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Abstract— Discrete input distributions are capacity-achieving
for a variety of noise distributions whenever the input is
subject to peak power or other bounding constraints. In this
paper, we consider additive noise with arbitrary absolutely-
continuous distribution and ask the question what the optimal
input distribution over a set of fixed signaling points would be.
The capacity-achieving distribution is characterized by constant
Kullback Leibler distance between the shifted noise distribution
and a certain mixture hereof. As an application, the optimal input
distribution for binary symmetric signaling over exponential
noise channels is determined. It further follows that in certain
symmetric cases the uniform distribution over all signaling points
is capacity-achieving.

I. INTRODUCTION

Shannon showed that the scalar additive Gaussian noise

channel has a Gaussian capacity-achieving input distribution

whenever average power constraints apply. This result was

extended to Gaussian vector channels, particularly MIMO

channels by [1]. Due to the unlimited support, this input distri-

bution is not realizable in practice. To avoid unbounded power

requirements for the transmitter, peak power constraints are

added. Interestingly, the capacity achieving input distribution

becomes discrete with finite support for the scalar Gaussian

channel subject to average and peak power constraints as was

demonstrated by [2]. Other channels like Poisson, quadrature

Gaussian and additive vector Gaussian were shown to possess

a discrete capacity-achieving input distribution under average

and peak power constraints as surveyed in [3]. This work and

[4] generalize a number of previous papers on the subject

by considering conditionally Gaussian vector channels subject

to bounded-input constraints described by a bounded and

closed support S ⊂ R
N . Under certain conditions on S the

capacity achieving distribution is discrete, which includes the

previously mentioned channels as special cases.

A related question is investigated in [5]. The optimum

constellation of M equiprobable complex signals is sought for

an additive Gaussian channel under average power constraints

such that the error probability is minimum.

Since for practically relevant cases the capacity-achieving

distribution subject to bounded input is discrete, from a prac-

tical point of view we may ask the following question. Given

a bounded and closed subset S ⊂ R
N , further a maximum

number of support points M , what is the optimum choice of

signaling points x1, . . . ,xM ∈ S and the optimum distribution

(p1, . . . , pM ) such that the input variable X with distribution

P (X = xi) = pi, i = 1, . . . , M , maximizes the mutual

information between channel input and output, and hence is

capacity-achieving in the set of discrete distributions on S with

at most M support points. If M is greater than the number

of points of increase of the capacity-achieving bounded-

input distribution, an answer is given for cases considered in

[3]. In general, however, this seems to be a hard problem,

methodologically related to the theory of optimum design of

experiments.

In this paper, we address the special case that S itself

consists of finitely many points x1, . . . ,xM representing the

set of inputs that can be generated by the transmitter. We aim at

determining the capacity-achieving distribution (p1, . . . , pM )
for arbitrary additive noise channels. An intuitive charac-

terization of the optimum distribution in terms of Kullback

Leibler distances is derived exploiting directional derivatives.

Furthermore, explicit solutions are given for certain symmetric

noise distributions and corresponding signal constellations.

II. SYSTEM MODEL AND PREREQUISITES

We consider the additive noise channel

Y = X + n, (1)

where X represents the discrete random input of dimension

N with support points x1, . . . ,xM ⊂ R
N . The stochastically

independent noise vector n is assumed to have (Lebesgue)

density ϕ(z), z ∈ R
N , and finite entropy |H(n)| < ∞.

We aim at determining the capacity-achieving probability

distribution p = (p1, . . . , pM ) with P (X = xi) = pi,

i = 1, . . . , M .

The mutual information of channel model (1) is computed

as

I(X;Y ) = H(Y ) − H(Y | X)

= H(Y ) − H(X + n | X)

= H(Y ) − H(n),

(2)

where H denotes entropy. Observe that Y is absolutely-
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continuous with density function

fY (y) =

M
∑

i=1

piϕi(y) (3)

where ϕi(y) = ϕ(y − xi) denotes the noise density shifted

by xi. Hence, the distribution of Y is a mixture of densities

ϕi with coefficients pi.

Since

H(n) = −
∫

ϕ(y) log ϕ(y)dy

= −
∫

ϕi(y) log ϕi(y)dy,

(4)

we may write

I(X;Y ) = H(Y ) − H(n)

=

M
∑

i=1

pi

∫

ϕi(y) log
ϕi(y)

∑M
j=1 pjϕj(y)

dy

=

M
∑

i=1

pi D
(

ϕi

∥

∥

∥

M
∑

j=1

pjϕj

)

,

(5)

where D(g‖h) =
∫

g log g
h denotes the Kullback Leibler dis-

tance or, synonymously, the relative entropy between densities

g and h, see [6].

In the following we will use directional derivatives to

characterize capacity-achieving distributions and give explicit

solutions in special symmetric cases. Let f be a concave

function with convex domain C, and let x̂, x ∈ C. The

directional derivative of f at x̂ in the direction of x is defined

as

Df(x̂, x) = lim
α→0+

1

α

[

f
(

(1 − α)x̂ + αx
)

− f(x̂)
]

=
d

dα
f
(

(1 − α)x̂ + αx
)

∣

∣

∣

α=0+
.

Since f is concave the ratio
(

f((1 − α)x̂ + αx) − f(x̂)
)

/α
is monotone increasing with decreasing 1 ≥ α ≥ 0, and the

directional derivative always exists. Directional derivatives are

also employed to determine capacity-achieving distributions

for general average p-norm constraints, see [7].

We will furthermore exploit the well known fact that x̂ ∈ C
is a maximizing point of f if and only if Df(x̂, x) ≤ 0 for

all x ∈ C, see, e.g., [8].

III. CAPACITY-ACHIEVING INPUT DISTRIBUTIONS

Candidate distributions are contained in the set of all

stochastic vectors of dimension M , namely

C = {p = (p1, . . . , pM ) | pi ≥ 0,

M
∑

i=1

pi = 1}

Obviously, C is a convex set. The capacity of channel (1) is

defined as

C = max
(p1,...,pM )∈C

I(X;Y ).

By equation (2), distribution p̂ = (p̂1, . . . , p̂M ) achieves

capacity, i.e., maximizes mutual information, if and only if

H(Y ) is maximized by p̂. Using density (3) our task is to

determine

max
(p1,...,pM )∈C

−
∫

(

M
∑

i=1

pi ϕi(y)
)

log
(

M
∑

i=1

pi ϕi(y)
)

dy.

The function

f(p1, . . . , pn) = −
∫

(

M
∑

i=1

pi ϕi(y)
)

log
(

M
∑

i=1

pi ϕi(y)
)

dy

is concave as can be shown by elementary means using the

fact that t log t is convex for positive t. The gradient of ∇f =
(

df
dpi

)

i=1,...,M
is obtained as

df

dpi
= −(log e)

(

1 +

∫

ϕi(y) log
(

M
∑

j=1

pjϕj(y)
)

dy

)

.

To compute df
dpi

at p ∈ C we interchange differentiation

and integration. According to Lemma 16.2 in [9] this is

permissible since each partial derivative is dominated by an

integrable function as may be seen from the following chain

of inequalities. Let m(y) = max{ϕ1(y), . . . , ϕm(y)}, which

is an integrable function. Then

ϕi(y)
∣

∣ log
(

M
∑

j=1

pjϕj(y)
)

∣

∣ ≤ ϕi(y)
∣

∣ log m(y)
∣

∣

≤ ϕi(y)
∣

∣ log m(y) − log ϕi(y)
∣

∣ + ϕi(y)
∣

∣ log ϕi(y)
∣

∣

≤ ϕi(y)
∣

∣ log
m(y)

ϕi(y)

∣

∣ + ϕi(y)
∣

∣ log ϕi(y)
∣

∣

≤ (log e)ϕi(y)
∣

∣

m(y)

ϕi(y)
− 1

∣

∣ + ϕi(y)
∣

∣ log ϕi(y)
∣

∣

= (log e)
∣

∣m(y) − ϕi(y)
∣

∣ + ϕi(y)
∣

∣ log ϕi(y)
∣

∣.

The last line constitutes an integrable upper bound independent

of p since H(n) is assumed to exist and to be finite.

The directional derivative of f at p̂ in the direction of p

now follows from representation

Df(p̂,p) = 〈∇f(p̂),p − p̂〉

= −(log e)
M
∑

i=1

(pi − p̂i)

∫

ϕi(y) log
(

M
∑

j=1

p̂jϕj(y)
)

dy.

For notational convenience let

bi(p̂) = bi(p̂1, . . . , p̂M )

=

∫

ϕi(y) log
(

M
∑

j=1

p̂jϕj(y)
)

dy.

From the concavity of the logarithm it can be easily concluded

that bi(p) is a concave function on C for any i = 1, . . . , M .

Now, the maximum of f is attained at p̂ ∈ C if and only

if the directional derivatives at p̂ in any direction p ∈ C is
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non-positive, i.e.,

−
M
∑

i=1

(pi − p̂i) bi(p̂) ≤ 0.

Hence, p̂ is an optimum point if and only if

M
∑

i=1

p̂i bi(p̂) = min
p∈C

M
∑

i=1

pi bi(p̂) = min
i=1,...,M

bi(p̂).

Equality is obviously achieved if and only if bi(p̂) equals some

constant ζ, say, for all i with p̂i > 0. In summary, we have

derived the following result.

Proposition 1: Given signaling points x1, . . . ,xM for the

input variable X in channel model (1), distribution p̂ is

capacity-achieving if and only if

∫

ϕi(y) log
(

M
∑

j=1

p̂jϕj(y)
)

dy = ζ (6)

for some ζ ∈ R and all indices i with p̂i > 0.

Note that integral (6) is well defined since the measure

corresponding to the mixture density always dominates the

measure corresponding to ϕi for positive p̂i.

A different way to achieve Proposition 1 would be to use

Lagrangian multipliers and exploit the Kuhn Tucker conditions

for objective function f and constraints given by C.

The Kullback Leibler distance or relative entropy between

ϕi and the mixture of ϕj with coefficients p̂1, . . . , p̂M from

the optimum p̂ is given by

D
(

ϕi

∥

∥

∥

M
∑

j=1

p̂jϕj

)

=

∫

ϕi(y) log ϕi(y)dy

−
∫

ϕi(y) log
(

M
∑

j=1

p̂jϕj(y)
)

dy.

(7)

The first integral on the right hand side of (7) is independent

of i = 1, . . . , M since ϕi(y) = ϕ(y − xi) is a linear

shift in argument only. The second term has constant value

according to Proposition 1. Hence, for optimum p̂ the relative

entropy in (7) is constant for all i with positive p̂i. Moreover,

from representation (5), the channel capacity is given by this

constant Kullback-Leibler distance. In summary, the following

result holds.

Proposition 2: Distribution p̂ is capacity-achieving if and

only if

D
(

ϕi

∥

∥

∥

M
∑

j=1

p̂jϕj

)

= ξ (8)

for some ξ ≥ 0 and all indices i with p̂i > 0. Moreover, the

channel capacity amounts to

C = max
p∈C

I(X;Y ) = ξ.

Equation (8) has an interesting interpretation. For an input

distribution p̂ = (p̂1, . . . , p̂M ) over fixed signaling points

x1, . . . ,xM to be capacity-achieving, the relative entropy

between densities ϕi(y) = ϕ(y − xi) and the mixture

distribution with weights p̂j has to be the same for all i with

p̂i > 0. Hence, the capacity-achieving distribution p̂ places

the mixture density
∑M

j=1 p̂jϕj somehow in the middle of all

shifted densities ϕi with positive coefficient p̂i. Distance is

measured by the Kullback Leibler pseudo-metric.

Example 1. Exponential noise, cf. [10].

Let λ > 0 and consider the exponential noise probability

density function

ϕ(z) = λ e−λz
1(0,∞)(z),

for the scalar channel Y = X + n. Let X have fixed

support points x1 = −µ and x2 = µ > 0, selected for

signaling with probabilities p1 and p2, respectively. Capacity

is achieved at points pi > 0, since p1 = 0 or p2 = 0
yields mutual information zero. According to Proposition 1

distribution (p1, p2) is capacity achieving if
∫

ϕ(y + µ) ln
(

p1ϕ(y + µ) + p2ϕ(y − µ)
)

dy

=

∫

ϕ(y − µ) ln
(

p1ϕ(y + µ) + p2ϕ(y − µ)
)

dy,

concretely for the exponential distribution,
∫ ∞

µ

λe−λ(y+µ) ln
(

λe−λy(p1e
−λµ + p2e

λµ)
)

dy

+

∫ µ

−µ

λe−λ(y+µ) ln
(

λe−λyp1e
−λµ

)

dy

=

∫ ∞

µ

λe−λ(y−µ) ln
(

λe−λy(p1e
−λµ + p2e

λµ)
)

dy.

(9)

Let

β =
2λµ

1 − e−2λµ
and α =

eβ − 1

e2λµ
.

Rather tedious algebra gives an explicit solution of equa-

tion (9) as

p̂1 =
1

1 + α
, p̂2 =

α

1 + α
.

Channel capacity is given by the according Kullback Leibler

distance (8).

Figure 1 shows for λ = 1 the probabilities p1 (solid line) and

p2 (dashed line) as a function of the signaling point µ ∈ (0, 3)
for parameter λ = 1.

IV. CIRCULAR SYMMETRIC NOISE

Throughout this section we assume symmetric noise density

ϕ(y) in the sense that

ϕ(y) = ϕ(Ty)

for any orthogonal N × N matrix T . Zero mean Gaussian

noise with covariance matrix a multiple of the identity matrix

is a standard example of this situation.
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Fig. 1. Capacity-achieving probabilities p1 and p2 for signaling points −µ
and µ in case of exponential noise with parameter λ = 1.

In the case that the signaling points x1, . . . ,xM are cycli-

cally generated by powers of some orthogonal matrix T the

uniform distribution is capacity-achieving as is demonstrated

in the following. Such collections of signaling points are

sometimes referred to as Slepian signal set or geometrically

uniform constellation. The identity matrix of size N is denoted

by IN .

Proposition 3: Let T be orthogonal and such that T M =
IN , and the signaling points be generated as

xi = T i−1x1, i = 1, . . . , M.

Then the uniform distribution p̂ = ( 1
M , . . . , 1

M ) is capacity-

achieving.

Proof: We use Proposition 1 and show that for uniform

p̂i = 1
M the integral

∫

ϕi(y) log
(

∑M
j=1 p̂jϕj(y)

)

dy is

independent of index i. It holds that

∫

ϕ(y − xi) log
( 1

M

M
∑

j=1

ϕ(y − xj)
)

dy

=

∫

ϕ(y − T i−1x1) log
( 1

M

M
∑

j=1

ϕ(y − T i−1xj)
)

dy

=

∫

ϕ(T i−1y − T i−1x1)

· log
( 1

M

M
∑

j=1

ϕ(T i−1y − T i−1xj)
)

dy

=

∫

ϕ(y − x1) log
( 1

M

M
∑

j=1

ϕ(y − xj)
)

dy,

x1

x2

x3

x4

x5

x6

x7

x8

Fig. 2. Octal signal point constellation with uniform capacity-achieving
distribution

which is independent of i. In the second line of the above we

have used the argument that xi = T i−1x1, and furthermore

that due to T M = IN the sum is invariant against cyclic index

shift. The third line follows from substituting y by T i−1y

and the fact that T i−1 is orthogonal with Jacobian equal to 1.

Finally, the fourth line ensues from the symmetry of ϕ.

As can be seen from the proof the symmetry assumption on

ϕ can be weakened to invariance merely against the orthogonal

matrices T i, i = 0, . . . , M − 1, i.e., ϕ(y) = ϕ(T iy). In this

sense, the symmetry axes of ϕ have to align the ones of the

signaling points.

Example 2. The binary input scalar additive Gaussian

channel is defined by

Y = X + n

with binary input variable X with support points x1 = µ, x2 =
−µ. Independent noise variable n is normally distributed with

zero mean, variance σ2 and density ϕ(y) = 1√
2πσ

e−y2/2σ2

.

Choosing T = (−1) Proposition 3 yields p̂1 = p̂2 = 1
2 as the

capacity-achieving input distribution. From Proposition 2 the

capacity follows to be

C = D
(

ϕ(y − µ) ‖ϕ(y − µ)/2 + ϕ(y + µ)/2
)

= −
∫

ϕ(y − µ) log
(1

2

ϕ(y − µ) + ϕ(y + µ)

ϕ(y − µ)

)

dy

= log 2 −
∫

ϕ(y) log
(

1 +
ϕ(y + 2µ)

ϕ(y)

)

dy

= log 2 − E
[

log(1 + e−W )
]

,

where W ∼ N(2µ2/σ2, 4µ2/σ2) is normally distributed with

the given parameters, cf. [11], p.188.

Example 3. Consider a two-dimensional additive Gaussian

noise channel with noise covariance matrix σ2I2. Signaling
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points are generated by the powers of the orthogonal matrix

T =

(

cos(2π/M) sin(2π/M)
− sin(2π/M) cos(2π/M)

)

.

Matrix T represents a counter-clockwise rotation by angle

α = 2π/M. Let x1 ∈ R
2 be arbitrary and define the signaling

points by

xi = T i−1x1, i = 1, . . . , M.

Then the assumptions of Proposition 3 are satisfied such that

the uniform distribution is capacity-achieving.

Consider for example M = 8 and x1 = (1, 0)T. Then

T =

( √
2/2

√
2/2

−
√

2/2
√

2/2

)

. This leads to the octal signal

point constellation depicted in Figure 2. Capacity is achieved

whenever each point is used with probability 1/8.

V. CONCLUSIONS

Given an additive noise channel with arbitrary noise density

and a finite set of signaling points, we have dealt with

the question what the capacity-achieving input distribution

would be. The optimum distribution has been characterized

by possessing constant Kullback Leibler distances between the

shifted noise densities and a mixture thereof with optimum

probabilities as weights. As an example, we have determined

the capacity-achieving distribution for binary equidistant input

and exponential noise. In certain symmetric cases, the uniform

distribution has been demonstrated to be capacity-achieving.

Additive Gaussian vector channels are a special case of the

general approach in this paper.
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I. CORRECTION

Due to a programming error, Figure 1 in the original paper

is mistaken. It has to be replaced by the following graph.
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Fig. 1. Capacity-achieving probabilities p1 and p2 for signaling points −µ
and µ in case of exponential noise with parameter λ = 1.
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