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Abstract—Macro-diversity — all base stations decode cooper-
atively each received signal — can mitigate shadow fading, and
increase the capacity of a spread-spectrum communication net-
work. Assuming that a terminal’s transmission power contributes
to its own interference, the literature determines whether a vector
of quality-of-service targets is feasible through a simple formula,
which is insensitive to the terminals’ channel gains. Herein,
through Banach’ contraction-mapping principle — and without
the self-interference approximation — a new low-complexity
capacity formula is derived. Through its dependence on relative

channel gains, the new formula adapts itself in a sensible manner
to special conditions, such as when most terminals can only be
heard by a subset of the receivers. Under such conditions, the
original may significantly overestimate capacity.

I. INTRODUCTION

Macro-diversity — when all base stations decode cooper-

atively each received signal — can mitigate shadow fading,

and increase the capacity of a spread-spectrum communication

system [1], [2], [3]. A fundamental question is whether a

set of quality-of-service (QoS) targets (carrier-to-interference

ratios, CIR) is feasible. This determines, for instance, whether

a terminal with certain QoS requirement can be admitted,

without reducing the QoS of the “incumbent” terminals. The

set of all the feasible QoS vectors is associated with the

“capacity region” of the system. Assuming that a transmitter’s

power contributes to its own interference, [2] shows that a

set of QoS targets is feasible if their sum is less than the

number of receivers, and that the corresponding “greedy”

power adjustment process always converges to a unique power

vector.

However, [2]’s formula is insensitive to the channel gains,

and hence to the terminals’ locations, which is somewhat

counter-intuitive under certain situations. For instance, in a

K-receiver macro-diversity scenario, if there are 2 terminals

near each receiver, it must be much easier to satisfy their

QoS requirements, than if the 2K terminals congregate near a

single receiver — in which case the system behaviour should

be closer to that of a one-receiver system.

Building upon [4], and without the self-interference approx-

imation, this note derives a new macro-diversity feasibility

formula whose complexity is only marginally greater than

[2]’s. And through its explicit dependence on relative channel

gains, the new formula adapts itself in a sensible manner to

special conditions, such as when most terminals congregate in

a small area of the system, and can therefore only be heard

by a subset of the receivers.

Recent relevant work from ours includes [5], a strict gener-

alisation of the present work, as well as [6] which — following

the general approach of [7] — explores the convergence of a

power adjustment process in which all the details of the system

are “hidden” inside the adjusting functions.

Below, the new feasibility result is stated, interpreted and

compared to the one previously available. Subsequently, af-

ter describing the basic macro-diversity system model, the

derivation of the new result — which is grounded on the

Banach’s contraction mapping principle of fixed-point theory

[8], [9] — is presented. Then, a practical admission control

algorithm based on the new result is introduced, its complexity

analysed, and examples of its use given and discussed. Two

mathematical appendices provide the essential mathematical

background, and some technical results from the literature.

II. MAIN RESULT

Consider a macro-diversity system with K receivers, and N

terminals operating on the reverse link. Let α := (α1, · · · ,αN)
be the vector of desired carrier-to-interference ratios, hi,k
denote the channel gain in the signal from terminal i arriving

at receiver k, and gi,k = hi,k/hi with hi = hi,1+ · · ·+hi,K . If at

each receiver k and for each terminal i

N

∑
n=1
n 6=i

αngn,k < 1 (1)

then it is possible for each terminal i to operate at the

CIR αi (α belongs in the “capacity region” of the system).

Furthermore, the power vector that produces α can be obtained

by successive approximations, starting from an arbitrary power

vector.

Condition (1) indicates that the greatest weighted sum of

N− 1 carrier-to-interference ratios must be less than 1. The

weights are relative channel gains. At most NK such simple

sums need to be checked.
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Condition (1) is closest to that provided by [2] in the

special case in which each terminal is “equidistant” from each

receiver; that is, for each i, hi,k ≈ hi,l ∀k, l (for example, the

terminals may be distributed along a line that is perpendicular

to the axis between the 2 symmetrically placed receivers).

In this case, each gn,k = 1/K, and condition (1) reduces to

∑N
n=1
n 6=i

αn < K for each i. ∑N
n=1
n 6=i

αn adds all αi except one; such

sum is, evidently, largest when it leaves out the smallest αi. By

comparison, [2] gives the condition ∑N
n=1 αn <K for all cases.

Condition (1) is the least conservative of the two because it

leaves out one αi (the smallest) from the sum. For 3 terminals

and 2 receivers, the original formula yields as achievable

region the symmetric triangular pyramid with vertexes (0,0,0),

(2,0,0), (0,2,0) and (0,0,2), shown in darker colour in fig. 1(a).

By contrast, ∑3
n=1
n 6=i

αn < 2 — to which condition (1) reduces,

in this example — yields the achievable region shown in fig.

1(b), which strictly contains the darker triangular pyramid of

fig. 1(a), and extends to include the transparent triangular

volume limited above by the line segment between (0,0,2) and

(1,1,1) (indeed (0,99 , 0,99 , 0,99) does satisfy ∑3
n=1
n 6=i

αn < 2

but definitely not α1 + α2 + α3 < 2 ).

However, the original condition may also significantly over-

estimate system capacity, when most terminals are in effective

range of only a few receivers. Suppose in the previous example

that a third receiver exists, but that the terminals are located

in such a way that they have a strong signal to only two

receivers; that is, for each i, hi,1 ≈ hi,2 while hi,3 ≈ 0. Thus,

gi,1 ≈ gi,2 ≈ 1/2 and gi,3 ≈ 0. Then, condition (1) still reduces

to ∑N
n=1
n 6=i

αn < 2 for each i, and leads to the already discussed

achievable region. However, the original condition leads to

∑N
n=1 αn < 3, which, as illustrated by figure 1(c), greatly

overestimates (for the special case considered) the achievable

region, by extending it to the triangular planar region with ver-

texes (3,0,0),(0,3,0) and (0,0,3)) (see also subsection VII-C2).

Let us now consider the simple asymmetric case of 3

terminals and 2 receivers, with relative gains to the first

receiver of 2/3, 1/3, and 1/2, respectively. Condition (1)

leads to 3 inequalities per receiver, such as 2
3
α1 + 1

3
α2 < 1,

1
3
α1 + 2

3
α2 < 1, 2

3
α2 + 1

2
α3 < 1, etc. The combination of

these inequalities yields a region illustrated by figures 2(a)

and 2(b), which is limited from above by the line segment

between (0,0,2) and (1,1,2/3). As already discussed, the result

from [2], ∑N
n=1αn < 2, yields a symmetric pyramidal region

with vertexes at (2,0,0), (0,2,0) and (0,0,2) (recall fig. 1(a))

which, as illustrated by fig. 2(c), intersects with — but neither

contains nor is contained by — the region described by fig.

2(b).

As discussed further in section VII, condition (1) yields

a low-complexity algorithm for admission-control decisions,

which adapts itself in a sensible manner to special situations

in which most terminals are in range of only a few receivers.

The original condition cannot adapt to such situations because

it is independent of the channel gains, and accordingly may

yield over-optimistic results. It is important to notice that the

(a) The original gives as achievable region the darker pyramidal
region.

(b) The new achievable region

(c) When only 2 of 3 receivers can "hear" the terminals, the original
greatly overestimates the achievable region

Figure 1. The new condition versus the original: Achievable regions when
each of 3 terminals is “equidistant” from each receiver.
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(a) View from top

(b) Perspective view

(c) The original formula produces an achievable region that neither
includes nor is included by the new region

Figure 2. The macro-diversity achievable region for 3 terminals and 2
receivers, for specific asymmetric channel gains

original seems to misbehave under specific scenarios where

certain key assumptions underlying [2] may not be satisfied

(e.g., the “non-overcrowding” condition, and that all receivers

can “hear” all transmissions). Indeed, [1, section 9.8] studies

a situation where, depending on each transmitter’s location,

it is only “heard” by 2 of the 3 available receivers, and

concludes that the simple formula of [2] should be replaced

by a somewhat more elaborate condition. Nevertheless, the

fact that condition (1) “automatically” adjusts itself to handle

special scenarios such as that of [1, section 9.8] seems to be

a major advantage.

III. THE MACRO-DIVERSITY SYSTEM MODEL

Under macro-diversity, the cellular structure is removed

and each transmitter is jointly decoded by all receivers[2]. A

relevant quality-of-service (QoS) index for terminal i is the

product of its spreading gain by its “carrier to interference

ratio” (CIR), αi, defined as [1], [2] :

αi =
Pihi,1

Yi,1 + σ2
1

+ · · ·+
Pihi,K

Yi,K + σ2
K

(2)

where Pi is the transmission power level of terminal i, K is

the number of receivers in the network, hi,k is the channel gain

in the signal from terminal i arriving at receiver k, σ2
k is the

(average) power of the additive random noise at receiver k, and

Yi,k denotes the interfering power experienced by transmitter i

at receiver k; i.e.,

Yi,k :=
N

∑
n=1
n 6=i

Pnhn,k (3)

Below, we utilise the interference vector

Yi := (Yi,1, · · · ,Yi,K) (4)

It will prove useful to define the relative channel gains:

gi,k :=
hi,k

hi
(5)

where,

hi := hi,1 + · · ·+hi,K (6)

IV. MACRO-DIVERSITY CAPACITY ISSUES

A. The Capacity question

Conditions are sought under which a given N-vector of

positive numbers, α := (α1, · · · ,αN), is such that there exists

another N-vector of positive numbers, P= (P1, · · · ,PN), satis-
fying appropriate constraints, and equation (2) for each i; that

is, the system formed by N equations of the form (2) has a

solution in the appropriate space. When such solution exists,

the vector of power ratios α is said to be in the “capacity

region” of the system.

More formally, let P denote the set of admissible power

vectors, and αi(P) be defined by (2). The capacity region of

the system is then defined as

C = {(α1(P), · · · ,αN(P))|P ∈ P} (7)
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Relevant discussions of the capacity region of power-

controlled cellular systems — albeit without macro-diversity

— can be found in [10], [11], [12].

B. Macro-diversity capacity as a fixed-point problem

One can envision a process in which terminals take turns

adjusting transmission power, and each terminal chooses the

power level that achieves its desired CIR under the present

level of interference. Of course, when a terminal changes its

power, it also alters the level of interference experienced by

the others, which may lead to further power adjustments by

other terminals.

For instance, from equation (2) one obtains the power

adjustment process

Pi = αi

(

hi,1

Yi,1 + σ2
1

+ · · ·+
hi,K

Yi,K + σ2
K

)−1

(8)

If this adjustment process “converges” to a feasible power

vector, in the sense that at the present power levels, no terminal

needs further power adjustment to achieve its desired CIR,

evidently, those CIR’s are feasible.

If we denote as T(p) the function that produces a new power

vector as a function of the present one, when each terminal

adjusts its power as described above, then we need to explore

the conditions under which there is a vector p∗ such that p∗ =
T(p∗), that is, p∗ is a fixed point of T.

C. Banach’ fixed-point principle

For some transformation T from certain space into itself,

fixed-point theory explores conditions under which T has a

fixed-point, that is, there is a point x∗ in the concerned space

such that x∗ = T(x∗). In particular, Theorem B.1 holds that,

if T is a contraction (Definition B.1), then T has a unique

fixed-point, and that it can be found iteratively via successive

approximation (Definition B.2).

D. Normalised adjustment

Equation (8) involves a ratio of sums of ratios with which

is very difficult to work. Reference [2] simplifies the macro-

diversity analysis by including a terminal’s own signal as part

of the interference (thus, the sum in equation (3) is taken over

all n). As an alternative, in equation (8), one can replace each

Yi,k(P) with

Ŷi := max
k

{Yi,k} (9)

and each σ2
k with

σ̂ := max
k

{σ2
k} (10)

Then, equation (8) becomes (recall that hi = ∑k hi,k, eq. (6)):

Pi =
αi

hi

(

Ŷi + σ̂
)

(11)

Equation (11) strictly overestimates the amount of power that

terminal i needs in order to achieve its desired CIR. Thus,

it stands to reason that if a set of CIR is feasible under the

adjustment process given by Equation (11), it is also feasible

under the original adjustment.

E. Properties of the new macro-diversity adjustment

Notice that Ŷi ≡ ‖Yi‖∞ (Definition A.4). Thus, the adjust-

ment process can now be written as Pi = fi(P−i)+ ci where,

fi(P−i) :=
αi

hi
‖Yi(P−i)‖∞ (12)

and

ci :=
αi

hi
σ̂ (13)

Equation (12) involves a “norm” (Definition A.2). This sug-

gests that fi may satisfy Definition A.1. Clearly, if gi(P−i) :=
‖Yi(P−i)‖ satisfies Definition A.1, so does fi. We show below

that gi does satisfy Definition A.1.

Lemma IV.1: For x ∈ ℜM and k = 1, · · · ,K, consider

the vectors ak = (a1,k, · · · ,aM,k) with am,k > 0, and let

vk(x) = ∑M
m=1 am,k|xm|, v(x) := (v1(x), · · · ,vK(x)), and f (x) :=

‖v(x)‖β, where ‖ ·‖β denotes a norm on ℜK (Definition A.2).

Then f satisfies Definition A.1.

Proof: It is evident that f satisfies properties 1 and 2

of Definition A.1. To check property 3, consider f (x+ y) =
‖v(x+y)‖β

vk(x+y) =
M

∑
m=1

am,k|xm + ym| ≤
M

∑
m=1

am,k(|xm|+ |ym|)

≡
M

∑
m=1

am,k|xm|+
M

∑
m=1

am,k|ym|

≡ vk(x)+ vk(y)

Thus,

f (x+y) ≤ ‖
[

v1(x)+ v1(y) · · · vK(x)+ vK(y)
]T

‖β

≡ ‖v(x)+v(y)‖β

By hypothesis, ‖ · ‖β has property 3. Therefore, ‖v(x) +
v(y)‖β ≤ ‖v(x)‖β +‖v(y)‖β ≡ f (x)+ f (y).
Thus, f (x+y)≤ f (x)+ f (y) and f satisfies Definition A.1.

Remark 1: It is evident and consistent with Theorem A.1

that the function f is monotonic (Definition A.7).

V. THE BANACH APPROACH APPLIED TO

MACRO-DIVERSITY

Below we address the macro-diversity capacity question

through fixed-point theory, specifically through Theorem B.1,

the Banach Contraction Mapping Principle.

Let the transformation T(P) be defined by






T1(P)
...

TN(P)






=







f̌1(P)+ c1
...

f̌N(P)+ cN






(14)

with

f̌i(x) := 0 · xi+ fi(x−i) ≡ fi(x−i) (15)

for x ∈ ℜN , where fi and ci are given by eqs. (12) and (13),

respectively.
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Below we characterise the conditions under which T is a

contraction, which, by Theorem B.1, implies that T has a

unique fixed-point, and that it can be found by successive

approximations (Definition B.2).

Remark 2: One can choose any norm to apply Theorem

B.1. Below we utilise the infinity norm (Definition A.4). The

sub-index of ‖·‖∞ is omitted for notational convenience.

Theorem V.1: Let ~1M denote the element of ℜM with each

component equal to 1. If each fi satisfies Definition A.1, and

is such that ∀i, fi(~1N−1) < 1 then the transformation T defined

by eq. (14) satisfies Definition B.1.

Proof: By Lemma IV.1, each fi satisfies Definition A.1.

Fixed-point analysis necessitates functions defined on ℜN , but

it is a simple matter to show that if fi satisfies Definition A.1

on ℜN−1, then f̌i satisfies Definition A.1 as a function on ℜN .

For x, y ∈ ℜN , ‖T(x)−T(y)‖ =

∥

∥

∥

∥

∥

∥

∥







f̌1(x)− f̌1(y)
...

f̌N(x)− f̌N(y)







∥

∥

∥

∥

∥

∥

∥

≡max







∣

∣ f̌1(x)− f̌1(y)
∣

∣

...
∣

∣ f̌N(x)− f̌N(y)
∣

∣






(16)

By Lemma A.1,
∣

∣ f̌i(x)− f̌i(y)
∣

∣ ≤ f̌i(x−y). Thus,

max







∣

∣ f̌1(x)− f̌1(y)
∣

∣

...
∣

∣ f̌N(x)− f̌N(y)
∣

∣






≤max







f̌1(x−y)
...

f̌N(x−y)






(17)

Let Mx,y := max(|x1− y1|, · · · , |xN − yN |) ≡ ‖x−y‖

By monotonicity (see Remark 1),

f̌i(x−y)≤ f̌i(Mxy, · · · ,Mxy) ≡ f̌i(Mxy
~1N) (18)

By homogeneity (condition (2) of Definition A.1)

f̌i(Mxy
~1N) = Mxy f̌i(~1N) ≡ ‖x−y‖ f̌i(~1N) ≡ ‖x−y‖ fi(~1N−1)

(19)

Thus,

max







∣

∣ f̌1(x)− f̌1(y)
∣

∣

...
∣

∣ f̌N(x)− f̌N(y)
∣

∣






≤ λ‖x−y‖ (20)

with λ := max{ f1(~1N−1), · · · , fN(~1N−1)} < 1.

Therefore, ‖T(x)−T(y)‖ ≤ λ‖x−y‖ with λ ∈ [0,1).

VI. CAPACITY IMPLICATIONS

A. Original coordinates

The feasibility condition of Theorem V.1 when applied to

the adjustment rule of section IV-D leads to:

αi

N

∑
n=1
n 6=i

hn,k

hi
< 1 ∀i,k (21)

B. New coordinates

Condition (21) can be improved upon through a change of

coordinates. Equation (11) suggests the change of variable:

qi :=
hiPi

αi

(22)

Now, Pnhn,k ≡ qnαnhn,k/hn ≡ qnαngn,k (recall that gi,k :=
hi,k/hi with hi = ∑k hi,k). Corresponding to equation (3), we

now have

Yi,k :=
N

∑
n=1
n 6=i

qnαngn,k (23)

The adjustment process given by equation (11) can be

expressed under the new coordinates, as qi = gi(q−i)+ σ̂ with

gi(q−i) := max
k

N

∑
n=1
n 6=i

qnαngn,k ≡ ‖Yi(q−i)‖∞ (24)

Now, the feasibility condition leads to

max
i,k

N

∑
n=1
n 6=i

αngn,k < 1 (25)

VII. MACRO-DIVERSITY ADMISSION CONTROL

Condition (25) can be very useful in making admission

control decisions in a macro-diversity system. The basic

admission-control problem can be stated as follows: Given N

“incumbent” terminals with known channel states, and each

achieving its desired carrier-to-interference ratio (CIR) αi, can

another terminal with known channel state that wishes a given

CIR αN+1 be admitted into the system and provide to each

terminal its desired quality-of-service level? The answer is

affirmative if condition (25) is satisfied with the parameters

of the incumbent and the entering terminals.

A. The feasibility condition re-formulated

For admission decisions it may be preferable to re-write

condition (25) as follows.

Let

Sk(M) :=
M

∑
m=1

αmgm,k (26)

Thus, condition (25) can be re-stated as

Sk(N)−αigi,k < 1 ∀i,k (27)

The left side of inequality (27) is largest when the term

being subtracted is smallest. Thus, with jk defined as

α jkg jk,k ≤ αngn,k ∀n (28)

that is, jk is the index of the terminal that has the smallest

αigi,k product, condition (27) can be re-stated as follows.

At each receiver k,

Sk(N)−α jkg jk,k < 1 (29)

Thus, once the terminal with the smallest αigi,k product is

identified at each receiver, only one inequality, (29), need to

be checked per receiver.
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B. The admission control algorithm

The admission problem can now be stated with the notation

of section VII-A. At a given admission point, there are N

terminals operating with known channel gains. Sk(N) and jk
are known, and condition (29) is satisfied at each receiver.

Terminal N+1, whose channel gain to each receiver is known,

wishes to join the incumbent terminals and obtain a CIR αN+1.

Can this terminal wishes be granted, without reducing the QoS

of any incumbent below its desired level?

From the development of section VII-A, it is clear that in

order to answer the admission question, the following steps

should be performed:

1) Calculate the K products βk := αN+1gN+1,k

2) For each receiver, obtain Sk(N+1) = Sk(N)+ βk

3) Update jk if necessary; that is, if for some k, βk <
α jkg jk,k then N+1→ jk.

4) If at each k, Sk(N + 1)−α jkg jk,k < 1, then admit the

terminal wishing service.

Notice that the 4 steps above involve very simple operations.

K multiplications, K additions, K comparisons of two real

numbers, K simple subtractions, and K comparisons between a

number and one. These simple operations are to be performed

by the system controller, which presumably has at its disposal

plenty of computational resources, and no significant energy

constraint. Thus, complexity does not appear to be a problem.

In fact, the algorithm may be optimised further. For instance,

if after the second step, it turns out that Sk(N + 1) < 1 for a

subset of the receivers, steps 3 and 4 need not be performed

for those receivers. And if Sk(N+1) < 1 for each k, then the

terminal can be admitted without further calculations because

condition (29) will be necessarily satisfied with the expanded

set of terminals.

In practise, since channel gains do change over time, the

system will need to periodically update all the parameters

used in feasibility and admission calculations. Also, when a

terminal exits the system, Sk(·) and possibly jk need updating.

C. Some special cases

One can gain further insight into the admission control

condition by considering certain special cases.

1) All incumbents near a given receiver: Suppose each

incumbent is very close to receiver one, and relatively far to

all other receivers. Then, for each i, gi,1 ≈ 1 and, for k > 1,

gi,k ≈ 0 . Strictly for expository convenience, suppose further

that αN ≤ αi ∀i. Clearly, Sk(N) ≈ 0 for k > 1; thus, for k > 1

the left side of condition (29) is zero, and there is nothing

further to check. For k = 1, condition (29) becomes

S1(N)−αN =
N−1

∑
n=1

αn < 1 (30)

Suppose that another terminal wants to enter the system,

and achieve CIR αN+1. Intuitively, the location of this terminal

should make a big difference in the admission decision. If it

wants to enter the system in the “crowded” region admission

should be more difficult than if it wants to enter a distant, less

congested area. Let us see how the algorithm of section VII-B

handles this situation.

a) Entrance into the crowded area: If the new terminal

is in the same area as the others, then its relative channel gains

satisfy gN+1,1 ≈ 1 and, for k > 1, gN+1,k ≈ 0 . It follows that

αN+1gN+1,k ≈ 0 for k > 1. Thus the feasibility condition is in

doubt only for k = 1. Now, S1(N + 1) = ∑
N+1
n=1 αn, and if αN

continues to be the smallest CIR, then the terminal can be

admitted only if ∑
N−1
n=1 αn + αN+1 < 1.

b) Entrance near a distant receiver: If the new terminal

is near a distant receiver, say K, it means that gN+1,K ≈ 1 and

gN+1,k ≈ 0 for k < K. Because gN+1,1 ≈ 0,admitting the new

terminal has no effect on the situation near receiver 1: S1(N+
1) = S1(N), and the feasibility inequality (30) will continue to

hold. Near receiver K the new terminal faces no interference,

thus the left side of condition (29) is zero. Thus, condition

(29) would be satisfied at each k if the new terminal joins the

system; thus, it can be admitted.

c) Conclusion for this case: The algorithm of section

VII-B behaves sensibly. It will definitely admit a new terminal

that is located near a receiver that is distant from the crowded

area. But if the new terminal wants to join the crowd, the

admission decision depends on the specific parameters of the

entering and incumbent terminals.

2) All terminals between 2 receivers: Suppose now that

all incumbents and the entering terminal are located between

receivers 1 and 2, so that, for each i, gi,1 ≈ gi,2 ≈ 1/2 and gi,k ≈
0 for k > 2. In this case, the left side of condition (29) is zero

for k> 2. The feasibility condition is only in doubt, concerning

receivers 1 and 2. Assuming, for notational convenience, that

αN+1 ≤αi ∀i, the feasibility condition for k∈{1,2} with N+1

terminals reduces to Sk(N+1)− 1
2
αN+1 = 1

2 ∑N
n=1αn < 1 or

N

∑
n=1

αn < 2 (31)

The condition ∑N+1
n=1 αn < K — given by [2] for all cases

independently from the channel gains — would have slightly

increased the left side of (31) by adding all CIR, but if K≫ 2,

it may have greatly over-estimated the right side of (31), and

hence the admission capability of the system, for this case.

Channel gains also play a prominent role in the feasibility

analysis of other multi-cell CDMA systems, such as in [13].

APPENDIX A

NORMS AND RELATED MATERIAL

A. Concepts and definitions

Let V denote a vector space (for a formal definition of these

spaces see [14, pp. 11-12]).

Definition A.1: A function f : V →ℜ is called a semi-norm

on V , if it satisfies:

1) f (v) ≥ 0 for all v ∈V (non-negativity)

2) f (λv) = |λ| · f (v) for all v ∈ V and all λ ∈ ℜ (homo-

geneity)

3) f (v+w) ≤ f (v)+ f (w) for all v, w ∈ V (sub-additivity

or “the triangle inequality”)
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Definition A.2: If a semi-norm additionally satisfies f (v) =
0 if and only if v = θ (where θ denotes the zero element of

V ), then f is called a norm on V and f (v) is usually denoted

as ‖v‖.
Remark A.1: It is a simple matter to show that a function

that satisfies properties 2 and 3 above is convex. Thus, (semi-

)norm-minimisation problems are often well-behaved.

Definition A.3: The Hölder norm with parameter p≥ 1 (“p-

norm”) is denoted as || · ||p and defined for x ∈ ℜN as

‖x‖p = (|x1|
p + · · ·+ |xN |

p)
1
p (A.1)

Remark A.2: With p = 2, the Hölder norm becomes the

familiar Euclidean norm. The p = 1 case is also often en-

countered. Furthermore, it can be shown that limp→∞ ‖x‖p =
max(|x1| , · · · , |xN |), which leads to the following definition:

Definition A.4: For x∈ ℜN , the supremum or infinity norm

is denoted as ‖·‖∞ and defined as

‖x‖∞ := max(|x1| , · · · , |xN |) (A.2)

Definition A.5: For v ∈ ℜN , let w be such that wi := |vi|,
and denote w as |v|.
Definition A.6: A norm, ‖ · ‖, on ℜN is called an absolute

vector norm if it depends only on the absolute values of the

components of the vector; that is, for v∈ ℜN , and w such that

wi := |vi|, ‖v‖ ≡ ‖w‖.
Definition A.7: For x and y ∈ ℜN , let x≤ y mean that xi ≤

yi for each i. A norm, ‖ ·‖, on ℜN is said to be monotonic if,

for any x and y ∈ ℜN , |x| ≤ |y| implies that ‖x‖ ≤ ‖y‖.

B. Useful results from the literature

Lemma A.1: (Reverse triangle inequality) If the function

f : V →ℜ satisfies the triangle inequality, then | f (x)− f (y)| ≤
f (x−y).

Proof: Without loss of generality, suppose that f (x) ≥
f (y) which implies that f (x)− f (y) ≡ | f (x)− f (y)|.
Observe that x≡ (x−y)+y and apply the triangle inequality

to this sum:

Thus, f (x) ≡ f ((x−y)+y)≤ f (x−y)+ f (y) or

f (x)− f (y) = | f (x)− f (y)| ≤ f (x−y) (A.3)

Remark A.3: Through (A.3) one can prove that all norms

are continuous.

Theorem A.1: A norm on ℜN is monotonic if and only if

it is an absolute vector norm.

Proof: See [15].

APPENDIX B

BANACH FIXED-POINT THEORY

Below, the version of the Banach contraction mapping

theorem for a normed space (as [8, Theroem 6]) is given.

Often the somewhat more general form applicable on a metric

space is presented (e.g., [9, Theorem 3.1.2, p. 74]).

Definition B.1: A map T from a normed space (V,‖·‖) into
itself is a contraction if there exists λ ∈ [0,1) such that for

all x , y ∈V , ‖T (x)−T(y)‖ ≤ λ‖x− y‖.

Definition B.2: (Successive approximation) For expository

convenience, let Tm(x1) for x1 ∈V be defined inductively by

T 0(x1) = x1 and Tm+1(x1) = T (Tm(x1)), with m ∈ {1,2, · · ·}.
Theorem B.1: (Banach’ Contraction Mapping Principle) If

T is a contraction mapping on V there is a unique x∗ ∈V such

that x∗ = T (x∗). Moreover, x∗ can be obtained by successive

approximation, starting from an arbitrary initial x0 ∈ V ; i.e.,

for any x0 ∈V , limm→∞ Tm(x0) = x∗.

Proof: See [8][9, Theorem 3.1.2, p. 74].
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