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Power Control, Capacity, and Duality of Uplink and
Downlink in Cellular CDMA Systems

Daniel Catrein, Lorens A. Imhof, and Rudolf Mathar

Abstract—Accurate power control is an essential requirement
in the design of cellular code-division multiple-access (CDMA)
systems. In this paper, we contribute three main themes to the
power control problem. First, we derive an efficient algorithm
for computing minimal power levels for large-scale networks
within seconds. Nice and intuitive conditions for the existence
of feasible power solutions follow from this approach. Second,
we define the capacity region of a network by the set of effective
spreading gains, or data rates, respectively, which can be supplied
by the network. This is achieved by bounding the spectral radius
of a certain matrix containing system parameters and mutual
transmission gain information. It is shown that the capacity region
is a convex set. Finally, we reveal an interesting duality between
the uplink and downlink capacity region. In a clear-cut analytical
way, it substantiates the fact that the uplink is the more restricting
factor in cellular radio networks. The same methods carry over to
certain models of soft handover. In the case that the channel gains
are subject to log-normal shadowing, we introduce the concept
of level- capacity regions. Despite the complicated structure, it
can still be shown that this set is sandwiched by two convex sets
coming arbitrarily close as variance decreases.

Index Terms—Capacity region, cellular networks, code-divi-
sion multiple access (CDMA), convexity, log-normal fading, soft
handover.

I. INTRODUCTION

THE upcoming Universal Mobile Telecommunication
System (UMTS) in Europe has initiated a lot of re-

search going into the capacity of code-division multiple-access
(CDMA) technology with a constant chip rate when data rates
as well as link quality may vary individually. Optimal uplink
and downlink power control is the vehicle for achieving diverse
quality of service (QoS) and rate requirements and for keeping
interference, electromagnetic radiation, and power consump-
tion low. One objective of this paper is to represent the capacity
of an -user CDMA system by characterizing the set of data
rates and QoS demands which are achievable under optimal
power control. Another purpose is to provide a fast and efficient
algorithm for computing the optimal power allocation, even for
large-scale mobile networks.

Early analytical work on power control is reported in [17],
where power control is considered as a min–max interference
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balancing problem, however, in the absence of noise. In a com-
ment on this paper, it is shown by the same author [18] that the
maximum achievable signal-to-interference ratio (SIR) for up-
link and downlink are identical if the channel gain is symmetric.
Optimization theory is also employed in the recent paper [14]
for tackling the power control problem. The objective here is to
maximize the total effective rate in a system with users of dif-
ferent data rates and quality demands.

One of the first papers to address the power control and as-
signment problem for CDMA by considering systems of linear
equations with positive solutions is [3]. In this paper, the exis-
tence of a feasible power-control vector is clarified by use of
Perron–Frobenius’ theory. Furthermore, in [3], a provably con-
vergent algorithm is presented for assigning mobiles to base sta-
tions. In [16], the power control and base station assignment
problem is addressed as an integrated optimization setup.

In an excellent survey paper, the authors of [6] consider power
control as a flexible mechanism to ensure QoS demands of indi-
vidual users. Mainly, two questions are studied, optimal power
control and characterizing the resulting network capacity under
different receiver designs.

The authors of [11] develop this idea further by formulating
the QoS aspect of power control as a noncooperative game,
where users want to maximize their utility function. The con-
cept of Nash equilibrium is introduced, and transmit power is
priced to achieve a Pareto improvement.

The recent work of [2] employs a discrete-time Markov chain
to model time-variant channel gain. Dynamic multiuser power
control is formulated in the framework of Markov decision pro-
cesses with an objective function trading off between a min-
imal total received power and certain functionals of transmis-
sion quality.

Section II of this paper deals with the dimensionality reduc-
tion of the system of linear equations for finding a solution to the
power control problem. Related approaches, however, with dif-
ferent agglomerated variables are given in [5], and subsequently,
[9]. In our approach, cellwise lumped variables are used, which
besides dimensionality reduction yields a nice intuitive condi-
tion for the nonexistence of a feasible power assignment.

Parts of our methodology are related to the work in [1]. The
carrier-to-interference ratio (CIR) is of importance also in the
beamforming concept. The crosstalk terms between stations de-
pend on the channel and beamforming vectors and relate to the
transmission gain coefficients in this paper.

There are three main themes in our contribution to the power
control problem. First, we develop a fast offline power-alloca-
tion algorithm that proceeds in two steps. The between-cells
interference relations are solved by means of a relatively
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TABLE I
BASIC NOTATIONS

small system of linear equations, with dimension equal to
the number of base stations. Once a solution is obtained, the
individual power level of mobiles can be computed explicitly.
This approach also allows for characterizing the existence of
an admissible power allocation in a nice, intuitive manner.
The algorithm is particularly suited for integration into cell
site-selection algorithms and planning tools for cellular radio
networks. Second, we define the capacity region by a set of user
demand vectors, in terms of data rate and QoS requirements
which admit a feasible power control scheme. It is shown that
this set is convex for uplink and downlink. Finally, we work
out an interesting duality between the uplink and downlink
capacity regions. This substantiates the fact that the uplink is
the more restricting factor from a capacity point of view.

It is shown that the very same methods carry over to certain
models of soft and softer handover. To also include log-normal
shadowing into our investigations, we introduce the concept of
the level- capacity region, which contains the set of feasible
user requirements that can be served by the network with prob-
ability . A sandwich theorem with convex layering sets
shows that the random capacity region is close to convexity.

Technical proofs of the paper are collected in the Appendix.

II. EXISTENCE AND EFFICIENT COMPUTATION

OF POWER CONTROL

We start by introducing the basic notation (for an overview,
see Table I). Assume a CDMA system with chip rate , e.g.,

MChip/s for UMTS. Each user has a certain
data rate to transmit and requires an individual minimum
bit-error rate (BER). Let denote the spreading gain.
Since the BER rate is a function of the bit energy-to-noise ratio,

, individual quality demands can be described by lower
bounds as follows:

(1)

where denotes the CIR at the mobile’s connecting base
station.

In the following, we assume a fixed allocation of mobiles to
base stations, expressed by an assignment function

such that denotes ’s connecting base station. The
set of mobiles allocated to base station is denoted by

, . is simply a partition
of the set .

In the uplink, let denote the transmit power of mobile and
the transmission gain from mobile to base station

. Activity periods are also included in this model by under-
standing as a product of the transmission gain itself and a
potential activity factor of station . We assume that
for all , which is obvious to avoid meaningless assign-
ments. Using the effective spreading gain , (1) reads
as

(2)

The numerator represents the received power of mobile
at the connecting base station , collects the re-

ceived interference from all other mobiles, and denotes
the general background and thermal receiver noise at base sta-
tion . It also includes the system’s pilot signal pollution.

The problem now is to determine the minimum transmit
power for mobiles such that (2) is satisfied. Since the numerator
of (2) is increasing in and the denominator is increasing
in , , it is clear that the minimum is attained at the
boundary such that a solution of the system

(3)

is needed. Equation (3) is easily converted into the following
system of linear equations:

(4)

The system of (3) and (4), respectively, is the common
starting point for work on CDMA power control. However,
the number of mobiles is usually large, such that several thou-
sand equations may be involved. Dimensionality reduction
is an important issue, also addressed in two related papers
[5], [9]. The author of [5] calls system (4) the microscopic
view of the problem, accepts a slight inaccuracy by allowing
“self-interference,” and reduces dimension by switching to
the lumped variables (in this paper’s
notation). Using an easy transformation, the authors of [9] are
able to eliminate the self-interference approximation in [5].
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The dimension of system (4) is then reduced by employing the
agglomerated variables .

We choose a different set of variables for dimensionality re-
duction. Interestingly, our approach also leads to a nice and intu-
itive characterization of the nonexistence of any feasible power
allocation.

For this purpose, we select some base station
and rewrite (4) as

(5)

where is the interference at base sta-
tion , composed of the background noise and the interference
from mobiles in other cells.

Proposition 1: The unique solution of system (5) is given by

(6)
, the factor multiplying , depends only on the alloca-

tion function, the effective spreading gains , and the attenua-
tion . It is hence determined by fixed system parameters and
is independent of the variables .

The proof of Proposition 1 is deferred to the Appendix (see
also [8]).

From the third factor in the denominator of (6), it follows that
there is no feasible power allocation if there exists some base
station such that

(7)

If all data rates and QoS parameters are equal, i.e., ,
say, for all , then (7) is equivalent to

. Hence, in this special case, there is no feasible power alloca-
tion whenever, for some cell, the effective data rates times the
number of mobiles less one exceeds the chip rate of the system.
If, like in UMTS MChip/s, the data rate is 30 kb/s, and

dB , then , and there is no way to ac-
commodate more than 41 users at the desired QoS requirement.

A macroscopic necessary and sufficient condition for the
existence of a feasible power allocation including soft-han-
dover, however, accepting “self-interference” in an approximate
model, is given in [4].

In the following, we assume that ,
for all and briefly describe how the dimension-
ality reduction works. With the solutions from (6), ,

may be written as

(8)

with quantities , again independent
of .

In order to obtain a compact representation of system
(8), we define the nonnegative matrix

. denotes the com-
plementary Kronecker delta such that has diagonal entries 0
and nondiagonal entries . Then (8) reads as

(9)

with the obvious notation and
.

By Perron–Frobenius’ theory, (9) has a positive solution, iff
the spectral radius satisfies , provided is irre-
ducible, see [12, p. 30]. This is the case, e.g., whenever
for all , . If is not irreducible, the problem decomposes into
smaller subproblems of the same type. In summary, we have
shown the following result.

Proposition 2: Assume that , for
all , and that is irreducible. Then there is a
feasible power allocation iff .

In this case, can be efficiently computed by
first solving the system (9) for , and then computing

, , according to (6).
The following result provides sufficient conditions for a fea-

sible power allocation to exist or not to exist, respectively. The
proof is deferred to the Appendix.

Proposition 3: Let be such that
, for all . Then there exists a feasible power

allocation if

for all

If, on the other hand, for all ,
then there is no feasible power allocation if

for all

An example of how the constants could be se-
lected is as follows. In a balanced load situation, each mobile
is allocated to the base station with the least attenuated trans-
mission, i.e., for all , . With the
premises of Proposition 3 are satisfied, and it follows that a fea-
sible power allocation exists whenever

for all

III. CAPACITY AND FEASIBILITY

Proposition 2 offers an efficient way to check the existence
and to compute a minimal power assignment. In the following
we aim at a compact representation of the set of feasible uplink
user demands , . A vector is called
feasible whenever there exists a minimal power setting such that

for each user reaches the desired level. We still keep the
assignment of mobiles to base stations fixed, in our previous
notation .

We revisit (3) in order to find a minimal global power setting
such that

(10)
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or, equivalently, after some algebra

(11)

Combining the user demands in a diagonal matrix

and using the notation (subscript UL stands for uplink)

with
if
if

and

and

the system of linear equations (11) can be written as

(12)

An immediate consequence of Perron–Frobenius’ theory (see
[12, p. 30] and [3, Th. 1]) is the following.

Proposition 4: If is irreducible, then (11) has a unique
feasible solution iff .

The effective spreading gain comprises the
user requirements (transmission rate) and (QoS indicator)
in a single term. We use the notion capacity region for the set
of all user demands which allow for an admissible
power allocation. The capacity region contains all such combi-
nations of user requirements that can be simultaneously served
by the network. Its boundary points correspond via the inverse
transformation to a certain -dimensional extension of the
information-theoretic capacity.

By Proposition 4, the formal definition of the capacity region
is given as follows:

(13)

Obviously, is independent of the background noise .
This is due to the fact that there is no upper bound on the transmit
power of mobiles. This inaccuracy of the model restricts its ap-
plicability to situations where each mobile is able to reach some
base station within its transmission range.

A most exciting structural result is the following property
of . The proof, given in the Appendix, essentially consists
of showing that the spectral radius is logarith-
mically convex in the variable . In [13], it is shown by ver-
ifying the existence of some admissible power allocation that

entails for any ,
hence, the log-convexity of .

Proposition 5: is a convex set of diagonal matrices.
The boundary points of are of particular interest, since

they represent the states of the system where no additional ca-
pacity can be provided. In such points, contrary interests of
users must be somehow balanced according to individual util-
ities. Minimax and Bayes strategies are concepts to cope with
conflicts of this type. In our framework, admissible strategies
correspond to the boundary points of . Its convexity now
opens the door to a widely developed theory for characterizing

such strategies. Analogous concepts are used in game theory,
which can also be exploited for admission control to the net-
work in high load situations.

IV. DUALITY OF UPLINK AND DOWNLINK

It is commonly accepted that the uplink is the more restricting
factor in cellular networks. In this section, we give a precise
mathematical formulation of this statement in terms of capacity
regions. To anticipate the main result, if the downlink capacity
region is defined analogously to (13) as the set of user
demand vectors which allow for an admissible power control
scheme, then .

A fair comparison between the capacity of the uplink and
downlink on the basis of system-inherent effects has to assume
equal external conditions for both directions. Hence, compo-
nents like allocation of mobiles and transmission gain are kept
fixed for either link in what follows. To be more formal, we as-
sume the same allocation map . This means that user

is served by base station , which allocates the amount of
power to the transmission to user .

A downlink demand vector for users is feasible
if there exists a componentwise positive power allocation

such that

for all (14)

The numerator represents the received carrier at mobile and the
denominator combines three types of interference. The first sum
collects other-cell interference, the second in-cell interference,
because of code orthogonality extenuated by a factor .
Finally, denotes the background and thermal receiver noise
at mobile station .

Some easy algebra transforms (14) into

where

if
otherwise.

Resembling the step from (11) to (12), we use the notation

if
if

and

in order to end up with the following matrix equation:

(15)

Analogously to the above, we have the following.
Proposition 6: If is irreducible, then (15) has a unique

feasible solution iff .
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(a) (b)

Fig. 1. (a) Network of two mobiles and one base station. (b) Corresponding capacity regions for uplink and downlink.

In the same vein as above, the set of feasible downlink de-
mands, or the downlink capacity region, is defined as

is exactly of the same structure as and hence, is convex
as well.

Obviously, . The
inequality carries over after multiplication with the same pos-
itive matrix , hence yielding .
Finally, from the monotonicity of the spectral radius and
a standard argument on transposing , it follows that

. This
proves the central result that the downlink capacity is always
higher than the uplink capacity, namely the following.

Proposition 7:

The case allows for a graphical representation of the
sets and . An example network of two mobiles and one
base station is depicted in Fig. 1. It is straightforward to show
that

(16)

If the orthogonality factor amounts to , e.g., then the
capacity regions are given by the shaded areas on the right-hand
side of Fig. 1.

V. SOFT HANDOVER

Most of the above results carry over to certain models of soft
handover. We start with downlink soft handover where each mo-
bile receives signals simultaneously from two or more base sta-
tions. Applying maximal-ratio combining, the resulting SIR is
obtained as the sum of the SIRs on each single link. Let

denote the power assigned to mobile by base station . Ne-
glecting orthogonality factors, the power control equations then
read as

This setup is not directly accessible to the above methodology,
however, the following simplified model allows for including
soft handover into the above approach. We follow an idea of [9]
and assume a fixed, a priori known matrix ,

, with . The weights represent the
portion of the QoS parameter for mobile received from
base station . This approach leads to the following equa-
tions:

(17)
If , then necessarily and the convention

is used. Introducing constants , we
obtain linear equations in unknowns as

(18)

With the notation , fur-
thermore, using the matrices

...
...

system (18) may be written as

(19)

where is blockwise composed of as

...
...

. . .
...
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and the notations

are used. Unlike the different dimension, (19) and (15) are of
the same structure, such that the dimensionality reduction argu-
ments of Section II and convexity of the capacity region carry
over to the soft handover model (17).

If base station receivers share the same site for supplying sec-
torized cells, soft handover can be applied to improve uplink
capacity. Using the above linearization by , a general model
can be developed analogously. The corresponding power allo-
cation equations are

(20)

where denotes the power dedicated for the transmission of
mobile to base station . Setting

...
...

the system (20) corresponds to the matrix representation

This equation has the same form as (12) such that Propositions
4 and 5 carry over correspondingly to the QoS parameters .

VI. LOG-NORMAL FADING

In this section, we show how the framework developed in
Section III can be extended to accommodate random perturba-
tions of the received powers. We assume log-normal variation
of the received powers (shadow fading) and investigate the in-
fluence on the capacity region. Instead of one fixed capacity
region , we consider a family of certain level- capacity re-
gions, , which correspond to given acceptable failure rates.
It turns out that, if this rate is small, the level sets are close to
being convex, cf. (21). Furthermore, we construct convex inte-
rior and exterior approximations of the level sets, which estab-
lishes a close connection to the previous results. The approxi-
mations become exact as the size of the random effects tends to
zero. For definiteness, we focus on uplink capacity regions. The
effects of shadow fading on the downlink regions can be dealt
with in much the same way.

We assume that the channel gains are proportional to random
variables of the form

where is the distance between mobile and base station ,
is the attenuation exponent, and the ’s are indepen-

dent normal random variables with mean zero and common vari-
ance . Experimental data suggest and (see
[15]). Again, we also allow that if .

The same arguments as in Section III lead us to consider the
random capacity region

with random matrices and
, where and for . It fol-

lows from Proposition 5 that, with probability one, the random
set is a convex set. Due to the difficult analytical behavior of
the spectral radius, it is, except for trivial cases, presumably im-
practicable to determine the distributions of the random set
and of for any fixed .

In the deterministic case, one is interested in whether a given
belongs to . In the stochastic case, interest shifts toward de-

scribing the demand profiles that can be served with a prescribed
probability close to one. Thus, for , we consider the
deterministic level- capacity region

Obviously, these level sets are increasing in , and
as , and as

. If and , then . This is a
consequence of the monotonicity of the spectral radius (see [7,
p. 491]). Moreover

for all (21)

For, if , then

and it follows from Proposition 5 that

for all

In the case of mobiles, each mobile con-
nected to a different base station and , the level- capacity
region can be explicitly determined. After some algebra, it fol-
lows that

Abbreviating the distance-dependent term by and
, we obtain

where is normally distributed with zero mean and variance
. Easy probability calculus yields the following description:
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of the level- capacity region, where is the -fractile
of the standard normal distribution. Thus, is essentially of
the same form as (16) with an additional factor .

To gain insight into the geometric properties of the level sets
for arbitrary , consider the sets

In the deterministic case, and with
. Thus, is convex, and the log-convexity of the spectral

radius, established in the Appendix, shows that is, in fact,
convex for every and . There seems to be no
reasonable interpretation of the sets with in the
deterministic setting. In the presence of shadow fading, the sets
occur quite naturally in approximating the level sets . Note
that the sets form an increasing family of convex sets, and

as .
To relate the to the level- capacity regions, observe

first that, if , then

where is the standard normal distribution function. Clearly, if
or , then . Otherwise, it follows

that

and, for every

where

Let denote the number of pairs , for which .
Notice that the larger is, the more convoluted the CDMA
system is. In any case, . To avoid trivialities, as-
sume . Applying the inequality ,
one obtains

(22)

For every fixed , is strictly increasing in , and

Proposition 8: Fix . Let ,
be given by

Then , and

Moreover

To see this, let . That is, .
From this, the monotonicity of the spectral radius, and (22), it
follows that

Hence, , so that . The proof of the
other inclusion is similar. The limit assertions are easily verified.

Proposition 8 states that the level- capacity region can
be sandwiched between two convex sets which come arbitrarily
close as becomes small. We conjecture that itself is a
convex set for any .

VII. CONCLUSION AND OUTLOOK

In this paper, we developed an efficient algorithm for solving
the power control problem offline. Nice and intuitive condi-
tions on the existence of feasible power allocation schemes
were given in terms of the effective spreading gains or data
rates, respectively. We introduced the uplink and downlink
capacity region of cellular CDMA networks by bounding the
spectral radius of a matrix built of system and transmission gain
parameters. Intuitively speaking, the regions represent the user
demands which can be carried by the network. As a structural
result, it was shown that the uplink capacity region is a subset
of the downlink capacity region and that both are convex

-dimensional sets. We also show that our methods carry over
when softhandover is described by a linearized model which
assumes a priori knowledge of the portions combining the
received signal.

Convexity is particularly important for access control strate-
gies via pricing the data rates and quality demands of users in
an equitable way. In the framework of game theory, Nash equi-
libria and monotone and Pareto solutions will provide the means
to balance conflicting interests of users. Moreover, the boundary
points of the capacity region correspond to admissible strategies
in the framework of Bayes and min–max decision rules which
will be exploited for future investigations.
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The basic model assumes fixed transmission gains, hence
taking a snapshot of an in-reality highly dynamic scenario.
We introduce the concept of level- capacity regions when
transmission gains are subject to log-normal shadowing. In this
case, an interesting sandwich property is derived, where both
the upper and lower framing set are convex.

Future work will be devoted to further exploiting the rich
structure of the capacity region for the design of admission con-
trol policies. We also aim at a more comprehensive approach for
dealing with the capacity region in case of random fading.

APPENDIX

Proof of Proposition 1

System (5) is extended by the equation
with an additional variable . Substituting this into (5) gives

and

Solving the last equation for yields with
. Hence

which completes the proof.

Proof of Proposition 3

Fix , and consider the th row sum of
as follows:

The right-hand side of this chain is 1 if and only if

(23)

Hence, if (23) is satisfied for all , the asser-
tion follows from the fact that the spectral radius satisfies

, see [7, p. 492]. Reverting the
above inequality signs yields the second assertion along the
same lines, since .

Proof of Proposition 5

The concept of log-convex functions turns out to be an es-
sential ingredient to the proof. A positive function is called
log-convex if log is convex. The following properties are well
known, see [10, p. 19].

1) If and are log-convex functions, then and
are log-convex.

2) If is a log-convex function, and , then is
log-convex.

3) For any convergent sequence of log-convex func-
tions, the limit is log-convex as well,
provided the limit is strictly positive.

Now, slightly simplifying the notation, we have to show that

is convex for any nonnegative matrix .
We first treat the case that has positive entries and show

that

for all , , .
For this purpose, we use the representation (see [7, p. 299])

, where denotes
the matrix norm.

The entries of

are log-convex functions on [0,1], since is log-convex
on (0, ). By definition of , using 1) iteratively
yields that is log-convex. By 2),
is log-convex, and by 3), the same holds for the limit

. Note that com-
ponentwise ensures that , cf. [7, p. 496]. Hence

which shows the assertion for positive .
If is merely nonnegative, consider the positive matrices

and the convex sets

Since, for every , and
, the sets form an in-

creasing sequence of convex sets with . It follows
that is convex too, which completes the proof.
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