial examples amounts to finding a perturbation that changes
the classifier’s output. However, since they are imperceptible, such adversarial
perturbations should not modify the inputs significantly. The undetectability of
adversarial examples can be better understood using image classification tasks
as an example. For instance, in Figure 1 we observe that the human eye can
not distinguish between the original and adversarial image. A common way to
impose this restriction is by constraining adversarial perturbation to belong to a
certain set of unnoticeable perturbations. For example, the authors of the FGSM
bounded the `∞-norm of their perturbation, or in the DeepFool method, the
norm is incrementally increased until the output classifier changes. Note that
DeepFool may produce perceptible perturbations, while the FGSM may not fool
the classifier.

Another way of imposing undetectability of adversarial examples is to impose
on the input perturbation to preserve the outcome of the ground truth classifier
[75], also known as oracle classifier. In many applications, the oracle classifier
refers to the human brain. Similar to Definition 1, denote the score function
of the oracle classifier as g : RM → RK , which outputs a vector with entries
gl : RM → R for l = 1, . . . ,K. The adversarial perturbation η is said to be
undetectable if

Lg(x,η) = gk(x)(x + η)− max
l 6=k(x)

gl(x + η) > 0 . (2)

Using this notion, the problem of finding adversarial examples amounts to the
following.

Definition 2 (Adversarial Generation Problem). For a given x ∈ RM , the
adversarial generation problem consists of finding a perturbation η ∈ RM to fool
the classifier k(·) by the adversarial sample x̂ = x + η such that k(x) 6= k(x̂) and
the oracle classifier is not changed, i.e.,

Find : η

s.t. Lf (x,η) = fk(x)(x + η)− max
l 6=k(x)

fl(x + η) < 0

Lg(x,η) = gk(x)(x + η)− max
l 6=k(x)

gl(x + η) > 0

(3)

However, since the oracle classifier is usually unknown, this problem is not
interesting for practical purposes. To overcome this issue, it is shown in forthcom-
ing sections how the solution of this problem can be approximated by tractable
relaxations.

2.1 White-Box Attacks

The white-box setting corresponds to the scenario when the classification function
f(·) and input x are both known to the attacker. Thus, adversarial perturbations
are designed with full knowledge of the target system.
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Non-Iterative Methods As discussed above, the constraint on the oracle
function of (3) cannot be computed in practice, since the oracle classifier is
not available. To address this problem, such constraints are approximated by
restricting the set of possible adversarial perturbations to a known subset. The
most common choice is to restrict η to belong to the set of vectors with bounded
`p-norm for p ≥ 1. The values of p are restricted to be p ≥ 1 so that the set
‖η‖p ≤ ε is convex for any ε > 0. Note that the choice of p will determine the
structure of the obtained adversarial examples . The case of p =∞ has been the
focus of research in recent years. Even after replacing the oracle constraint on (3),
with a convex one, the problem remains non-convex. For the case of white-box
attacks, a similar relaxation can be carried out by approximating Lf (x, ·) with
its firs-order Taylor expansion. This is possible since we assume to have full
knowledge about x and the function f(·).

To that end, the first-order Taylor expansion of Lf (x, ·) around 0 leads to

Lf (x,η) = Lf (x,0) + ηT∇ηLf (x,0) +O(‖η‖22),

where O(‖η‖22) contains higher order terms. Therefore, by replacing the oracle
function constraint in (3) with ‖η‖p ≤ ε, for sufficiently small ε ∈ R+, we get

Find: η

s.t. Lf (x,0) + ηT∇ηLf (x,0) < 0, ‖η‖p ≤ ε, (4)

which is a relaxed version of the problem exposed in (3). This formulation of the
problem can be used to construct well known existing adversarial attacks from
the literature. This will be discussed in detail in Section 2.1. Nevertheless, the
following theorem shows that this problem is not always feasible.

Theorem 1. The optimization problem (4) is not feasible if for q = p
p−1

ε‖∇ηLf (x,0)‖q < Lf (x,0). (5)

The proof can be obtained from the results in [28], as well as in [7].
The theorem points to the insight that there might be no perturbation that

is small enough and yet changes the output label. This implication befits the
intuition that it should not be expected to fool a classifier for an arbitrarily small
ε with the perturbation’s norm constraint. This result suggests that a feasible
problem can be obtained if we only impose one of the constraints while trying
to preserve the other one as much as possible. To that end, a proper objective
function that penalizes the deviation from the original constraint is minimized.
This gives rise to the following two problems, as feasible counterparts of (4).

First, the norm-constraint in (4) is imposed resulting in the following opti-
mization problem, called GNM in [7]. It minimizes Lf (x,0) + ηT∇ηLf (x,0) as

min
η
Lf (x,0) + ηT∇ηLf (x,0) s.t. ‖η‖p ≤ ε . (6)
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Using this approach we can find the best possible perturbation under the norm-
constraint. However, a proper value for ε must be chosen beforehand to guarantee
that the perturbations remain unnoticed. Moreover, this problem has a closed
form solution which can be computed efficiently, as stated in the following theorem.

Theorem 2. If ∇ηLf (x,η) = (
∂Lf (x,η)
∂η1

, . . . ,
∂Lf (x,η)
∂ηM

), the closed form solution
to the minimizer of the problem (6) is given by

η = −ε 1

‖∇ηLf (x,0)‖q−1
q

sign(∇ηLf (x,0))� |∇ηLf (x,0)|q−1 (7)

for q = p
p−1 , where sign(·) and | · |q−1 are applied element-wise, and � denotes

the element-wise (Hadamard) product. Particularly for p = ∞, we have q = 1
and the solution is given by the following

η = −ε sign(∇ηLf (x,0)) . (8)

The proof can be found in [7]. One advantage of using (6), besides having a closed-
form solution, is that additional constraints on the perturbation can be added
to the problem. In addition, the solution shown in (7) can be reused for other
choices of Lf (x, ·), which can be more suitable depending on the scenario. For
instance, the FGSM chooses Lf (x, ·) to be the negative of the loss function used
for training, which is often the cross-entropy loss in classification problems. Then,
minimizing Lf (x, ·) corresponds to maximizing the loss. A caveat is that using
problem (6) ensures perturbations with bounded norms, but such perturbations
may not be able to fool the classifier.

A second approach for relaxing (4) into a feasible problem is to keep the
constraint regarding Lf (x, ·) and minimize over the norm of η. Therefore, the
problem of (4) is replaced by

min
η
‖η‖p s.t. Lf (x,0) + ηT∇ηLf (x,0) ≤ 0 . (9)

This approach is used by [48] on every iteration of the DeepFool algorithm (more
details in Section 2.1). Similarly to (6), this problem has a closed for solution as
well, which is given in the following theorem.

Theorem 3. If ∇ηLf (x,η) = (
∂Lf (x,η)
∂η1

, . . . ,
∂Lf (x,η)
∂ηM

), the closed form solution
to the problem (9) is given by

η = − Lf (x,0)

‖∇ηLf (x,0)‖q−1
q

sign(∇ηLf (x,0))� |∇ηLf (x,0)|q−1 (10)

for q = p
p−1 .
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Observe that the perturbation from Theorem 3, similar to the solution in
Theorem 2, is nothing but an adjusted version of the gradient of the classifier
with a different norm. The perturbation in (10) might grow unbounded to ensure
that the classifier is misled, which makes it perceptible by the oracle. There are
other similar methods for computing adversarial examples that depend on a first-
order approximation of other performance-related functions. These algorithms
are later shown to be slight variations of the methods presented in this section.
Furthermore, using the present formulation, we can build iterative procedures by
repeating the optimization problem until the classifier output changes. In Section
2.1, we compare different methods, which are formulated as iterative versions of
(6) and (9).

There are some methods that rely on adding randomness in the generation
process. The PGD attack, from [43], is one well known example. For the PGD
attack, the first-order approximation is taken not around η = 0, but instead,
around a random point η̃ with its norm bounded by some ε̃, that is ε̃ , ‖η̃‖p ≤ ε.
In short, the objective function Lf (x, ·) is approximated by its linear counterpart
around the point η̃, which lies within an ε̃-radius from η = 0. The distribution η̃
can be arbitrarily chosen as long as the norm constraint is not violated. A common
choice is to use the uniform distribution over the set of vectors with bounded `p
norm. We denote this technique as dithering. Moreover, displacing the center of the
first order approximation from 0 to η̃ does not lead to solutions which differ from
the ones given so far. This is true since Lf (x,η) ≈ Lf (x, η̃)+(η− η̃)T∇ηLf (x, η̃)
leads to the following problem

min
η
Lf (x, η̃) + (η − η̃)T∇ηLf (x, η̃) s.t. ‖η‖p ≤ ε,

which corresponds to solving

min
η

ηT∇ηLf (x, η̃) s.t. ‖η‖p ≤ ε . (11)

When training models with adversarial examples, it is advantageous to add
randomness to their computation in order to increase the diversity of the adver-
sarial perturbations during the training [73], as done with dithering technique in
quantization literature. Further details about training with adversarial examples
are discussed in Section 4.1.

Single Subset Attacks In the field of image recognition, it is also common to
model undetectability by restricting the number of pixels that can be altered by
an attacker. Single and multiple pixel attacks are introduced to this end. For the
case of gray-scale images, altering only one value of the input vector is equivalent
to a single pixel attack. This is, however, not a general rule. If inputs are RGB
images, each pixel will be defined as a subset of three values.

Since adversarial attacks go beyond image based systems, we allude as single
subset attacks to those whose target is only a subset of entries. Given that
perturbations belong to RM , let us partition [M ] = {1, . . . ,M} into S possible
subsets S1, . . . ,SS .
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These sets may be of different size, but for the sake of clarity let us assume that
they have the same cardinality Z = M/S, where Ss = {i1s, . . . , iZs } ⊆ [M ]. Define
the mixed zero-S norm ‖ · ‖0,S of a vector, for the partition S = {S1, . . . ,SS}, as
the number of subsets including at least one index related to a non-zero entry of
x 1, that is

‖x‖0,S =

S∑
i=1

1(‖xSi‖ 6= 0) ,

where 1(·) denotes the indicator function. Hence, the norm ‖η‖0,S counts the
number of subsets altered by an attacker. Moreover, we can guarantee that
only one subset stays active by including this as an additional constraint in (3),
yielding

min
η
Lf (x,η) s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (12)

As a remark, the mixed norm ‖.‖0,S is extensively used in signal processing
and compressed sensing to promote group sparsity [58]. In a similar manner
as in Section 2.1, we employ the approximation Lf (x,η) ≈ Lf (x, η̃) + (η −
η̃)T∇ηLf (x, η̃) which yields the following linear programming formulation of
(12) as

min
η

ηT∇ηLf (x, η̃) s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (13)

Given a subset Ss we define ηs as

ηs = argmin
η
∇ηLf (x, η̃)Tη s.t. ‖η‖∞ ≤ ε , (η)izs = 0 ∀izs /∈ Ss .

Note that we have a closed form solution for ηs, that is

ηs = −ε
Z∑
z=1

sign((∇ηLf (x, η̃))izs )eizs ,

which implies that ∇ηLf (x, η̃)Tηs = −∑Z
z=1

∣∣(∇ηLf (x, η̃))izs
∣∣. Then, this prob-

lem has the closed form solution given by

η∗ = ηs∗ , with s∗ = argmax
s

Z∑
z=1

∣∣(∇ηLf (x, η̃))izs
∣∣ . (14)

Iterative Methods and Randomization In the previous section, we summa-
rized different versions of the problem of generating adversarial perturbations. An
overview of these methods is shown in Table 1. For this section, we will work with
these solutions to design adversarial perturbations using iterative approximations.
Since the principle behind the approaches in (6) and (9) is the same, we will only
focus on (6). Nevertheless, it is trivial to extend the algorithms presented in this
section to use (9) instead.
1 Similar to the so-called `0-norm, this is not a proper norm.
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Type of Attack Relaxed Problem Closed-Form Solution
`2 / `∞ constrained (6) (7)
Single-Subset attack (13) (14)

Table 1: Summary of the obtained closed-form solutions.

In Algorithm 1, an iterative method based on (6) is introduced. This iterative
version of (6) resembles a gradient descent method for minimizing Lf (x,η) over
η with a fixed number of iterations and steps of equal `p-norm. For that purpose,
a set of parameters ε̃1, . . . , ε̃T is required to control the norm of random noise
used for dithering. There is no dithering if ε̃i is set to zero for all i = 1, . . . , T .
The well known PGD attack uses dithering by applying it at the initial iteration.
In this attack ε̃2 = · · · = ε̃T = 0, and random(ε̃1) generates a random vector
with a uniform distribution over the `p-ball of radius ε̃1 (centered at 0).

Algorithm 1 Iterative extension for `p constrained methods.
input: x, f(·), T , ε, ε̃1, . . . , ε̃T .
output: η∗.
Initialize η1 ← 0.
for t = 1, . . . , T do

η̃t ← ηt + random(ε̃t)
η∗t ← argminη ηT∇ηLf (x, η̃t) s.t. ‖η‖p ≤ ε/T (Table 1)
ηt+1 ← ηt + η∗t

end for
return: η∗ ← ηT

Finally, computing η∗t with the additional constraint ‖η‖0,S = 1 in Algorithm
1 leads to a multiple subset attack. For such an attack one must additionally
subtract previously modified subsets from S. This results in a new subset being
altered at every iteration. Similarly, given a class label l̄ ∈ [K], changing the
objective function to

Lf (x,η) = fk(x)(x + η)− fl̄(x + η)

leads to a targeted attack, that is when the objective is to apply perturbations
such that the outcome of classification is always some “target” class l̄.

As we can see, different configurations for Algorithm 1 lead to known ad-
versarial attacks from the literature. A summary of Algorithm 1 configurations
with their corresponding attack from the literature is presented in Table 2. In
classification, these methods are usually compared using the fooling ratio, that is
the percentage of correctly classified inputs that are misclassified when adversarial
perturbations are added. Visualizing the fooling ratio for different values of ε
is often used to empirically asses the performance of an adversarial attack. For
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Fig. 2: Fooling ratio, from [7], of different adversarial attacks on vanilla DNNs on
the MNIST dataset. (a): 5-layered LeNet architecture from [37], (b): DenseNet
architecture from [30] with 40 layers.

example, in Figure 2 we observe the fooling ratio of different attacks on standard
DNNs (not trained to resist adversarial attacks).

Algorithm Objective function L Iterative Dithering
FGSM [24] cross-entropy × ×

DeepFool [48] (2) with l chosen using ρ̂1(f) X ×
BIM [35] cross-entropy X ×
PGD [43] cross-entropy X X
Targeted (2) with l fixed to the target X X
GNM [7] (2) X X

Regression [8] `2-norm of output perturbation X X
Table 2: Recovering Existing Attacks in Classification using this Framework.

Regression Problems and Other Learning Tasks The objective

Lf (x,η) = −‖f(x + η)− f(x + η)‖2

can be used to attack regression problems as well. This possibility is investigated
in [8], where the objective is to perturb the output of a regression model as much
as possible. Two examples are provided using autoencoders and colorization 2

DNNs in Figure 3. In that figure, we observe how adversarial perturbations heavily
distort the outcome of regression. Using the principles explicated in this section,
other algorithms have been developed for attacking other types of learning systems.
2 A colorization model predicts the color values for every pixel in a given gray-scale
image.
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(b) Image Colorization

Fig. 3: Adversarial examples for regression [8]. (a): MNIST autoencoder, (b):
STL-10 colorization network.

In the field of computer vision, [45] constructed an attack on image segmentation,
while [77] designed attacks for object detection. The Houdini attack [12] aims
at distorting speech recognition systems. In addition, [54] tailored an attack
for recurrent neural networks, and [40] for reinforcement learning. Adversarial
examples exist for probabilistic methods as well. For instance, [33] showed the
existence of adversarial examples for generative models. For regression problems,
[71] designed an attack that specifically targets variational autoencoders.

Robustness metrics Going back to the definitions of Section 2.1, Theorem 1
shows that given a vector x and a score function f(·), the adversarial perturbation
should have at least `p-norm equal to Lf (x,0)

‖∇ηLf (x,0)‖q to fool the linearized version

of f(·). In other words if the ratio Lf (x,0)
‖∇ηLf (x,0)‖q is small, then it is easier to fool

the network with `p-attacks. In that sense, Theorem 1 provides an insight into the
stability of classifiers. Therefore, regularizing the loss function with Lf (x,0)

‖∇ηLf (x,0)‖q
may lead to adversarial robustness. Moreover, one can also include dithering by
regularizing with Lf (x,η̃)

‖∇ηLf (x,η̃)‖q with some randomly chosen η̃.
In [48], the authors suggest that the robustness of the classifiers can be

measured as
ρ̂1(f) =

1

|D|
∑
x∈D

‖r̂(x)‖p
‖x‖p

,

where D denotes the test set and r̂(x) is the minimum perturbation required to
change the classifier’s output. Proposition 1 suggests that one can also use the
following as the measure of robustness

ρ̂2(f) =
1

|D|
∑
x∈D

Lf (x,0)

‖∇ηLf (x,0)‖q
.

The lower ρ̂2(f), the easier it gets to fool the classifier and therefore it becomes
less robust to adversarial examples. According to the experiments in [7], shown
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in Table 3, these two robustness metrics seem to be coherent when measuring
the robustness of non-adversarialy trained DNNs.

Test ρ̂1(f) ρ̂2(f) fooled
error [48] [7] >99%

FCNN (MNIST) 1.7% 0.036 0.034 ε =0.076
LeNet-5 (MNIST) 0.9% 0.077 0.061 ε =0.164
NIN (CIFAR-10) 13.8% 0.012 0.004 ε =0.018
DenseNet (CIFAR-10) 5.2% 0.006 0.002 ε =0.010

Table 3: Experiment from [7] showing the robustness measures for different DNNs
on the MNIST and CIFAR-10 datasets. The acronyms FCNN denotes a standard
fully connected neural network, while NIN refers to the network-in-network
architecture from [39]. LeNet-5 and DenseNet are the same architectures used in
Figure 2.

2.2 Black-Box Attacks and Universal Adversarial Perturbations

So far we have assumed that the adversarial attacker has perfect knowledge of
the target classifier function f(·) as well as the input x. By loosening of these
requirements, into more realistic assumptions, new types of algorithms arise,
namely

– black-box attacks: these methods correspond to the settings where the
target classifier f(·) is unknown but the input x may still be known to the
attacker,

– universal adversarial perturbations: these perturbations are designed to
work regardless of the input x, which is assumed to be unknown. Nevertheless,
the classifier f(·) may be available to the attacker.

If both the target model f(·) and input x are unknown to the attacker, the
adversarial attack would be a black-box as well as universal adversarial pertur-
bation. These types of attacks are still possible by assuming partial or indirect
knowledge about the input x and the classifier f(·). For example, the attacker
may have access to a set of independent realizations {x1,x2, . . . } of the input,
which provides knowledge about the input distribution Px. Similarly, implicit
information about the classifier can be inferred by observing the independent
realizations of the pairs {(x1, f(x1)), (x2, f(x2)), . . . }. Finally, we may also have
knowledge about the structure (number of layers, types of connections, activation
functions, etc.) of the used classifier.

It is probably unexpected that some adversarial perturbations produce the
same effect over different inputs and different DNNs architectures, although they
are generated for a particular model. These universal adversarial perturbations
are reported in [58,24] where the authors show the existence of such perturbations
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for various datasets and DNNs. This phenomena suggests that there exist certain
common properties shared by adversarial perturbations that account for most of
the success when attacking a system. This can explain why certain perturbations
are able simultaneously fool a target DNN on different inputs. Adversarial
examples are indeed transferable. In [73] the authors construct an attack such
that adversarial examples can transfer from one random instance of a neural
network to another. Surprisingly, these methods were proved to be effective
against well known DNNs. Since no explicit knowledge about the DNN weights
is required to compute these perturbations, they can be thought of as black-box
attacks. Moreover, the authors showed that including such black-box adversarial
examples into the training set significantly enhances the robustness of neural
networks. Finally, the authors in [46] showed that there exist adversarial examples
that are both universal and black-box, that is perturbations that are independent
from target DNN and input.

Black-Box Attacks As discussed, in the black-box setting the classifier function
f(·) is unknown, thus we cannot compute the gradient necessary for Algorithm
1. A common approach to circumvent this issue is to estimate the gradient by
choosing a substitute model f̃ which is hoped to behave in a similar way as the
unknown f(·). This concept is introduced in [52] under the assumption that the
input x is known, as well as n independent realizations of (x, f(x)) denoted as
(x1, f(x1)), . . . , (xn, f(xn)). This method consists on the following two steps:

1. Train a substitute model f̃ that predicts f(x), thus it resembles the target
classifier.

2. Perform a white-box attack on the substitute model f̃ and hope it transfers
to the target model f(·).

This concept is later extended in [41], where the authors make use of several
substitute models, that is f̃1, . . . , f̃r for r > 1. In that work, adversarial pertur-
bations are computed by approximately solving the following optimization for an
ensemble of loss functions:

min
η
− log

(
r∑
i=1

αiLf̃i(x,η)

)
+ λ‖η‖p ,

where λ > 0, p > 1, 0 < αi < 1,
∑
i αi = 1 and Lf (x, ·) is some positive loss

function like the cross-entropy loss of f(·) at the point (x + η). The key idea of
this method is that a perturbation η that is able to fool the classifiers f̃1, . . . , f̃r
will most likely fool the unknown classifier f̃r+1 , f as well.Note that it is also
possible to generate norm-constrained versions of this method by approximately
solving

min
η
− log

(
r∑
i=1

αiLf̃i(x,η)

)
s.t. ‖η‖p ≤ ε (15)

using the same methods described in Table 1.
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Universal Adversarial Perturbations Given 0 < δ < 1, the paradigm of
designing universal adversarial perturbations u can be summarized as follows

Find : u

s.t.‖u‖p ≤ ε
Px(k(x + u) 6= k(x)) ≥ 1− δ .

Note that in order to approximately solve this problem one needs information
about the distribution of the input. A common assumption when designing
universal perturbations is that the attacker has perfect knowledge of the classifier
k(·), but only partial knowledge about Px in the form of n independent realizations
Xn = {x1, . . . ,xn} of x ∼ Px.

This problem is first approached in [46] by iteratively aggregating the pertur-
bations that move x1, . . . ,xn to their corresponding decision boundaries. Given
an input xi, such perturbations are computed by iteratively solving (9) in the
same manner as in Algorithm 1. Then, in order to preserve the `p-norm constraint,
these perturbations are projected into the `p ball of radius ε. A summary of this
method is shown in Algorithm 2. In addition, some example pictures showing the
effectiveness of this algorithm are shown in Figure 4. Note that this algorithm
does not converge for an arbitrary choice of δ, thus additional stopping criteria
are needed.

Algorithm 2 Universal adversarial perturbations with constrained `p-norm.
input: x1, . . . ,xn, k(·), ε, δ.
output: u∗.
Initialize u∗ ← 0.
while Px∈Xn(k(x+ u) 6= k(x)) ≥ 1− δ do

Shuffle Xn

for i = 1, . . . , n do
if k(xi + u∗) = k(xi) then

Compute the minimal perturbation that sends xi to the decision boundary:
η∗ ← argminη ‖η‖2 s.t. k(xi + u∗) 6= k(xi)
Project the perturbation η∗ into the `p ball of radius ε:
u∗ ← argminu ‖u∗ + η∗ − u‖2 s.t. ‖u‖p ≤ ε

end if
end for

end while
return: u∗

In a similar fashion as in (15), a universal adversarial perturbation can be
obtained by minimizing and ensemble of objective functions, that is

min
η

n∑
i=1

Lf (xi,η) s.t. ‖η‖p ≤ ε,
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where Lf (x, ·) is some objective function as in (2). Choosing Lf to be Lf (x,η) =
‖f(x)−f(x+η)‖pp and using the approximation ‖f(x)−f(x+η)‖p ≈ ‖Jf (x)η‖p,
where Jf (x) denotes the Jacobian matrix of f(·) at x, the method proposed in
[32] is obtained. This method is based on the insight that a perturbation that
manages to fool several known inputs will most likely fool an unknown one as
well.

3 Theoretical Explanations of the Nature of Adversarial
Examples

Fig. 4: The authors in [46] add a universal
perturbation (center image) that is able
to mislead the classification of several
images.

Among various theories regarding the
nature of adversarial examples, two di-
rections can be singled out. One line of
research focuses on local properties of
classifiers, for example, decision bound-
aries of classifiers and their geometric
properties. A notable example is the
linearity hypothesis, proposed by the
authors in [24], where the existence
of adversarial images is attributed to
the approximate linearity of classifiers.
Another line of research tend to ex-
plain such phenomena by means of
global properties of classifiers such as
the topological dimension of their fea-
ture spaces or the sparsity of weight
matrices in DNNs. We present some of
the most important results along these
two lines.

There is, however, another theoret-
ical question raised in the literature.
After some experimental results wit-
nessed a seemingly opposing relation
between adversarial robustness and
generalization, researchers discussed
formally the connection between gen-
eralization properties of DNNs and
their adversarial robustness. The cen-
tral question is whether adversarial
robustness is realized only at the cost of worse generalization. This question is
the subject of the last part of this section.

3.1 Linearity Hypothesis and Curvature of Decision Boundaries

How can the existence of adversarial examples be explained? The experimental
results showed that adversarial examples are also misclassified by neural networks
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B∞(x, ε2)

x

supp(X )

wTx = 0

(a) Not-tilted boundary

B∞(x, ε1)
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supp(X )
wTx = 0

(b) Tilted boundary

Fig. 5: Adversarial robustness of tilted boundaries: (a) the dashed line is the
ground truth linear classifier for the data supported on X , (b) the solid line,
a tilted boundary, yields the same risk as the ground truth but is fooled with
smaller `∞-perturbations

trained either on a different dataset or with different hyper-parameters. Therefore,
this phenomenon cannot be attributed to overfitting to a particular model. It
is first conjectured in [24] that, the adversarial examples exists because neural
networks are well approximated, locally, by linear classifiers. This hypothesis,
known as the linearity hypothesis, is supported by easy generations of adversarial
examples using first order approximation of neural networks.

For deep neural networks, this claim is mainly experimentally substantiated.
The attacks applied to the linear approximation of neural networks around an
instance manage to effectively generate misclassified examples, and therefore, the
effectiveness of first-order approximation attacks testifies, according to [24], to
the linearity of these models.

To elucidate this claim, consider a linear classifier for binary classification tasks
with the parameter w ∈ RM . The classification rule is given simply by sign(wTx).
In this linear setting, the FGSM provides the best `∞-bounded adversarial
perturbation, which is given by η = −εsign(w). The total perturbation caused
at the output is ηTw, which is equal to −ε‖w‖1. The value of ‖w‖1 can be
as large as

√
M for w’s with unit norm. Therefore, a small `∞-perturbation

can be blown up by
√
M . Two conclusions can initially be drawn from this

example. First, small input perturbations can incur large output perturbations
for high dimensional linear classifiers. The authors in [24] argue accordingly for
the existence of adversarial examples. High dimensional approximately linear
classifiers can blow up small perturbations at their output. It is, according to [24],
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the approximate linearity of Convolutional Neural Networks (CNNs) that explains
the existence of adversarial examples for the ImageNet classification problem.
Although CNNs have many non-linearities, the parameters of CNNs after training
are chosen so that the non-linearity of the architecture is diminished.

The second conclusion points to the `1-norm of the parameter w as the key
to control the effectiveness of `∞-attacks, which can be used to design robust
neural networks as we will see later. In general the `q-norm of w controls the
output perturbation for `p-attacks where (p, q) are dual to each other3. However,
this example only shows that for some linear classifiers, small input perturbations
changes significantly the output.

The linearity hypothesis did not remain unchallenged. After all, the non-linear
machine learning algorithms were equally vulnerable to adversarial examples. In
[60], adversarial examples were generated by imposing a similarity constraint
between the hidden representation of the perturbed image in DNN and the hidden
representation of an image from a different class. An optimization problem is
used to minimize the difference between hidden representations with constraints
on the perturbation. The method yielded adversarial images which differed
from other adversarial images in that they did not rely, even implicitly, on
linear approximations of the model. They could not be generated from linear
approximations. The linearity hypothesis cannot explain the existence of these
adversarial images.

For ImageNet classification problem with CNNs, the authors in [42] examined
the linearity hypothesis by comparing f(η) and f(x + η) − f(x). These two
values are equal for linear classifiers, thus it is used to measure the linearity of
CNNs. The conclusion of this study goes against the linearity hypothesis. The
experimental studies of these values do not indicate any linear structure for CNNs.
According to the modified linearity hypothesis, proposed in [42], CNNs are locally
linear around the objects recognized by the model. The locality assumption
is crucial here. Deep neural networks are non-linear in general and cannot be
replaced completely by a linear classifier. However, the local linearity hypothesis
claims that these models in a neighborhood of an instance can be approximated
by a linear classifier. Additionally, the CNNs can be non-linear around those
instances that are not recognized by the model.

The local linearity hypothesis implies that the decision boundaries around an
instance can be approximated by a linear boundary. The geometric notion for
characterizing the linearity of a surface is its curvature, as decision boundaries
for binary classifiers are surfaces on higher dimension. The differential geometric
notions of curvature are complex to characterize for DNNs. Therefore, in [19] the
authors came up with an alternative, yet related definition of curvature. Consider
the decision boundary for a binary classification problem 4 with the classifier f(·)
3 We call the pair (p, q) dual if the corresponding norms are dual. In particular
1/p+ 1/q = 1.

4 In this section, we focus mainly on binary classification examples assuming that
the results can be extended without particular difficulty to multi-class classification
problems.
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defined as
B = {x : f(x) = 0},

and decision regions given by

R1 = {x : f(x) > 0} and R−1 = {x : f(x) < 0}.
The curvature of the decision boundary B with respect to `q-norm is defined by

κq(B) =
1

rmin
where

rmin = inf
x∈B

min
i∈{−1,1}

sup
xo∈RM

{‖xo − x‖q : Bq(xo, ‖xo − x‖q) ⊆ Ri}

and Bq(x, ε) denotes the `q-ball of radius ε centered at x. In other words rmin is
obtained by first finding at each point x, on the decision boundary, the largest
radius of `q-balls that contain x while being contained in R1 and R−1. The
radius is infinity for all q ≥ 1 when the decision boundary is flat, which means
that the local curvature is equal to zero at this point. The minimum of such
radii for all x, that is rmin, points at the most curved portion of the surface. The
global curvature of the surface B is the inverse of rmin. A linear classifier yields
decision boundaries with zero curvature, and a small curvature surface might be
completely flat in most of its points. It turns out that the `q-curvature κq(B)
determines the robustness against `p-attacks with (p, q) as a dual pair.

It is based on this notion of curvature and for `2-attacks that the authors
in [19] compare the robustness of classifiers to random noise and adversarial
noise and characterize it according to the curvature of decision boundaries5.
The random noise is modeled as a random direction and the robustness against
random noise at x, denoted by ρM (x), is defined by the minimum `2-norm of
a random vector required to change the label of x. The adversarial robustness,
denoted by ρ(x), is the minimum `2-norm of a perturbation particularly designed
to change the label.

Theorem 4 ([19, Theorem 2]). Suppose that for a binary classifier the cur-
vature κ2(B) satisfies

κ2(B) ≤ 0.2

ζ2(δ)Mρ(x)
,

then with probability at least 1− 4δ it holds

(1− 0.625Mρ(x)κ2(B)ζ2(δ))
√
Mζ1(δ) ≤ ρM (x)

ρ(x)

≤ (1 + 2.25Mρ(x)κ2(B)ζ2(δ))
√
Mζ2(δ),

where

ζ1(δ) =
(

1 + 2
√

ln(1/δ) + 2 ln(1/δ)
)−1

,

ζ2(δ) =
(

max
(

(1/e)δ2, 1−
√

2(1− δ2)
))−1

.

5 They consider semi-random noise as well, however, we restrict ourselves to simple
random noise.



Adversarial Examples 21

The theorem implies that if the curvature of decision boundaries are small
enough, the robustness of random noise is scaled with 1/

√
M of the adversarial

perturbation. In other words, in higher dimensions, classifiers with flat boundaries
can be robust to random noise even if they are not robust to adversarial examples.
Note that the curvature of non-smooth boundaries can be huge, rendering the
above theorem non-informative. The curvature for multi-class classification,
however, is characterized by the curvature of pairwise boundaries which does
not include high curvature junctions. The intersection of these boundaries might
have high curvature, but this issue does not matter in the above theorem where
the pairwise boundaries are considered. Although only for `2-attacks, this result
is extended to `p-attacks in [21], where the small curvature condition is replaced
by a condition called locally approximately flat decision boundaries.

The geometric properties of decision boundaries are further investigated in
[47] for universal adversarial perturbations. Universal adversarial perturbations
exist for both flat and curved decision boundaries. The essential to the existence of
universal adversarial perturbations are shared directions along which the surface
is positively curved. The above results compare random noise and adversarial
perturbations. The result rely on low curvature assumptions of decision boundaries.
The conclusion can be put with a flavor of blessing of dimensionality. That is,
the locally flat classifiers are more robust to random noise particularly in higher
dimensions.

The local linearity assumption is further refined in [16]. The flatness of decision
boundaries can be violated in some directions, and nevertheless, the adversarial
vulnerability persists. The authors show that the adversarial examples can exist
if the boundaries are flat along most of the directions and highly curved only
around few directions. This claim is additionally supported by [56,20] where the
curvature profile of deep networks are numerically characterized and is shown
to be highly sparse, which implies that the boundaries are not flat overall but
effectively only along most directions.

It is worth to finish the discussion around the linearity hypothesis by referring
to a recent result that sheds some doubts and raises some questions about the
role of linearity in adversarial robustness. Contrary to all above claims, the
work [47] shows that the adversarial training, a powerful and consistent defense
against adversarial attacks, leads to significant decrease in the curvature of
loss functions. The connection runs in both directions as training DNNs with
curvature regularization tends to improve the adversarial robustness. As long
as the curvature of loss functions affects the curvature of decision boundaries,
the result stands out as a strong counter-argument for linearity hypothesis and
opens new challenges for it.

3.2 Boundary tilting and other explanations

The linear hypothesis is not the only available theory. Other theories attribute
adversarial robustness to other features of classifiers. A simple intuition already
emerged from our discussion of linear classifiers. The `∞-attacks for linear classi-
fiers with unit-norm parameters w generated a perturbation equal to −ε‖w‖1.



22 Balda, Behboodi, Mathar

Therefore, among all unit-norm w’s, the most robust classifiers are those with
smallest `1-norm, which are also the sparsest possible vectors.

For binary classification problems, the authors in [25] showed theoretically
that the adversarial robustness decreases when `1-norm of w increases. We
introduce some definitions before stating the theorem. Suppose that the instances
and labels (x, y) follow a distribution Px,y. The adversarial robustness for this
probabilistic model is defined as

ρ∞ = Px,y[y 6= sign(wTxadv)],

where xadv is the `∞-perturbed instance and given by xadv = x− εysign(w). Let
us define µk for k ∈ {1,−1} as follows

µk = E(x|y = k, sign(wTx) = k).

We can now state the theorem.

Theorem 5 ([25, Theorem 3.1]). For a binary classification problem with
uniformly distributed labels, if the accuracy of a classifier is given by t then the
adversarial robustness ρ∞ against ε bounded `∞ attacks is given by

ρ∞ ≤
twT(µ+1 − µ−1)

2ε‖w‖1
.

The denominator of the bound on the right hand side contains the `1-norm
of w. Therefore, as the authors in [25] maintain, among those linear classifiers
with a similar discriminatory capability, those with the smallest `1-norm perform
better under `∞-attacks. The small `1-norm implies a larger ρ∞, which means
better robustness.

The theorem, however, provides only an upper bound, and, although it
can characterize the negative effect of large `1-norm on robustness, it cannot
necessarily guarantee that the small `1-norm promotes robustness nor that
small `1-norms necessarily lead to sparse w. The claim, however, seems to
hold, as experimental findings seem to support the idea that the sparsity of
weights promote adversarial robustness. Besides, since the difference µ+1−µ−1 is
independent of the norm of w, the inner product wT(µ+1 −µ−1) scales with the
norm of w. In this light, another reading of this theorem suggests that among all
unit `1-norm w’s, the one with smallest wT(µ+1 − µ−1) restricts robustness the
least. To summarize the theorem, a first step toward robustness of linear classifiers
is to find the smallest `1-norm w for which the inner product wT(µ+1 − µ−1) is
high enough.

Another explanation of adversarial examples, introduced in [72], starts from
the assumption that the data lies on a low-dimensional manifold in higher
dimensional space, and many classifiers exist with similar accuracy. This is shown
in Figure 5 using a simple example of linear manifolds and linear classifiers. We
assume that the data lies on a linear subspace and the dashed line represents the
boundary of an optimal Bayes linear classifier for the data distribution with zero
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error. However, the rotated versions of this linear classifier, for example the one
with the solid line as the boundary, yield the same accuracy. The main difference
between these classifiers is their robustness to adversarial examples. If the linear
boundary is tilted so that it lies close to the data subspace, the smaller `∞-norm
perturbation can fool the classifier. This can be seen in Figure 5 as the `∞-ball
touching the tilted classifier is smaller that the original not-tilted classifier. This is
known under boundary tilted hypothesis. Under this hypothesis, the adversarial
vulnerability of classifiers arises from the tilted classification boundary close to
the data manifold. A further exploration of the linear classifier example can
reveal that some of the tilted boundaries can indeed improve the robustness.

3.3 Feature Selection and No Free Lunch Theorems for Adversarial
Robustness

Many classifier functions can be clearly decomposed into feature extraction and
classification parts. In [75], adversarial robustness is shown to be affected by the
feature selection part of the model. The results of [75] rely on the assumption
that there is an oracle classifier function g(x) that generates the ground truth
labels. For image classification problems, it is simply the human eye. Classifiers
f(·), in particular g(·), are decomposed into a feature extraction part ef (·) and a
classifier part cf (·). The feature spaces of a classifier is the image of the domain
set X under the feature extraction ef (·). Feature spaces are assumed to be metric
spaces. Denote the oracle feature space by (Xg, dg) where dg is the respective
metric, and (Xf , df ) similarly for a classifier f(·).

Adversarial perturbations do not change the oracle decision, i.e., g(x) =
g(x + η) nor the feature extraction:

dg(eg(x), eg(x + η)) < δ.

However, the classifier is fooled (f(x) 6= f(x + η)). A classifier is called (ε, δ)-
robust if for all x,y ∈ X for which g(x) = g(y) and dg(eg(x), eg(y)) < ε then
with probability at least 1− δ it holds that f(x) 6= f(y).

Theorem 6 ([75, Theorem 3.2-3.4]). Let a classifier f(·) be continuous al-
most everywhere and g(·) be the oracle classifier. The classifier f(·) is (ε, δ)-robust
to adversarial examples if and only if the topology of the feature space (Xf , df ) is
finer than the topology of the oracle feature space (Xg, dg).

As a direct corollary of the above theorem, when the two features spaces are
Euclidean spaces of dimension ng and nf , then the classifier h(·) is robust if and
only if nf < ng. The above theorem implies first that the selection of features
and feature spaces is crucial for adversarial robustness. Although the assumption
of an oracle function and a unique suitable feature space can be contested, the
theorem applies to any two classifiers and states that if a perturbation does not
fool g(·) then it does not fool f(·). So among the classifiers those with feature
spaces of finer topology, or lower dimension in Euclidean spaces, are favored for
adversarial robustness.
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The importance of selecting proper features is addressed in other works such
as [17,18]. A toy example is used in [17,18] to show that linear classifiers are
unable to use more robust features of an image for adversarial robust classification,
unlike quadratic classifiers that are more robust in that example. For `2-attacks,
the authors point out that the adversarial robustness is directly related to the
so-called distinguishability measure of classes and the risk of the classifier. The
distinguishability measure can be seen as low flexibility of classifiers in general
compared to the difficulty of the classification task. We state a simplified version
of their theorem for linear classifiers using the definition of ρ(x) from Theorem 4.

Theorem 7 ([17, Theorem 4.1]). For a binary classification task with uni-
formly distributed labels and ‖x‖2 ≤ B a.e., the adversarial robustness of a linear
classifier sign(wTx) with accuracy t satisfies

E(ρ(x)) ≤ 1

2
‖EPx|y=+1

(x)− EPx|y=−1
(x)‖2 + 2Bt.

The distinguishability measure ‖EPx|y=+1
(x)− EPx|y=−1

(x)‖2 is a feature of
classification problem and not dependent on the classifier. However, an unexpected
conclusion of the theorem is that if the classification task is difficult, in that the
distinguishability measure is small, the risk of the classifier becomes dominant in
the upper bound and inversely related with the robustness. Therefore, low risk
classifiers have less adversarial robustness for difficult classification tasks.

The inverse connection of risk and robustness is further explored in [74]
through a binary classification example. An instance of data is given by x =
(x1, . . . , xn, xn+1)T and it is related to its label y randomly as follows. The first
entry is a Bernoulli random variable with P (x1 = y) = p and the other entries, xi,
are normal distributed random variables with mean value ξy and unit variance.
A linear classifier with w = (0, 1/n, . . . , 1/n) can be shown to achieve more than
0,99 accuracy if ξ = Θ(1/

√
M). However, this classifier can achieve an adversarial

accuracy at most 0.01 under the `∞-attack with ε = 2ξ. However, if one uses
only the first feature x1 for the classification both standard and adversarial
accuracies are 0.7. The data consists of, on the one hand, robust features with
less accuracy and, on the other hand, informative and non-robust features. We
might ask whether this tension can be circumvented using a smart combination of
features so that the adversarial robustness does not come at the price of accuracy.
The authors of [74] answer negatively by stating a no free-lunch theorem for
adversarial robustness.

Theorem 8 ([74, Theorem 2.1]). Any classifier with standard accuracy at
least 1− δ on the above problem cannot achieve adversarial accuracy more that
1−p
p δ against `∞-bounded perturbations with ‖η‖∞ ≥ 2ξ.

The importance of feature selection for adversarial robustness is highlighted
already in [74]. A similar result is obtained in [15] for a class of data distributions
satisfying W2-Talagrand transportation-cost inequality. The condition is intu-
itively related to the curvature of decision regions and matches the previously
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mentioned intuition that low curvature decision boundaries entail adversarial
vulnerability. From another perspective, ε-bounded `p-adversarial attacks manage
to alter the label of instances that are included in the ε `p-boundary of decision
regions. The adversarial problem so formulated, naturally, can be cast as the
study of blowing-up property of decision regions– a problem well studied by con-
centration results and isoperimetric inequalities. A similar approach is followed in
[44,22,14] for instances following Gaussian distribution and uniform-distribution
over hypercubes.

3.4 Generalization Bounds for Adversarial Examples

The no-free-lunch-theorem states that adversarial robustness of machine learning
algorithms does not align in general with their risk. Adversarial training of DNNs,
indeed, confirm the same point that adversarial robustness is obtained at the
cost of degraded generalization. According to an example in [43], the adversarial
accuracy of 96 percent for ResNet dataset trained on CIFAR-10 comes with a
test accuracy of 47 percent. In [68], the authors attribute this trade-off to the
definition of adversarial robustness. They propose another definition of adversarial
robustness for which no trade-off is observed between adversarial robustness and
accuracy.

From these indications, therefore, emerge questions regarding generalization
properties of adversarially robust algorithms. We summarize some of the pro-
gresses in that direction that use statistical learning theory as the framework for
studying generalization properties of learning algorithms. An interested reader
can refer to the excellent manuals [2,65] for introduction to fundamental notions
of statistical learning theory.

Statistical learning theory explains generalization properties of many classical
learning algorithms using notions like VC-dimension, Rademacher complexity and
uniform convergence. A similar approach, however, cannot be directly applied to
understanding generalization for neural networks. The large number of parameters
in DNNs renders many of these bounds ultimately useless as these models are
capable of fitting arbitrary large number of random instances with random
labeling [80]. A solution is to use a suitable normalization. It has been shown that
the margin based normalization can be used to obtain tight generalization bounds
by Rademacher complexity or PAC-Bayesian methods that match experimental
results [50,23,3,10].

We already discussed some works relating adversarial robustness and accuracy,
all of them derived for a class of data distributions. In this section, we focus on
sample complexity bounds for adversarially robust generalization and see whether
the available bounds attest to difficulty of training adversarially robust and yet
accurate models. A first indication in this direction can be traced to [64] where it is
shown that for Gaussian model of data, the sample complexity of robust learning
for M -dimensional data is Θ(

√
M) times larger that standard learning, hence,

more difficulty of the former. The gap is information theoretic. PAC-learning
for the adversarial setting is an open problem, although some bounds exist for
binary linear classifiers obtained in terms of VC-dimension [13]. The former result,
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however, show no negative effect of robust training on generalization, counter to
the above intuition. A generalization bound is also obtained in [6] when the set of
adversarial perturbations is finite. The sample complexity of binary classification
depends k log(k)VC(H) where VC(H) is the VC-dimension of the hypothesis
class H and k is the number of different adversarial perturbations. The result is
not directly applicable to standard adversarial attacks where the set of possible
perturbations is not finite, however, it points to the larger sample complexity of
robust learning.

There is a difficulty with VC-dimension bounds when they are applied to
DNNs. As it is explained in [78], VC-dimension bounds depend usually on the
number of model parameters, which is very large for DNNs. The corresponding
sample complexity bound becomes unreasonably large beyond typical available
datasets. Rademacher complexity bounds, on the other hand, depend mostly on
inherently smaller quantities like the norm of weight matrices and, therefore, are
more appropriate for establishing generalization property of DNNs.

Rademacher complexity bounds for adversarial robustness is obtained in
[31,78]. They use different techniques for deriving their bounds and have different
scope of applicability. Nevertheless, both works contain Rademacher complexity
bounds for binary and multi-class classification and are applicable to neural
networks. Both works use surrogate adversarial loss. In particular, the authors
in [78] build on semidefinite programming (SDP) relaxation techniques of [57].
We do not expand on the technical results and, instead, state qualitatively some
implications of these results.

As we discussed above shortly, Rademacher complexity bounds depend mostly
on the norm of weight matrices. However, the lower bound on Rademacher
complexity of neural networks for robust training in [78] has additional dependence
on the dimension for the `∞-attacks. The dependence disappears only if the weight
matrix of the first layer has bounded `1-norm. In absence of this assumption,
this bound confirms the hypothesis that robust training is more difficult than
standard training. The technique employed in [31], however, yields upper bounds
in which the effect of adversarial perturbations appears as an additive term in
the generalization bound. The authors, therefore, conclude that it should not be
impossible to obtain both high adversarial robustness and high accuracy. Although
a final verdict seems to be far reaching at the moment, new regularization
techniques arises from these generalization bounds that can be used during
training for robust learning with high accuracy.

4 Defenses Against Adversarial Attacks

There exist several types of defenses against adversarial examples, as well as
subsequent methods for bypassing them. It is difficult to point out, at the time
of writing this chapter, a consensus on the effective defense against adversarial
examples with the possible exception of adversarial training. For instance, the
authors in [11] proposed three attacks to bypass defensive distillation of the
adversarial perturbations [55]. Moreover, the attacks from [5], bypassed 7 out
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of 9 non-certified defenses of ICLR 2018 that claimed to be white-box secure.
Adversarial training, however, adds adversarial examples to the training set and is
the most commonly accepted defense against adversarial attacks. In what follows,
we discuss some difficulties of adversarial training as well as those methods that
try to promote robustness merely through regularization techniques.

4.1 Obfuscated Gradients and Adversarial Training

The rise of adversarial perturbations in computer vision has motivated further
research on defending against such perturbations. To that end several defenses
against adversarial examples, such as [38,61,66], have been designed. Since many
adversarial attacks make use of the classifier’s gradient with respect to some
objective function, as in Algorithm 1, initial works on adversarial defenses rely on
distorting and hiding the information about that gradient. In [5], these techniques
were said to obfuscate the gradient. More precisely, obfuscating the gradient may
be done in either of the following manners.

– Shattered Gradients appear when the defense mechanism is not differen-
tiable, numerically unstable, or intentionally has misleading gradients.

– Stochastic Gradients occur when the defense method is based on intro-
ducing randomness into the prediction. Such randomness is added to prevent
the attacker from estimating the gradients.

– Exploding Gradients happen when the defense algorithm consists on
recursive evaluations of the DNN function. In other words, the output of
one DNN evaluation is the input of the next one. This type of computation
implicitly transforms the original DNN into a extremely deep neural network,
which may lead gradients to explode (or vanish) during inference.

Despite the apparent success of this type of defenses, in [5] it is shown that
such mechanisms give a false sense of security. The main reason behind this
phenomena is that obfuscating the gradients of model does not necessarily
increases its robustness against adversarial perturbations, instead it prevents
specific algorithms to find them. In other words, for such models adversarial
perturbations still exist; they are just harder to find using certain methods.
Therefore, although a model with obfuscated gradients can be robust against a
specific adversarial attack, it may still be vulnerable to others. Using this idea,
the authors in [5] provide the following conditions to identify models that exhibit
this problem.

– One-step attacks perform better than iterative attacks.
– Black-box attacks perform better than white-box attacks.
– Attacks with large ε do not reach 100% fooling ratio.
– Random sampling finds adversarial examples, while adversarial at-
tacks don’t.

If a model satisfies one of the above conditions, it suffers from the obfuscated
gradient problem. Using these guidelines, the authors identified that 7 out of
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9 defenses accepted to ICLR 2018, that were deemed to be white-box secure,
suffered from this issue. In addition, the authors fooled those defenses using
customized attacks.

So far, the most successful defenses against adversarial attacks consist of
adding adversarial examples to the training set. This is known as adversarial
training. Initial attempts to perform adversarial training using the FGSM proved
to suffer from obfuscated gradients. This occurs since a DNN trained solely with
the FGSM learns to shatter the gradients that are in a close vicinity to the
data samples, such that the gradients used for the FGSM point into misleading
directions. While this process may mislead the FGSM it is still vulnerable to
other perturbations, for instance black-box attacks. To overcome this issue the
dithering mechanism proposed for the PGD attack is employed in [43], along
with large ε values 6 during adversarial training. This approach provided diverse
sets of random adversarial examples, which prevented DNNs from obtaining low
fooling ratios by shattering the gradients around the data samples. In other
words, the randomness of the starting point in the PGD attack prevents the
model from overfitting the perturbations.

From these initial findings it is concluded that diversity in the adversarial
examples used for training is necessary in order to prevent DNNs for overfitting to
specific types of perturbations. To that end, in [73] the authors include black-box
perturbations into the training set. This is carried out using substitute models, as
well as ensembles of these models, in the objective function of white-box attacks
(such as PGD) as described in Section 2.2.

4.2 Robust Regularization

Despite the success of adversarial training on promoting robustness, these methods
either suffer from obfuscated gradients (e.g., when the FGSM is employed) or are
deemed to be computationally expensive, since iterative methods require several
evaluations of the DNN function to compute a single adversarial example. In [43]
it is observed that adversarial training induces sparsity on the weights of the first
convolutional filters of CNNs trained with the MNIST dataset. Similarly, the
authors in [36] observe that adversarial training induces low-rank structures in the
weight matrices of the DNN, as well sparsity. As an example the authors provide
a visualization of the weights in the first layer of a DNN, shown in Figure 6,
where the simultaneously low-rank and sparse structure of such weights is clearly
visible. This is additionally confirmed by looking at the mutual information
between the input and the layers. Information theoretically, increasing adversarial
robustness coincides with decreasing the mutual information that indicates more
compression of the input in hidden layers. These results serve as motivation for
aiming research towards finding the key properties that lead to robustness of
DNNs. The idea is to propose a metric for robustness and promote it during
training. A common technique for promoting specific properties during training
6 In that work, the `∞-constraint ‖η‖∞ ≤ ε = 0.3 is employed to train models where
the input values were between 0 and 1.
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−0.06 0.00 0.06

(a) Natural training
−0.06 0.00 0.06

(b) FGSM training
−0.06 0.00 0.06

(c) PGD training

Fig. 6: Reshaped input weight matrix W1 ∈ R20×784 of a DNN, from [36], after
natural training as well as adversarial training with ε = 0.05. A simultaneously
low-rank and sparse structure is observed in the weights after adversarial training.

is to add a penalty term in the loss function, known as regularization term, that
penalizes undesired properties of the classifier function. Here are some examples
of robust regularization.

– Sparsity: In [26,76] the authors argue that sparsity of the weight matrices
of a DNN promotes robustness against adversarial examples. They propose
to add a regularization term with the sum of the `1-norm of the weight
matrices involved, which is known to promote approximately sparse solutions.
In addition, the authors make use of pruning 7 to impose arbitrary sparsity
levels.

– Low-Rankness: In [62,36] it is observed that adversarial training induces
low-rank structures on the weight matrices of DNNs. Motivated by this
phenomena, low-rank regularization techniques are proposed. In [62] the
authors explicitly constrain the rank of weight matrices in the optimization
algorithm used for training. On the other hand in [36] the nuclear norm of
the weight matrices is employed as a regularization term in the training loss.
The nuclear norm of a matrix can be written as the `1-norm of its vector of
singular values, thus using it as a regularization term promotes sparsity in
that vector of singular values (i.e., low-rankness).

– Norm of the network’s Jacobian: In [51], the authors aim at minimizing
the `2-norm of the output perturbation, that is ‖f(x)−f(x+η)‖2. Assuming

7 Pruning consists of setting to zero smallest weights (in absolute value) of the a given
weight matrix, thus enforcing a certain level of sparsity. The amount of weights to be
set to zero is arbitrarily chosen. Usually pruning requires an extra phase of retraining
(fine-tunning of the remaining non-zero weights) to compensate for the performance
degradation caused by the initial manipulation of the weights.
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‖η‖2 ≤ ε, upper-bounding an approximate of this functional yields

‖f(x)− f(x + η)‖2 ≈ ‖Jf (x)η‖2 ≤ ε‖Jf (x)‖F .

Motivated by this result, the authors propose using the Frobenius norm of
the Jacobian ‖Jf (x)‖F as regularization term to promote robustness. The
Frobenius norm is an upper bound on the `2-norm of the output perturbation.
If it is limited during training by proper regularization, it can restrict the
`2-perturbations.

– Curvature: In Section 3.1 it is argued that low curvature in the decision
boundaries, as well as in the loss function, are desired properties for robustness.
Motivated by that discussion, the authors of [49] proposed penalizing solutions
with high curvature of the loss function around the training data.

5 Future Directions

Adversarial examples appear as a potential obstacle for widespread employment
of DNNs particularly in safety critical applications. An ultimate solution, yet,
seems to be out of reach even for a simple task of MNIST image classification.
Adversarial training is the best known defense in this situation that comes
with two additional problems. It is computationally costly and degrades the
generalization of DNNs. Future works can see whether the latter problem can be
solved by different training techniques, or the generalization degradation cost is
to be paid inevitably for more robustness. There is no consensus on the nature
of adversarial examples and which features of classifiers play the central role
in adversarial robustness. There are many indications that occasionally align
with experimental results. Recent statistical learning theory approaches, however,
provide a promising path to address generalization and robustness simultaneously.
The ultimate goal of an adequate account of adversarial robustness, although
not attained so far, constitutes an exciting field of research in coming years.
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