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Abstract— In this paper, we propose an iterative soft channel
estimation and data detection algorithm based on a factor
graph. Channel coefficients as well as data symbols are treated
as variable nodes and are all estimated in a low-complexity
element-wise manner. Applying asymmetric LDPC codes, this
algorithm is able to deliver ambiguity-free outputs for MIMO
systems with or without training symbols. Training symbols
are inherently utilized as a type of a priori information. This
algorithm thoroughly relaxes the troublesome constraints on
training design in the sense that an arbitrary (even zero) number
of training symbols can be placed at arbitrary positions within
a data burst.

I. INTRODUCTION

Consider a MIMO system which applies spatial multiplex-
ing. The receiver is expected to separate the data streams
from multiple antennas and to provide reliable data estimates.
Accurate channel knowledge is the key to accomplish these
two challenging tasks, since different data streams are distin-
guished via different channel coefficients associated with them.
As channel coefficients are usually estimated from training
(pilot) symbols/sequences, the system robustness relies heavily
on the training. Due to this reason, training design is always
critical yet often energy-taking. Besides, matrix-inversion-
based channel estimation algorithms commonly require train-
ing symbols to be consecutively located. This, however, highly
restricts our freedom in designing and utilizing training sym-
bols, e.g., in case of fast fading channels, it would be nice
to distribute training symbols throughout the burst instead of
concentrating them into a preamble or midamble.

From an information theoretic point of view, it is highly
suboptimal to perform pure training-based channel estimation
[1]. In this paper, we will try to exploit the potential of channel
coding to eliminate systems dependence on training. We apply
asymmetric LDPC codes [2] to remove phase ambiguity, and
use antenna-specific interleaver patterns to accomplish layer
separation. The use of training is no longer mandatory, and all
strict requirements on training design are eliminated. A low-
complexity graph-based iterative soft estimation algorithm is
proposed. To enable the system to start from a totally blind
state, we also introduce the concept of soft channel estimation.
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Fig. 1. Transmitter structure

II. SYSTEM MODEL

A. Channel Model

Let NR denote the number of receive (Rx) antennas and NT

the number of transmit (Tx) antennas. The equivalent discrete-
time model of an MIMO channel is given by

yn[k] =
NT∑

m=1

hn,m[k]xm[k] + wn[k] , (1)

where k ∈ {0, 1, . . . ,K − 1} is the discrete time index with
K denoting the burst length. yn[k] ∈ C is the channel output
at the n-th (1 ≤ n ≤ NR) Rx antenna at time index k,
and xm[k] ∈ {±1} is the BPSK channel input at the m-
th Tx antenna at time index k. hn,m[k] ∈ C marks the
coefficient of the sub-channel connecting the n-th Rx antenna
and the m-th Tx antenna at time index k. For the sake of
simplicity, block fading is assumed within this paper, i.e., the
channel keeps constant within each data burst while it varies
independently from burst to burst. wn[k] represents an additive
white Gaussian noise (AWGN) sample with zero mean and
variance σ2

w.

B. Transmitter Structure

The adopted transmission scheme is illustrated in Fig. 1.
Channel coding is done separately on each transmit antenna.
Each info bit stream is first encoded by an asymmetric
LDPC code in order to benefit from coding gain and to
eliminate the phase ambiguity. Afterwards, repetition encoding
together with random interleaving is applied. To eliminate the
potential permutation ambiguity, the interleaver patterns must
be antenna-specific. Using asymmetric LDPC to avoid phase
ambiguity is a relatively new idea [2], whereas using different
interleaver patterns to separate superimposed data streams is
a well-proven method from the field of interleave-division
multiple access (IDMA) [3].
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Fig. 2. Relationship between a data symbol and its observation

III. PRELIMINARY REMARKS

To enhance the readability of the algorithm description, we
introduce several essential concepts in advance.

A. Gaussian Approximation

Considering an arbitrary symbol xm (index k is omitted for
simplicity) and one of its observations yn, we have

yn =
∑NT

i=1 hn,ixi + wn

= hn,mxm +
∑NT

i=1,i�=m hn,ixi︸ ︷︷ ︸
MAI

+ wn︸︷︷︸
AWGN

, (2)

where MAI stands for multi-antenna interference. We define
vn,m as the effective noise sample in the observation yn w.r.t.
the symbol xm:

vn,m
.= yn − hn,mxm , (3)

as illustrated in Fig. 2. If we approximate the probability
density function (PDF) of vn,m by CN (µvn,m

, σ2
vn,m

) with

µvn,m

.= E {vn,m}
σ2

vn,m

.= E
{|vn,m − µvn,m

|2} , (4)

the computation of likelihood function can be dramatically
simplified into

p(yn |xm) ≈ 1
πσ2

vn,m

exp
(
− |yn − hn,m xm − µvn,m

|2
σ2

vn,m

)
.

B. Soft Channel Estimation

The adjective “soft” here has a two-fold meaning. It means
that we should utilize soft data information for channel esti-
mation, and the channel estimator must provide soft channel
information as well. In general, it is difficult to name a metric
to describe the reliability of a channel estimate. Nevertheless,
if the additive noise has a Gaussian distribution, it is indeed
very easy to represent soft channel information. Given an
unbiased estimate ĥ, the PDF of h will be a Gaussian function
with mean µh = ĥ, as illustrated in Fig. 3. The variance σ2

h

p(h)

ĥ

Fig. 3. Probability density function of h

of h will be determined by the noise and signal power. In this
case, we may say that σ2

h carries the reliability information of
ĥ. Certainly, the smaller σ2

h is, the more reliable ĥ is.
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Fig. 4. Factor graph of a MIMO channel with NT = NR = 2
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Fig. 5. Factor graph of concatenated LDPC code and repetition code

C. Factor Graph

Admitting the fact that uncertainties exist in channel co-
efficients, a general factor graph of a MIMO channel should
include channel coefficients as variable nodes as well. Making
the following independence approximation1

p(Y |xm[k]) ≈
NR∏
n=1

p(yn[k] |xm[k]) , (5)

where Y is the matrix which collects all channel outputs of the
current data burst, a factor graph of a MIMO channel will look
like Fig. 4. The mark � stands for the relationship between
hn,m[k] and hn,m[k + 1]. Since we assume that the channel
is constant within each data burst, the relationship between
hn,m[k] and hn,m[k + 1] is simply an equality. Nevertheless,
for fast fading channels, this � should be a suitable transfer
function which describes the degree of variation of a channel
coefficient between two neighboring time indices.

Concerning the concatenation of an LDPC code and a
repetition code together with interleaver, the corresponding
factor graph will look like Fig. 5, where each filled circle
marks a repetition code node and each box-plus sign denotes
a parity check node.

D. Asymmetric LDPC Code

A parity check is called asymmetric if it is connected with
an odd number of summands. For example, [011] is a valid
solution for the following parity check sum

b1 ⊕ b2 ⊕ b3 = 0 , (6)

but its negation [100] is an invalid solution due to the odd
amount of summands. An LDPC code consisting of asymmet-
ric parity checks is called an asymmetric LDPC code. The
percentage of its parity checks being asymmetric gives the
degree of asymmetry. If all parity checks of an LDPC code are
asymmetric, phase ambiguity incurred by uncertain channel
coefficients can be easily eliminated by using such a code.

1This approximation is made to reduce the data detection complexity. The
authors would refer interested readers to [4], [5] for detailed explanation on
this issue.
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IV. GRAPH-BASED ITERATIVE GAUSSIAN DETECTION

Due to the common relationships between data symbols,
channel coefficients, and channel observations, a more abstract
notation is adopted for ease of explanation. In the following,
we use y to denote an observation node, x to denote a
symbol node, and h to denote a channel coefficient node. The
complicated indices n, m, and k are in general replaced by a
single index i.

A. Starting Point

We assume that all channel coefficients are zero-mean Gaus-
sian distributed, and all subchannels have the same average
power. This assumption is valid for most of the practical
applications. Note that this assumption does not have to be
accurate since this initial setup is discarded as soon as the
algorithm starts to run. In case that no training symbols
are transmitted at all, the initial mean value of all channel
coefficients should be set to a tiny non-zero value in order to
start the algorithm, which is a common way of launching a
blind detection algorithm.

B. Message Update Rule at Observation Nodes

Revisiting Fig. 4, we will find that the relationship between
an observation node and its associated variable nodes can be
written as

y =
Q∑

i=1

hixi + w, (7)

where Q = NT is the amount of associated symbol nodes
or channel coefficient nodes, hi is the channel coefficient
linking y and xi, and w is the additive white Gaussian noise
sample. In each iteration, one observation node will receive
messages from its variable nodes in the form of probability
functions. Then new messages are generated and redistributed
to these variable nodes according to the Turbo principle, that is
only extrinsic informationshould be exchanged. A schematic
diagram of message propagation is given in Fig. 6.

y

xi

hi

xQhQ

h1

x1

y

xi

hi

xQhQ

h1

x1

Fig. 6. Message exchange at an observation node

1) Soft Data Detection with Soft Channel Information:
Based on (7), we define vm (1 � m � Q) as the effective
noise sample in the observation y w.r.t. the symbol xm:

vm
.= y − hmxm =

Q∑
i=1,i�=m

hixi + w . (8)

Approximating p(vm) as vm ∼ CN (µvm
, σ2

vm
), and knowing

that hm ∼ CN (µhm
, σ2

hm
), the log-likelihood ratio (LLR) of

symbol xm is calculated as

LLR(xm) = 4 Re{µ∗
hm

(y − µvm
)}/(σ2

hm
+ σ2

vm
) . (9)

In each iteration, the LLR of each symbol is calculated ac-
cording to (9) and distributed over the factor graph. Interested
readers may find the mathematical derivation of (9) in [6].

Let P(xi = ±1) be denoted by Pi,±1 and note that hi and
xi are statistically independent, the PDF of hixi will be

p(hixi) = Pi,+1 · p(hi) + Pi,−1 · p(−hi) , (10)

which is indeed a mixed Gaussian function with two peaks.
Applying hi ∼ CN (µhi

, σ2
hi

) and after some mathematical
derivation, we will obtain

µhixi
= µhi

(Pi,+1 − Pi,−1)
σ2

hixi
= σ2

hi
+ 4 Pi,+1Pi,−1|µhi

|2 . (11)

Finally, the mean and variance of vm can be calculated as

µvm
=

∑Q
i=1,i�=m µhixi

σ2
vm

=
∑Q

i=1,i�=m σ2
hixi

+ σ2
w . (12)

As a matter of fact, the effective noise sample vm is a sum-
mation of Q − 1 independent mixed Gaussian variables plus
one independent Gaussian variable. Since all these component
variables are continuously valued, the Gaussian approximation
of vm is pretty good even at high SNRs.

2) Soft Channel Estimation with Soft Data Information:
Let us rewrite (8) into

y = hmxm + vm . (13)

The information of hm contained in y is fully represented by
the conditional probability density function p(y|hm), which
may be computed as follows:

p(y|hm) =
∑

xm∈{±1}
p(y|hm, xm)P(xm)

= Pm,+1
1

πσ2
vm

exp
(
−|hm − (y − µvm

)|2
σ2

vm

)
+

Pm,−1
1

πσ2
vm

exp
(
−|hm + (y − µvm

)|2
σ2

vm

)
. (14)

Excluding a priori information and after considering the issue
of normalization, the following statement holds:

p(hm) = p(y|hm) . (15)

Clearly, it is again a mixed Gaussian function, which is
troublesome to be utilized in the stage of data detection, partic-
ularly when the data symbol xm is of higher-order modulation
formats other than BPSK. Therefore, suitable approximation
is necessary to simplify this channel knowledge. Note that if
the data detection is carried out successfully, we will have

Pm,+1 � Pm,−1 (16)
or

Pm,+1 � Pm,−1 (17)

as the iterations go on. Therefore, it is reasonable to make the
approximation hm ∼ CN (µhm

, σ2
hm

) with

µhm
= (y − µvm

)(Pm,+1 − Pm,−1)
σ2

hm
= σ2

vm
+ 4Pm,+1Pm,−1|y − µvm

|2 , (18)

which are calculated according to (14) and (15). Relevant
discussions can be also found in [7].
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C. Message Update Rule at Channel Coefficient Nodes

For block-fading channels, the channel coefficients keep
constant within each data burst. Therefore, each channel
coefficient node is associated with Q = K observation nodes
as depicted in Fig. 7. Similar with the message updating

yi

y2

y1

yQ

h

Fig. 7. A channel coefficient node and its observation nodes

at observation nodes, only extrinsic information should be
exchanged at channel coefficient nodes. For example, if a
channel coefficient node receives PDF messages from its
observation nodes as shown in the left part of Fig. 8, then the
updated messages are generated in a way shown in the right
part of Fig. 8. Note that the product of two Gaussian PDFs

h

p2(h)

p3(h)

p1(h)
h

p1(h) · p3(h)

p2(h) · p3(h)

p1(h) · p2(h)

Fig. 8. Message exchange at a channel coefficient node

gives a new Gaussian PDF. Suppose we have the following
two messages:

p1(h) : h ∼ CN (µ1, σ
2
1)

p2(h) : h ∼ CN (µ2, σ
2
2) , (19)

then the product of these two messages will be given by

p1(h) · p2(h) : h ∼ CN (µh, σ2
h) (20)

with

µh = (σ2
2µ1 + σ2

1µ2)/(σ2
1 + σ2

2)
σ2

h = σ2
1σ2

2/(σ2
1 + σ2

2) . (21)

Therefore, we can still use mean value and variance to
represent the newly generated message. As no extra effort is
needed, this operation can be repeated iteration by iteration.

D. Message Update Rules at Symbol and Code Nodes

The message update rules at symbol nodes, parity check
code nodes, and repetition code nodes can be easily derived
according to the principle of belief propagation. Due to limited
space, we would refer interested readers to [8][9] for detailed
discussions on this topic.

E. Scheduling and Phase Correction

If training symbols (no matter how many) are available, an
initial channel estimation is performed before the first iteration.
The observation nodes connected with training symbols deliver
messages to channel coefficient nodes in order to provide a
reasonable starting point for the iterative processing algorithm.
If there are no training symbols, then this initial channel

estimation is simply skipped. Afterwards in each iteration,
the message updating operation is performed once per node.
Using the same analysis as in [4], we will find that the
complexity of this algorithm is strictly linear in the number of
transmit/receive antennas and the spreading factor.

A special procedure in this algorithm is the phase correction
operation. If the estimated data stream from a particular
transmit antenna violates most of the associated parity checks,
then with high probability this estimated data stream is negated
in phase. In this case, messages generated at all nodes be-
longing to this specific transmit antenna should be reversed
in phase. Afterwards, these phase-corrected messages will
be propagated to the parity checks to continue the iterative
processing.

In case of completely phase-negated soft inputs, an asym-
metric LDPC decoder will mostly fall into a local optimum
insteal of a global optimum. Therefore, we should not purely
rely on iterative decoding to correct the phase. In the first
global iteration, the phase correction strategy described above
should be used, and it proves to be helpful to carry out several
local iterations among nodes except LDPC nodes. Whereas in
the later iterations, we can perform iterative message passing
among all nodes just in a normal way.

V. NUMERICAL RESULTS

Since the algorithm is designed to work for systems with
or without training symbols, we test its performance under
different training lengths. We use KT to denote the number
of training symbols per burst per antenna. Note that, with
the proposed algorithm, training symbols do not have to be
consecutively placed. They can for example spread over the
whole burst in order to track fast fading channels. The a priori
knowledge of training symbols is utilized in an element-wise
manner within this algorithm.

A. Simulation Setup

For the numerical results provided in this section, a block-
Rayleigh-fading MIMO channel model with 8 transmit anten-
nas and 8 receive antennas is used. The coefficient of each
subchannel is normalized to have an average power of 1. The
SNR per info bit Eb/N0 is calculated as 1/σ2

w, where σ2
w

denotes the variance of the additive noise.
Channel coding is done separately at each transmit antenna.

A binary regular (3, 5, 200, 80) LDPC code is applied. The
parity check matrix has a uniform column weight of 3, and
a uniform row weight of 5 which makes the code strongly
asymmetric. The code word length is given by 200, and the
info word length is given by 80. During simulations, the parity
check matrix is randomly generated without optimization.

The rate of the repetition code is set to be 1/4. Scrambling
with fixed pattern is applied, that is, every second bit of a
code word is flipped. Scrambling is beneficial for the proposed
algorithm since it assumes that all data symbols come with
zero mean. Antenna-specific random interleaving is applied to
enhance the symbols independence as well as to eliminate the
potential permutation ambiguity.

Finally, the number of global iterations of the algorithm
is fixed to be 5. In the following, we will call the proposed
algorithm as graph-based iterative Gaussian detector (GIGD).
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B. Mean Squared Error

For unbiased semi-blind channel estimation [10][11], the
theoretical tight bound of MSE is given by the Cramer-
Rao lower bound (CRLB) [12]. Therefore, in case of having
training symbols, the channel estimation performance of GIGD
will be bounded by the CRLB. Fig. 9 compares the MSE
curves of GIGD with the corresponding bound. Surprisingly,
GIGD approaches the CRLB at high SNRs even under KT =
0, i.e., in a totally blind mode. This amazing performance
verifies the efficiency of element-wise channel estimation via
belief propagation. Although no matrix inversion is applied at
all, the resulting performance still achieves the optimum.

For the three curves in Fig. 9, the only different parameter
is KT - the number of training symbols per burst. As we
can see, longer training sequences are helpful at low SNRs,
but bring no benefit at high SNRs. We should also keep in
mind that longer training always means less signal power and
lower spectral efficiency. According to Fig. 9, the optimal
training length is 0 for SNRs ≥ 6 dB, which deserves to be an
interesting phenomenon from an information theoretic point of
view.

C. Bit Error Ratio

To further verify the performance of GIGD, we check its
BER performance for different amounts of training symbols.
As training symbols appropriate the energy from data symbols
and they do not help in channel estimation, we may predict
that GIGD should achieve the best performance at KT = 0
in the high SNR range. Fig. 10 confirms our conjecture.
GIGD does deliver the lowest BER in a totally blind mode
for high SNRs, which is difficult to imagine for conventional
receiver algorithms. This observation indeed reveals the power
of channel coding in eliminating detection ambiguities. Fur-
thermore, it shows the promise of message passing algorithms
based on factor graph. Unlike conventional blind estimation
algorithms, GIGD does not rely on the whiteness of data
streams. Consequently, it is not vulnerable to the temporal
correlation introduced by channel coding. As a matter of fact,
GIGD fully exploits the redundancy from channel codes to
deliver ambiguity-free outputs.
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VI. CONCLUSIONS

In this paper, a graph-based iterative soft channel and data
estimation algorithm is proposed. Channel coefficients are
estimated element-wise via belief propagation over a factor
graph. An asymmetric LDPC code is used to eliminate the
phase ambiguity, and a repetition code together with inter-
leaving is used to eliminate the permutation ambiguity. By
exploiting the potential of channel coding, this algorithm is
able to deliver ambiguity-free outputs with arbitrary length
of training. For high SNRs, this algorithm achieves the best
performance without using any training symbols.
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