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The Geometry of the Capacity Region for CDMA Systems
With General Power Constraints
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Abstract—Access-control strategies and rational pricing in
code-division multiple-access (CDMA) systems need exact knowl-
edge of the available transmission capacity and its limiting bound-
aries. We use the term “capacity region” to specify the set of
user-transmission demands that can be supported at the desired
quality of service (QoS). In this paper, we investigate the geo-
metrical properties of the capacity region for a fixed number
of users in a CDMA radio network under general QoS charac-
teristics and general power constraints. It turns out that, under
very mild assumptions, the capacity region is convex, and has an
appealing monotonicity property. As a side result, we develop an
elementary theory for characterizing the existence of solutions to
systems of linear equations with nonnegative elements, analogous
to Perron–Frobenius’ theory, but bypassing irreducibility.

Index Terms—Capacity region, code-division multiple-access
(CDMA), log-convex functions, nonnegative matrices, Perron–
Frobenius theory, power assignment, wireless networks.

I. INTRODUCTION AND NOTATION

A CENTRAL point for understanding the performance
of code-division multiple-access (CDMA) in power-

controlled environments is the analysis of the intertwining
effects of interference from all users. We consider a system with
a fixed number n of users, each demanding for a certain quality
of service (QoS) characteristic γi > 0. In this work, the set
of QoS requirements (γ1, . . . , γn) ∈ R

n that can be supported
by an appropriate power assignment is called the “capacity
region” of the network. This should be distinguished from the
information-theoretic channel capacity, although both concepts
aim at a measure of the maximum feasible transmission rate.
Related definitions are coined by [3] for joint achievable rates
in multiple-access channels and [14] for ad hoc networks
(capacity region), moreover by [15] for interference-limited
systems (user capacity). In the framework of satellite channels,
the authors [10] define the capacity region of arrival-rate vectors
in a similar vein.

Comprehending the capacity of CDMA systems has attracted
a lot of research activities over the last years. Research along the
lines of the present paper has been initiated by [17]. Algorithms,
receiver design, and effective bandwidth are included in papers
[4], [5], and [15]. Convexity properties of the capacity region
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and their influence onto the network behavior are investigated
in [1] and [7]. In [13], log-convexity of the feasible signal-
to-interference ratio (SIR) region is shown, however, power
constraints and the effect of how QoS requirements carry over
to SIR thresholds in different cases are neglected.

In the present work, we reveal the convexity and monotonic-
ity of the capacity region under general power constraints, thus
strongly generalizing previous results and providing a clear
unifying theory for the performance of interference-limited
multiple-access radio systems. It turns out that convexity is
preserved whenever the set of possible power allocations is
convex and closed under a simultaneous decrease of power. As
a prerequisite, the existence of solutions to systems of linear
equations with nonnegative elements is characterized, resem-
bling Perron–Frobenius theory, but avoiding irreducibility.

The present investigations are of high practical relevance for
understanding capacity limits, power-control algorithms, and
access-control strategies of CDMA networks. Power-control
algorithms, e.g., are often designed to maximize QoS over all
admissible points in the capacity region CP with power con-
straints P . This may be formalized by minγk∈CP

∑n
k=1 hk(γk).

If hk are convex functions, and if CP is a convex region, then
the powerful theory of convex optimization can be applied,
providing a bunch of effective algorithms and powerful char-
acterizations of the existence and uniqueness of solutions.

Access-control strategies rely heavily on the convexity of the
capacity region, as is shown in [7]. In the case of congestion,
Bayes and minimax policies are suggested, which lead to a fair
sharing of the total capacity. Convexity is a prerequisite for the
existence and computation of such strategies.

Game theory provides a suitable environment to find ra-
tional policies for balancing conflicting interests, in case of
congestion. In this framework, the capacity region is interpreted
as the set of outcomes in an n-person game. Convexity and
a manageable representation are fundamental for determining
equilibria strategies.

In the following, let V = (vij)
n
i,j=1 denote the nonnegative

channel gain matrix, with vij corresponding to the link from
transmitter j to receiver i. vij is used as a multiplicative
constant describing the power decrease on the respective path.
We, furthermore, assume that j’s decoding receiver is labeled
j, such that vjj is the attenuation on the path linking j to the
network.

The case wherein many transmitters are served by the same
receiver, as what occurs for a CDMA uplink with many mobiles
and only a few base stations, is also covered. If the locations
and physical properties of receivers i and k coincide, then the
corresponding lines i, k of V are identical. It should be men-
tioned that an analogous model, also including activity and
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orthogonality factors, can be applied to the downlink. This form
of duality is investigated in [2] and [8].

Irreducibility is a rather natural property in this context.
Matrix V is called irreducible if, for any i, j, there is a finite
chain im ∈ {1, . . . , n}, m = 0, 1, . . . , k, i0 = i, ik = j, such
that vim,im+1 > 0. However, it turns out that the assumption
of irreducibility can be omitted for characterizing solutions of
positive power. Besides the mathematical elegance, this makes
the model more widely applicable.

II. POWER ASSIGNMENT AND THE CAPACITY REGION

For every power allocation p = (p1, . . . , pn)′ > 0, let

SIRk(p) =
vkkpk∑

l �=k vklpl + Ckσ2
, k = 1, . . . , n

where σ2 > 0, Ck > 0, vkk > 0 for all k, and vkl ≥ 0 for
all k, l.

Let ψ : (0,∞) → (0,∞) be strictly increasing or strictly
decreasing. ψ is a monotonic transformation of the demands
γ1, . . . , γn of n users corresponding to a certain QoS character-
istic. In this paper, we are particularly interested in log-convex
functions ψ. This attribute entails the convexity of the capacity
region. Some examples of monotonic, log-convex functions
ψ are

ψ(γ) = eγ , (direct log-SIR requirements)

ψ(γ) =
1
γ

, (effective spreading-gain requirements)

ψ(γ) =
eγ

(1 − eγ)
, (effective bandwidth requirements).

The unconstrained capacity region is now defined as the set
of demand vectors, such that there exists a power assignment p
satisfying all SIR requirements, i.e.

C = {γ = (γ1, . . . , γn)′ > 0 | ∃p > 0 :

SIRk(p) ≥ ψ(γk) ∀k} .

To cover the case of limited power, we introduce the set P ⊂
(0,∞)n of admissible power allocations. Correspondingly, we
define the constrained capacity region by

CP = {γ = (γ1, . . . , γn)′ > 0 | ∃p ∈ P :

SIRk(p) ≥ ψ(γk) ∀k} .

We assume throughout that P is closed under simultaneous
decrease of power, that is

if p ∈ P and 0 < q ≤ p, then q ∈ P. (1)

Write B = (bkl)
n
k,l=1, where

bkl =
{

vkl

vkk
, k �= l

0, k = l

and τ = (τ1, . . . , τn)′, where τk = Ckσ2/vkk. Then, for every
p > 0

SIRk(p) =
pk∑n

l=1 bklpl + τk
, k = 1, . . . , n.

Moreover, SIRk(p) ≥ ψ(γk) for all k, if and only if

[I − Ψ(γ)B] p ≥ Ψ(γ)τ

where Ψ(γ) = diag(ψ(γ1), . . . , ψ(γn)). It now follows from
Lemma 1 d) in the Appendix that

C = {γ > 0 | ∃p > 0 : [I − Ψ(γ)B] p = Ψ(γ)τ}

and in view of condition (1)

CP = {γ > 0 | ∃p ∈ P : [I − Ψ(γ)B] p = Ψ(γ)τ} .

Let ρ(A) denote the spectral radius of a matrix A. By Lemma 1
a) and b), for any given γ > 0, the equation [I − Ψ(γ)B]p =
Ψ(γ)τ has a positive solution p, if, and only if, ρ(Ψ(γ)B) <
1, and in that case, the solution is unique. Denote it by π(γ) =
(π1(γ), . . . , πn(γ))′. Thus

π(γ) = [I − Ψ(γ)B]−1 Ψ(γ)τ ∈ (0,∞)n for all γ ∈ C

and

C = {γ > 0 | ρ(Ψ(γ)B) < 1} , CP = {γ ∈ C | π(γ) ∈ P} .

III. MONOTONICITY AND CONVEXITY OF

POWER ALLOCATIONS

Monotonicity of the capacity region is, inter alia, important
for the optimum base-station assignment. The authors [9] give
a characterization of the set of feasible values in the case of
unlimited power by its boundary surfaces, and show that power
uniformly rises whenever some QoS demand is increased. The
following is a general monotonicity property, simultaneously
of the set of demand vectors C and the corresponding power
allocations.
Theorem 1: Suppose that ψ is strictly increasing. Let γ(1) ∈

C and 0 < γ(0) ≤ γ(1), γ(0) �= γ(1).

a) It holds that γ(0) ∈ C, π(γ(0)) ≤ π(γ(1)), and if γ
(0)
k �=

γ
(1)
k , then πk(γ(0)) < πk(γ(1)).

b) If B is irreducible, then π(γ(0)) < π(γ(1)).

The same is true when ψ is strictly decreasing and γ(0) ≥
γ(1) ∈ C, γ(0) �= γ(1).

Proof: We consider only the case where ψ is strictly
increasing.

a) As Ψ(γ(0))B ≤ Ψ(γ(1))B, by the monotonicity of
the spectral radius (see, e.g., [6, Corollary 8.1.19]),
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we conclude that ρ(Ψ(γ(0))B) ≤ ρ(Ψ(γ(1))B) < 1, so
that γ(0) ∈ C. Hence, for i = 0, 1

π
(
γ(i)

)
=

[
I−Ψ

(
γ(i)

)
B

]−1

Ψ
(
γ(i)

)
τ =Ψ

(
γ(i)

)
τ

+

{ ∞∑
ν=1

[
Ψ

(
γ(i)

)
B

]ν
}

Ψ
(
γ(i)

)
τ .

Since Ψ(γ(0))τ ≤ Ψ(γ(1))τ and [Ψ(γ(0))B]
ν ≤ [Ψ

(γ(1))B]
ν

for all ν, it follows that π(γ(0)) ≤ π(γ(1)).
If γ

(0)
k < γ

(1)
k , then {Ψ(γ(0))τ}k < {Ψ(γ(1))τ}k, and

it then follows that πk(γ(0)) < πk(γ(1)).
b) If B is irreducible, so is Ψ(γ(0))B. Thus, for every

pair (k, l) ∈ {1, . . . , n}2, there exists ν∗ = ν∗(k, l) ≥ 0,

such that {[Ψ(γ(0))B]
ν∗
}kl > 0. The matrix

∑∞
ν=0

[Ψ(γ(0))B]
ν

is, therefore, strictly positive. Consequent-
ly, as Ψ(γ(0))τ ≤Ψ(γ(1))τ and Ψ(γ(0))τ �=Ψ(γ(1))τ

π
(
γ(0)

)
=

{ ∞∑
ν=0

[
Ψ

(
γ(0)

)
B

]ν
}

Ψ
(
γ(0)

)
τ

<

{ ∞∑
ν=0

[
Ψ

(
γ(0)

)
B

]ν
}

Ψ
(
γ(1)

)
τ ≤ π

(
γ(1)

)
.

�
The next theorem shows that the individual power allocations

πk(γ) follow a convex curve when γ moves along a straight
line through the capacity region.
Theorem 2: Suppose that ψ is log-convex. Let γ(0), γ(1) ∈

C, γ(0) �= γ(1). Set γ(λ) = λγ(1) + (1 − λ)γ(0) for 0 ≤
λ ≤ 1.

a) For every k = 1, . . . , n, πk(γ(λ)) is a convex function of
λ ∈ [0, 1]. If γ

(0)
k �= γ

(1)
k , then πk(γ(λ)) is strictly convex.

b) If B is irreducible, then for every k, πk(γ(λ)) is strictly
convex.
Proof:

a) Define g : [0, 1] → (0,∞)n and h : [0, 1] → [0,∞]n by

g(λ) =Ψ
(
γ(λ)

)
τ ,

h(λ)=

{ ∞∑
ν=1

[
Ψ

(
γ(λ)

)
B

]ν
}

Ψ
(
γ(λ)

)
τ , 0≤λ≤1.

The series converges if, and only if, ρ(Ψ(γ(λ))B) < 1.
Note that the series converges for λ = 0 and λ = 1. For
all λ ∈ [0, 1] with ρ(Ψ(γ(λ))B) < 1

g(λ) + h(λ) =

{ ∞∑
ν=0

[
Ψ

(
γ(λ)

)
B

]ν
}

Ψ
(
γ(λ)

)
τ

=
[
I − Ψ

(
γ(λ)

)
B

]−1

Ψ
(
γ(λ)

)
τ

= π
(
γ(λ)

)
. (2)

Let L denote the class of log-convex functions on
[0, 1] augmented by the zero function. Since ψ is log-

convex, every entry of Ψ(γ(λ)) belongs to L. Following
an approach of [2], we now take advantage of the fact
that the class L is closed under the following opera-
tions, see [11, p. 19]. If α ≥ 0 and f1, f2 ∈ L, then
αf1, f1 + f2, f1 · f2 ∈ L. Moreover, if (fν)∞ν=1 ⊂ L and∑∞

ν=1 fν(λ) < ∞ for λ ∈ {0, 1}, then
∑∞

ν=1 fν(λ) <
∞ for all λ ∈ [0, 1] and

∑∞
ν=1 fν ∈ L. Using these prop-

erties, one obtains that for every k = 1, . . . , n, hk(λ) <
∞ for all 0 ≤ λ ≤ 1, and gk, hk ∈ L. In particular,
(2) holds for all 0 ≤ λ ≤ 1, and so πk(γ(λ)) = gk(λ) +
hk(λ) ∈ L, too. As log-convex functions are convex,
πk(γ(λ)) is therefore convex for every k.

If γ
(0)
k �= γ

(1)
k , then, since ψ is strictly monotonic,

gk(λ) = τkψ(γ(0)
k + λ(γ(1)

k − γ
(0)
k )) is strictly monoton-

ic as well. Thus, by Lemma 2 a), gk is strictly convex. As
hk is convex, it follows that πk(γ(λ)) = gk(λ) + hk(λ)
is strictly convex.

b) Suppose that B is irreducible. For an indirect proof,
assume that there exists some k ∈ {1, . . . , n}, such that
πk(γ(λ)) is not strictly convex. According to a), this im-
plies that γ

(0)
k = γ

(1)
k , so that {Ψ(γ(λ))}kk = ψ(γ(0)

k ) for
all 0 ≤ λ ≤ 1. Moreover, since πk(γ(λ)) is log-convex,
it follows from Lemma 2 a) that πk(γ(λ)) is constant
on some nondegenerate interval Λ ⊂ [0, 1]. The kth row
of the equation [I − Ψ(γ(λ))B]π(γ(λ)) = Ψ(γ(λ))τ
yields that

πk

(
γ(λ)

)
− ψ

(
γ

(0)
k

) n∑
l=1

bklπl

(
γ(λ)

)
= ψ

(
γ

(0)
k

)
τk

for all 0 ≤ λ ≤ 1.

Hence,
∑n

l=1 bklπl(γ(λ)) is constant on Λ. Since each
of the functions πl(γ(λ)) is log-convex, it follows from
Lemma 2 b) that πl(γ(λ)) is constant on Λ, for every l
with bkl > 0. It follows by induction that πm(γ(λ)) is not
strictly convex on [0, 1] for all m, for which there exist
k1, . . . , kµ ∈ {1, . . . , n}, such that k1 = k, kµ = m, and
bkν ,kν+1 > 0 for ν = 1, . . . , µ − 1. However, if B is irre-
ducible, such a sequence exists for every m ∈ {1, . . . , n},
so that none of the functions πm(γ(λ)) is strictly convex.
This contradicts a). �

The proof of Theorem 2 shows the slightly stronger assertion
that the πk(γ(λ)) are even log-convex functions which, under
the conditions stated, are not constant on any subinterval.

IV. GEOMETRY OF THE CAPACITY REGION

We now state the central results on the geometry of the
capacity region. Both results are obtained as corollaries to
Theorem 1 and Theorem 2 a), respectively.
Corollary 1: Suppose that the set P of admissible power

allocations satisfies (1). If ψ is strictly increasing and γ(1) ∈
CP , then γ ∈ CP for all 0 < γ ≤ γ(1). If ψ is strictly decreasing
and γ(1) ∈ CP , then γ ∈ CP for all γ ≥ γ(1).

Corollary 1 shows the monotonicity of the capacity region
CP . For any fixed demand vector γ(1) ∈ CP , all vectors compo-
nentwise less (greater) than or equal to γ(1) are feasible as well,
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provided ψ is strictly increasing (decreasing). Hence, transmis-
sion remains feasible if γ is uniformly decreased (increased).
Corollary 1 points out which γ values might lead to critical
load situations. It, furthermore, describes the geometrical shape
of CP .

Convexity follows from the convexity of P by applying
Theorem 2 a).
Corollary 2: Suppose that ψ is log-convex. Suppose further

that the set P of admissible power allocations is convex and
satisfies (1). Then, the constrained capacity region CP is a
convex set.

Proof: Let γ(0), γ(1) ∈ CP . Thus, π(γ(0)), π(γ(1)) ∈
P . Write γ(λ) = λγ(1) + (1 − λ)γ(0). Theorem 2 a) and the
assumption that P be convex yield that

π
(
γ(λ)

)
≤ λπ

(
γ(1)

)
+ (1 − λ)π

(
γ(0)

)
∈ P

for all 0 ≤ λ ≤ 1.

Hence, by (1), π(γ(λ)) ∈ P , and, therefore, γ(λ) ∈ CP , for all
0 ≤ λ ≤ 1. �

We conclude with some remarks concerning the boundary
of the capacity region, which is important for the uniqueness
of solutions to optimal control and access problems (see [7]).
Let ψ and P satisfy the assumptions of Theorem 2. Then, the
surface ĈP = {γ ∈ C|π(γ) ∈ ∂P} contains no line segments,
provided that the matrix B is irreducible or the set P satisfies
the stronger condition that

if p ∈ P and 0 < q ≤ p, q �= p, then q ∈ intP. (3)

Condition (3) is satisfied if P is of the form P = {p > 0 |∑n
k=1 pk ≤ pmax}, that is, if the total power is restricted. Ca-

pacity regions corresponding to this special type of constraints
have been studied in [1]. In turn, condition (3) is violated for
power regions of the form P = {p > 0 | pk ≤ p̂k for all k},
that is, if the power of each mobile is restricted separately. The
corresponding capacity regions and optimal power allocations
are investigated in [7] for the case where ψ(x) = 1/x.

APPENDIX

The following lemma is concerned with solutions of the
equation

[I − A]x = c (4)

when A is a nonnegative, but not necessarily irreducible,
matrix. It is an elementary analog of [12, Th. 2.1] and does
not rest on the theory of Perron and Frobenius. Irreducibility
is also avoided in [16, Th. 1]. In this work, the assumption
of irreducibility would prevent application of the model in the
multiuser receiver framework.
Lemma 1: Let A ∈ R

n×n be nonnegative.

a) If there are x>0 and c>0 satisfying (4), then ρ(A) < 1.
b) If ρ(A) < 1, then I − A is nonsingular, and for every

c > 0, the unique solution x ∈ R
n of (4) is positive.

c) If ρ(A) < 1, then for every c ≥ 0, the unique solution
x ∈ R

n of (4) is nonnegative.
d) If c > 0, and there exists y > 0, such that [I − A]y ≥ c,

then (4) has a unique solution x and 0 < x ≤ y.
Proof:

a) Suppose x > 0 and c > 0 satisfy (4). A well-known
bound for the spectral radius of a nonnegative matrix
[6, Theorem 8.1.26, p. 493] yields that, for some i,
ρ(A) ≤ x−1

i

∑n
j=1 aijxj = 1 − ci/xi < 1.

b) and c) This is obvious by writing [I − A]−1 as a geomet-
ric von Neumann series.

d) If y > 0 and d := [I − A]y ≥ c > 0, then, by a),
ρ(A) < 1. Thus, by b), there is a unique x > 0, such
that [I − A]x = c. Since [I − A](y − x) = d − c ≥ 0,
it follows from c) that y − x ≥ 0. �

The next lemma provides two simple properties of log-
convex functions.
Lemma 2:
a) If f : [a, b] → (0,∞) is log-convex, and there is no subin-

terval of [a, b], where f is constant, then f is strictly
convex.

b) If f , g : [a, b] → (0,∞) are log-convex, and f + g is
constant on [a, b], then both f and g are constant on [a, b].
Proof:

a) Assume f is log-convex, but not strictly convex. Thus,
f is convex, but not strictly so, and it follows that f is
affine on some interval. Since f is log-convex, f must be
constant on that interval.

b) If f and g are log-convex, they are convex, and since f =
const − g, f and g are both convex and concave, that is,
affine; but affine log-convex functions are constant. �

Lemma 2 b) does not carry over to products. That is, there
exist log-convex functions f and g, such that fg is constant,
but neither f , nor g, is constant. For example, f(x) = ex and
g(x) = e−x.
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