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Abstract— In this paper, the saddle point behavior of mutual
information is investigated for discrete channel models. We use
the fact that mutual information is a convex function of the
channel matrix, and a concave function of the input distribution.
Interpreting transmission as a game, nature against the trans-
mitter with payoff given by mutual information, equilibria are
shown to exist for certain strategy sets of nature. The case that
nature makes the channel useless with zero capacity is discussed
in detail. If nature uses a singleton nonzero capacity strategy,
a characterization of the capacity-achieving input distribution
is derived. Relevant channel classes covered by this approach
include the binary asymmetric and erasure channel with bounded
error probabilities. Furthermore, for the symmetric n-symbol
channel two classes of separation constraints are introduced and
the according game equilibria are determined.

I. INTRODUCTION

In recent literature, resource allocation in wireless channels

is often considered as a game where players compete for

a scarce medium, the capacity provided by some channel.

Usually, Nash bargaining solutions are sought for interference

games with Gaussian additive noise, cf. [1], [2]. Different

fairness and allocation criteria arise from this paradigm leading

to useful control policies for wireless networks.

Other approaches include the channel itself as a player. The

transmitter then gambles against a malicious nature. Mutual

information I(X; Y ) is considered as payoff function, the

transmitter aims at maximizing, nature at minimizing I(X; Y ).
A simple motivating example is the additive scalar channel

with input X and additive Gaussian noise Z subject to power

constraints E(X2) ≤ P and E(Z2) ≤ σ2. By standard

arguments from information theory it follows that

max
X:E(X2)≤P

min
Z:E(Z2)≤σ2

I(X; X + Z)

= min
Z:E(Z2)≤σ2

max
X:E(X2)≤P

I(X; X + Z)

=
1
2

log
(
1 +

P

σ2

)
(1)

is the capacity of the channel. Hence an equilibrium point

exists and capacity is the value of the two-person zero-sum

game. The corresponding equilibrium strategies are to increase

power and noise, respectively, to its maximum values.

A similar game is considered in [3] where the coder controls

the input and the jammer the noise, both from allowable sets.

Saddle points, hence equilibria, and ε-optimal strategies are

determined for binary input and output quantization under

power constraints for both the coder and the jammer. An ex-

tension of the mutual information game (1) to vector channels

with convex covariance constraints is considered in [4]. The

authors [5] investigate a similar minimax setup for a single

link in a MIMO system with different types of interference.

Further extensions to vector channels and different types of

games are considered, e.g., in [6], [7].

In this paper, we consider the channel as a player, the

malicious nature. Nature gambles against the transmitter which

conveys information across the channel. Here, the channel is

characterized by error probabilities of symbol transmission

with symbols from a finite set. Hence, we confine ourself to

discrete channel models and investigate the question whether

there are equilibrium points.

The contributions of this paper are as follows. We use

the fact that mutual information is a convex function of the

channel matrix and a concave function of the input distribu-

tion. If nature is free in choosing any strategy it will make

the channel useless by selecting a channel matrix with equal

rows. This is exactly the zero-capacity case, as is demonstrated

by help of the variational distance. A characterization of the

capacity-achieving distribution is derived if nature plays a

singleton strategy. For general strategy sets with bounded error

probabilities relevant examples which have equilibria include

the binary asymmetric and erasure channel. Further, the n-

symbol symmetric channel is investigated in detail. Using the

majorization concept, strategy sets are defined which describe

possible channel states in a realistic way excluding the useless

channel.

II. PRELIMINARIES

Denote the set of stochastic vectors by

Dm =
{
p = (p1, . . . , pm) | pi ≥ 0,

m∑
i=1

pi = 1
}
.

Each p ∈ D represents a discrete distribution with m support

points. The entropy H is defined as

H(p) = −
m∑

i=1

pi log pi.

If p characterizes the distribution of some discrete random

variable X we synonymously write H(X) = H(p).
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It is well known that the entropy H is a concave function

of p, furthermore, since it is symmetric, even Schur-concave

over the set of distributions Dm.

We briefly recall the corresponding definitions, see [8]. Let

p[i] and q[i] denote the components of p and q in decreasing

order, respectively. Distribution p ∈ S is said to be majorized

by q ∈ S, in symbols p ≺ q, if
∑k

i=1 p[i] ≤
∑k

i=1 q[i] for

all k = 1, . . . , m. A function f : Dm → R is called Schur-

concave, if f(p) ≥ f(q) whenever p ≺ q.

In the following we deal with discrete channels. The input

is described by a discrete random variable X with values

from a finite alphabet of m symbols and input distribution

p, the output denoted by random variable Y ranging over

an alphabet of size n. The channel matrix comprising the

conditional probabilities wij = P (Y = j | X = i) is denoted

by

W =
(
wij

)
1≤i≤m,1≤j≤n

.

Matrix W is an element of the set of stochastic matrices,

denoted by Sm×n, its rows are stochastic vectors, denoted by

w1, . . . ,wm ∈ Dm. The distribution of Y is then given by

the stochastic vector q = pW .

Mutual information for this channel model reads as

I(X; Y ) = H(Y )−H(Y | X)

= H(pW )−
m∑

i=1

piH(wi)

=
m∑

i=1

piD(wi ‖pW )

(2)

where D(· ‖ ·) denotes the Kulback-Leibler divergence,

D(p ‖ q) =
m∑

i=1

pi log
pi

qi

with p, q ∈ Dm.

Obviously, mutual information depends on p, controlled by

the transmitter, and W , controlled by nature. To emphasize

this dependence, we also write I(X; Y ) = I(p; W ). We quote

from [9, Lemma 3.5].

Proposition 1: Mutual information I(p; W ) is a concave

function of p ∈ Dm and a convex function of W ∈ Sm×n.

The proof relies on the representation in the third line of

(2), convexity of the Kulbach-Leibler divergence D(p ‖ q) as

a function of the pair (p, q), and concavity of the entropy H .

III. CHANNEL GAMES

In the following we regard transmission over a channel as

a two-person zero-sum game. A malicious nature is gambling

against the transmitter. If nature is controlling the channel,

the transmitter wants to protect itself against a worst case

behavior of nature in the sense of maximizing the capacity of

the channel by an appropriate choice of the input distribution.

The question arises whether this type of channel game has

an equilibrium. If the transmitter moves first and maximizes

capacity under the present channel conditions, is the same

game value achieved if nature deteriorates the channel against

the chosen strategy of the transmitter? Hence, I(X; Y ) plays

the role of the payoff function.

We will show that for different classes of channels equilibria

exist. The basis is formed by the following minimax or saddle

point theorem.

Proposition 2: Let T ⊆ Sm×n be a closed convex subset

of channel matrices. Then the according channel game has an

equilibrium point with value

max
p∈Dm

min
W∈T

I(p; W ) = min
W∈T

max
p∈Dm

I(p; W ). (3)

The proof is an immediate consequence of von Neumann’s

minimax theorem (cf. [10, p. 131]. Since Dm and T are

compact and convex, the main premises are concavity in p and

convexity in W , both properties assured by Proposition 1.

If T = Sm×n, the value of the game is zero. Nature will

make the channel useless by selecting

W =

⎛
⎜⎝

w
...

w

⎞
⎟⎠ (4)

with constant rows w yielding I(p; W ) = 0 independent of

the input distribution. Obviously, (4) holds if and only if input

X and output Y are stochastically independent.

We first consider the case that nature plays a singleton

strategy, hence T = {W }, a set consisting of exactly one

element. Equation (3) then reduces to determining the capacity

C of the channel. In order to characterize non-zero capacity

channels we use the variational distance between the i-th and

j-th row of W , defined as

d(wi,wj) =
n∑

k=1

|wik − wjk|.

The condition

max
1≤i,j≤m

d(wi,wj) = γ(W ) > 0. (5)

on the channel matrix W ensures that the according channel

has non-zero capacity, as is demonstrated in the following.

Proposition 3: If W satisfies (5) for some γ(W ) > 0, then

C = max
p∈Dm

I(p; W ) ≥ γ2(W )
8 ln 2

> 0,

where information is measured in nats.

Proof: Let the maximum in (5) be attained at indices i0
and j0. Further, set p = 1

2 (ei0 + ej0) where ei denotes the

i-th unit row vector in R
n. The third line in (2) then gives

I(p; W ) =
1
2
D
(
wi0‖

wi0 + wj0

2
)

+
1
2
D
(
wj0‖

wi0 + wj0

2
)
.

Since

D(wi‖wj) ≥
1

2 ln 2
d2(wi,wj),

see [9, p. 58], and

d
(
wi,

wi + wj

2
)

=
1
2
d(wi,wj)
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Fig. 1. The binary asymmetric channel.

it follows that

I(p,W ) ≥ 1
8 ln 2

d2(wi0 ,wj0) =
γ2

8 ln 2
> 0.

In summary, some channel with transition probabilities W
has non-zero capacity if and only if γ(W ) > 0. The same

condition turns out important when determining the capacity

of arbitrary discrete channels.

Proposition 4: Let channel matrix W satisfy condition

(5). Then C = maxp∈Dm I(p; W ) is attained at p∗ =
(p∗1, . . . , p

∗
m) if and only if

D(wi‖p∗W ) = ζ (6)

for some ζ > 0 and all i with p∗i > 0. Moreover, C =
I(p∗; W ) = ζ holds.

Proof: Mutual information I(p; W ) is a concave func-

tion of p. Hence the KKT conditions (cf., e.g., [11]) are nec-

essary and sufficient for optimality of some input distribution

p. Using representation (2) some elementary algebra shows

that
∂

∂pi
I(p; W ) = D(wi‖pW )− 1.

The full set of KKT conditions now reads as

p ∈ Dm

λi ≥ 0, i = 1, . . . , m

λipi = 0, i = 1, . . . , m

D(wi‖pW ) + λi + ν = 0, i = 1, . . . , m

which shows the assertion.

Proposition 4 has an interesting interpretation. For an input

distribution p∗ = (p∗1, . . . , p
∗
m) to be capacity-achieving, the

Kulback-Leibler distance between the rows of W and the

weighted average with weights p∗i has to be the same for all

i with positive p∗i . Hence, capacity-achieving distribution p∗

places the mixture distribution p∗W somehow in the middle

of all rows w∗i .

A. The Binary Asymmetric Channel

As an example we consider the binary asymmetric channel

with channel matrix

W = W (ε, δ) =
(

1− ε ε
δ 1− δ

)
=

(
w1

w2

)

0 0

1 1

X Y

1

δ

1− δ

Fig. 2. The Z-channel.

with 0 < ε, δ < 1 such that condition (5) is satisfied (see

Fig. 1). By (6) the capacity-achieving input distribution p =
(p0, p1) satisfies

D(w1‖pW ) = D(w2‖pW ).

This is an equation in the variables p0, p1 which jointly with

the condition p0 + p1 = 1 has the solution

p∗0 =
1

1 + b
, p∗1 =

b

1 + b
, (7)

with

b =
aε− (1− ε)
δ − a(1− δ)

and a = exp
(h(δ)− h(ε)

1− ε− δ

)
,

and h(ε) = H(ε, 1− ε), the entropy of (ε, 1− ε). This result

has been derived by cumbersome methods in the early paper

[12].

Now assume that the strategy set of nature is given by

Tε̂,δ̂ =
{
W (ε, δ) | 0 ≤ ε ≤ ε̂, 0 ≤ δ ≤ δ̂

}

where 0 ≤ ε̂, δ̂ < 1
2 are given. Hence, error probabilities are

bounded from the worst case by ε̂ and δ̂.

Since I(p; W ) is a convex function of W , I(p; W (ε, δ))
is a convex function of the argument (ε, δ) ∈ [0, 1]2. The

minimum value 0 is obviously attained whenever ε + δ = 1.

This shows that I(p; W (ε, δ)) is decreasing in ε ∈ [0, ε̂] for

fixed δ, and vice versa, is a decreasing function of δ ∈ [0, δ̂]
with ε fixed. Accordingly, it holds that

min
W∈Tε̂,δ̂

I(p; W ) = I(p; W (ε̂, δ̂))

for any p ∈ D2. Further,

max
p∈D2

min
W∈Tε̂,δ̂

I(p; W ) = max
p∈D2

I(p; W (ε̂, δ̂))

is attained at p∗ = (p∗0, p
∗
1) from (7) with the replacements

ε = ε̂ and δ = δ̂.

Since Tε̂,δ̂ is a convex set we obtain from Proposition 2 that

a saddle point exists and the value of the game is given by

max
p∈D2

min
W∈Tε̂,δ̂

I(p; W ) = min
W∈Tε̂,δ̂

max
p∈D2

I(p; W )

= I(p∗; W (ε̂, δ̂)).
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Fig. 3. The binary asymmetric erasure channel.

The so called Z-channel with error probability ε = 0 and

δ ∈ [0, 1] (see Figure 2) is a special case hereof. We have

max
p∈D2

min
δ≤δ̂

I(p; W (0, δ)) = max
p∈D2

I(p; W (0, δ̂))

= I(p∗; W (0, δ̂)).

After some algebra, from (7)

p∗0 = 1− p∗1, p∗1 =
1/(1− δ̂)

1− 2h(δ̂)/(1−δ̂)

is obtained with capacity

I(p∗; W (0, δ̂)) = log2(1 + 2−h(δ̂)/(1−δ̂)),

where information is measured in bits, cp. [13, Example 9.11].

B. The Binary Asymmetric Erasure Channel

The binary asymmetric erasure channel (BEC) with bit error

probabilities ε, δ ∈ [0, 1], and channel matrix

W = W (ε, δ) =
(

1− ε ε 0
0 δ 1− δ

)

is depicted in Figure 3.

According to Proposition 3 this channel has zero capacity if

and only if ε = δ = 1. Excluding this case, by Proposition 4

the capacity-achieving distribution p∗ = (p∗0, p
∗
1), p∗0 +p∗1 = 1

is given by the solution of

(1− ε) log
1− ε

p0(1− ε)
+ ε log

ε

p0ε + p1δ

= δ log
δ

p0ε + p1δ
+ (1− δ) log

1− δ

p0(1− δ)
,

(8)

Substituting x = p0
p1

equation (8) reads equivalently as

ε log ε− δ log δ = (1− δ) log(δ + εx)− (1− ε) log(ε + δ/x)

By differentiating w.r.t. x it is easy to see that the right hand

side is monotonically increasing such that exactly one solution

p∗ = (p∗1, p
∗
2) exists, which can be numerically computed.

If ε = δ, the solution is given by p∗0 = p∗1 = 1
2 , as is easily

verified from equation (8).

Resembling the arguments used for the binary asymmetric

channel and adopting the notation we see that

min
W∈Tε̂,δ̂

I(p; W ) = I(p; W (ε̂, δ̂))

for any p ∈ D2. Further,

max
p∈D2

min
W∈Tε̂,δ̂

I(p; W ) = max
p∈D2

I(p; W (ε̂, δ̂))

is attained at p∗ = (p∗0, p
∗
1), the solution of (8) with ε

substituted by ε̂ and δ by δ̂. Finally, the game value amounts

to

max
p∈D2

min
W∈Tε̂,δ̂

I(p; W ) = min
W∈Tε̂,δ̂

max
p∈D2

I(p; W )

= I(p∗; W (ε̂, δ̂)).

If δ = ε ≤ ε̂ the result is

I(p∗; W (ε̂, δ̂)) = 1− ε̂,

and the equilibrium strategies are p∗0 = p∗1 = 1
2 for the

transmitter and ε = δ = ε̂ for nature, cf. [14, Example 8.5].

IV. THE n-ARY SYMMETRIC CHANNEL

Consider the n-ary symmetric channel with symbol set

{0, 1, . . . , n− 1} and channel matrix

W (ε) =

⎛
⎜⎜⎜⎝

ε0 ε1 · · · εn−1

εn−1 ε0 · · · εn−2

...
...

. . .
...

ε1 ε2 · · · ε0

⎞
⎟⎟⎟⎠

by cyclically shifting some error vector ε =
(ε0, ε1, . . . , εn−1) ∈ Dn. Let E ⊆ Dn denote the set of

strategies nature can choose the channel state from by

selecting some ε ∈ E .

If E = Dn, the value of the game is zero. As above, nature

will cripple the channel by selecting

ε = εu =
( 1
n

, . . . ,
1
n

)
,

yielding I(X; Y ) = 0 independent of the input distribution.

Note that εu is the unique minimum element with respect to

majorization, i.e., εu ≺ ε for all ε ∈ Dn.

Hence, to avoid trivial cases the set of strategies for nature

has to be separated from this worst case.

A. Separation by Schur Ordering

We first investigate the set

E�ε̂ = {ε = (ε0, . . . , εn−1) ∈ D |
ε̂ ≺ ε, επ(0) ≤ · · · ≤ επ(n−1)}

for some fixed ε̂ 	= εu and permutation π. This means that the

error probabilities are at least spread out, or separated from

uniformity as ε̂, with error probabilities increasing in the fixed

order determined by π.

Since E�ε̂ is convex and closed, the set of corresponding

matrices

T�ε̂ =
{
W (ε) | ε ∈ E�ε̂

}
is convex and closed as well.

Proposition 2 ensures the existence of an equilibrium point.

max
p∈D

min
W∈T�ε̂

I(p; W ) = min
W∈T�ε̂

max
p∈D

I(p; W ).
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To determine the value v of the game, we first consider

maxp∈D I(p; W (ε)) for some fixed ε ∈ E�ε̂. From (2) it

follows that the maximum is attained at input distribution p =
( 1

n , . . . , 1
n ) with value

max
p∈D

I(p; W (ε)) = log n−H(ε).

As the entropy is Schur concave, minε∈E�ε̂

(
log n − H(ε)

)
is attained at ε̂ such that the value of the game is obtained as

min
W∈T�ε̂

max
p∈D

I(p; W ) = log n−H(ε̂)

with according equilibrium strategies p = ( 1
n , . . . , 1

n ) and the

components of ε equal to those of ε̂ rearranged according to

π.

B. Directional Separation

Next we consider channel states separated from the worst

case εu into the direction of some prespecified ε̂ ∈ D, ε̂ 	= εu.

This set of strategies is formally described as

Eα̂,ε̂ = {ε = (1− α)εu + αε̂ | α̂ ≤ α ≤ 1}
for some given α̂ > 0. It is obviously convex and closed. The

set of corresponding channel matrices

Tα̂,ε̂ =
{
W (ε) | ε ∈ Eα̂,ε̂

}
is also closed and convex such that an equilibrium exists by

Proposition 2. It remains to determine the game value.

Since I(p; W ) is a convex function of W , hence decreasing

in α ∈ [α̂, 1),
min

W∈Tα̂,ε̂

I(p; W )

is attained at W (εα̂) with εα̂ = (1 − α̂)ε0 + α̂ε̂. From

representation (2) it can be easily seen that

max
p∈D

min
W∈Tα̂,ε̂

I(p; W )

is attained at p = ( 1
n , . . . , 1

n ).
Vice versa, from (2) it follows that for any W = W (ε)

max
p∈D

I(p; W (ε)) = log n−H(ε)

is attained at p = ( 1
n , . . . , 1

n ) for any ε ∈ Eα̂,ε̂. By mono-

tonicity in α ∈ [α̂, 1) it holds that

min
W∈Tα̂,ε̂

max
p∈D

I(p; W ) = log n−H(εα̂),

which determines the game value. The equilibrium strategies

are the uniform distribution for the transmitter and the extreme

error vector εα̂ for nature.

The n-ary symmetric channel with error probabilities

(1− δ,
δ

n− 1
, . . . ,

δ

n− 1
)

is a special case of the above by identifying ε̂ = (1, 0, . . . , 0)
and α = 1− n

n−1δ.

The binary symmetric channel (BSC) with error probability

0 < δ < 1
2 is obtained by setting n = 2, ε̂ = (1, 0), and

α = 1− 2δ.

V. CONCLUSIONS

In this paper, we have built upon the fact that mutual

information is a concave function of the input distribution and

a convex function of the channel matrix. Hence, the game

with players transmitter against channel has an equilibrium

point, provided the channel strategy is selected from a compact

convex set. By help of the variational distance we have

discussed the case that nature makes the channel useless with

zero capacity. If the channel has nonzero capacity, a charac-

terization of the capacity-achieving input distribution against a

fixed strategy of nature has been derived. As we have shown,

equilibria exist for a series of relevant examples including the

asymmetric binary and erasure channel. Moreover, we have

investigated symmetric channels over n symbols for two types

of separation constraints preventing nature from blocking out

transmission.
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