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Proportional QoS Adjustment for Achieving
Feasible Power Allocation in CDMA Systems

Rudolf Mathar and Anke Schmeink

Abstract— Resource management is the general topic of the
present paper, particularly, we deal with capacity sharing for
interference limited wireless networks by power control. Propor-
tional reduction of the signal-to-interference ratio (SIR) require-
ments is suggested as the control mechanism to accommodate
users in the case of overload. For this purpose, we carefully
describe the geometrical structure and the asymptotic behavior
of the set of feasible power vectors as a proportionality factor
tends to its boundaries. In the case that there is no feasible
power adjustment, the minimum proportional SIR reduction
is determined under general power constraints. We conclude
with developing a locally quadratic convergent algorithm for
numerical computation of the optimum power assignment. The
investigations provide both insight into the theoretical structure
of optimum power allocation as well as a practical method for
call admission control.

Index Terms— Cellular networks, code division multiple access,
resource management, optimal power control, power region, call
admission control.

I. INTRODUCTION

POWER control is one of the major ingredients for code
division multiple access (CDMA) mobile networks to

achieve the potential capacity. The quality-of-service (QoS)
performance of users depends on the power assignment in the
whole network and usually becomes better with increasing
sum power (see [1]). However, in order to save sparse energy
for handhold devices, and to keep interference to other stations
low, it is desirable that stations transmit with the minimum
power such that a required QoS level is just guarantied.

The existence of some feasible power allocation for a
community of transmitters and related problems have been
extensively investigated over the last years. The sheer exis-
tence of a solution, assuming unlimited power is clarified by
Perron-Frobenius theory, as we briefly outline in Section II,
and has been used, e.g., in [2]. If the power budget is limited,
additional constraints arise.

Three important questions are directly connected to power
control. First, for practical applications individual power set-
tings must be computed, favorably in a decentral manner
using only local information. In [2] a convergent algorithm is
presented which solves this task and simultaneously allocates
mobiles to base stations. In an elegant setup, the author [3]
develops a general framework for proving convergence of a
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whole class of power assignment algorithms. For improving
efficiency different approaches to dimensionality reduction are
used in [4], [5], [6]. Probabilistic aspects of the channel are
included in [4], [7], [8].

The second class of problems is concerned with the set of
QoS requirements which can be supported by a feasible power
assignment. This leads to the concept of user capacity which
is investigated by [9], [10], [11] by considering the optimum
linear receiver jointly with signature sequences. Convexity,
monotonicity and asymptotic properties of the capacity region
are themes of the works [12], [13], [14], [15].

Access control by power adjustment is the third type of
problem to be solved when operating CDMA mobile radio. In
[16], active links are protected when new users are admitted
to the network. A fast algorithm to decide if new users can be
accommodated while maintaining the required QoS is given
in [17]. A novel game theoretic approach to admission control
is used in [18]. How this approach relates to the point of least
power adjustment via monotonic functionals is shown in [19].

In this work, we approach the problem of admitting new
users by proportionally reducing the QoS parameters of all
users whenever there is need for. The idea behind this concept
is that each user sacrifices a proportional part of his transmis-
sion capacity to admit further subscribers to the network. To
apply this strategy a graceful degradation of service quality in
terms of higher bit error or lower transmission rates must be
acceptable to the involved users.

After introducing the system model and some basic pre-
liminaries in Section II we deal with the geometry of the
power region. It turns out that the shifted power region is
a closed convex cone containing a componentwise minimum
power assignment. This element increases monotonically as
the proportionality factor does. In Section III, we investigate
the orbit of the optimum power assignment by determining
derivatives, and also the direction of divergence as the propor-
tionality factor approaches the boundary of the interval where
a feasible power allocation exists.

For practical applications power restrictions must be taken
into account. In Section IV, we consider the case that power
constraints can be described by a certain functional. We
present a convergent algorithm for determining the largest
proportional QoS vector which allows for a feasible power
adjustment. The most common cases such as total and compo-
nentwise power constraints are contained as special cases. We
conclude with a short summary and possible future extensions
in Section V.

0090-6778/08$25.00 c© 2008 IEEE
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II. SYSTEM MODEL AND PRELIMINARIES

In a synchronous multiuser CDMA communication system
with K users and processing gain N let si ∈ R

N , i =
1, . . . ,K, denote the N -dimensional signature sequence of
user i. Let Gij denote the fixed path gain from user j to
the assigned base station of user i. Usually Gij is subject to
slow fading effects which are assumed to be known to the
transmitter. Suppose the symbol of user i is decoded using
a linear receiver represented by some vector ci ∈ R

N . The
signal-to-interference ratio of user i is then given as

SIRi(p) =
Gii(cT

i si)2pi∑
j �=i Gij(cT

i sj)2pj + σ2(cT
i ci)2

,

where σ2 denotes the variance of the additive Gaussian noise
and p = (p1, . . . , pK)T the vector of transmit powers. In the
following we assume that the receiver sequences ci are fixed.
Combining the known channel and receiver effects into Aij =
Gij(cT

i sj)2 we obtain SIRi(p) of user i as

SIRi(p) =
Aiipi∑

j �=i Aijpj + Ciiσ2
,

with Cii = (cT
i ci)2. Now given QoS requirements γ1, . . . , γK

for each user, we define the power region PSIR(γ) as the set
of power settings p ∈ R

K such that each user i meets his SIR
requirement γi, i.e.,

PSIR(γ) =
{
p > 0 | SIRi(p) ≥ γi, i = 1, . . . ,K

}
. (1)

Here and in the following orderings ’<’ and ’≤’ between
vectors are always meant componentwise. Obviously it may
happen that not all requirements γi can be simultaneously
satisfied, in which case PSIR(γ) is empty.

For convenience of notation we quote the following result
from [15]. It deals with solutions of the equation

[I − A]x = c (2)

when A is a nonnegative but not necessarily irreducible
matrix. The proof given in [15] is direct and self-contained,
and does not rely on the Perron-Frobenius theory. In the
irreducible case the result is well known from [20]. Let ρ(A)
denote the spectral radius of a square matrix A, defined as
ρ(A) = max{|λi(A)|}, where λi(A) denotes the complex
eigenvalues of A.

Proposition 1: Let A ∈ R
n×n be non-negative.

a) If there are x > 0 , c > 0 satisfying (2), then ρ(A) < 1.
b) If ρ(A) < 1, then I − A is non-singular and for every

c > 0, the unique solution x ∈ R
n of (2) is positive.

c) If ρ(A) < 1, then for every c ≥ 0, the unique solution
x ∈ R

n of (2) is non-negative.
d) If c > 0 and there exists y > 0 such that [I −A]y ≥ c,

then (2) has a unique solution x and 0 < x ≤ y.
The above is now applied to PSIR(γ). The inequalities

defining (1) can be rewritten as a system of linear inequalities.
For this purpose write B = (bij)K

i,j=1, with

bij =

{
Aij/Aii, i �= j,

0, i = j,

and τ = (τ1, . . . , τK)T, where τi = Ciiσ
2/Aii. Then for every

p > 0 it holds that p ∈ PSIR(γ) if and only if

[I − ΓB]p ≥ Γτ , (3)

where Γ = diag(γ) denotes the matrix with diagonal entries
γi and nondiagonal entries equal to zero.

If Γτ > 0 and system (3) has a solution p > 0, then there
is a unique solution p∗ ≤ p satisfying

[I − ΓB] p∗ = Γτ ,

as follows from Proposition 1. Moreover, for any given γ >
0, the equation [I − ΓB]p = Γτ has a positive solution
p if and only if the spectral radius ρ(ΓB) < 1, and in
that case, the solution is unique. Denote it by p∗(γ) =
(p∗1(γ), . . . , p∗K(γ))T. Thus

p∗(γ) = [I − ΓB]−1
Γτ (4)

with all components positive.
Summarizing the above arguments, we see that there

is a unique componentwise minimum power allocation in
PSIR(γ), provided the power region is nonempty, see also
Theorem 2 in [2].

Proposition 2: If PSIR(γ) �= ∅, then there is a unique
power allocation p∗ = p∗(γ) such that SIRi(p∗) = γi for
all i = 1, . . . ,K and p∗ ≤ p for all p ∈ PSIR(γ).

The shifted power region PSIR(γ) − p∗(γ) has a nice
geometrical structure which is important for finding, e.g., the
projection of inadmissible points onto PSIR(γ). For complete-
ness we recall the following definition. A set C in a linear
vector space is said to be a cone if c ∈ C implies that αc ∈ C
for all α ≥ 0 (see, e.g., [21]).

Proposition 3: PSIR(γ) − p∗(γ) is a closed convex cone.
Consider the sets (cp. [19])

Pi =
{
p | Aiipi − γi

∑
j �=i

Aijpj ≥ γiCiiσ
2
}
, i = 1, . . . ,K,

which are closed convex affine halfspaces in R
K . Obviously,

PSIR(γ) =
⋂K

i=1 Pi, and from Theorem C in Section III of
[22] it follows that PSIR(γ) is a closed and convex polytope.

To prove that PSIR(γ) − p∗(γ) is a cone, we show that
SIRi

(
p∗(γ)+α[p−p∗(γ)]

) ≥ γi, and hence p∗(γ)+α[p−
p∗(γ)] ∈ PSIR(γ) for any p ∈ PSIR(γ) and α ≥ 0. By
assumption SIRi(p) ≥ γi for all i = 1, . . . ,K, in detail,

Aiipi − γi

∑
j �=i

Aijpj ≥ γiCiiσ
2, i = 1, . . . , K.

Denote by a(i) = (−γiAi1, . . . , Aii, . . . ,−γiAiK)T and ζi =
γiCiiσ

2. Then aT
(i)p ≥ ζi and aT

(i)p
∗(γ) = ζi for all i =

1, . . . , K. It follows that

aT
(i)p

∗(γ) + α
[
aT

(i)p − aT
(i)p

∗(γ)
] ≥ aT

(i)p
∗(γ) = ζi,

for all i = 1, . . . , K and all α ≥ 0, and hence p∗(γ) + α[p−
p∗(γ)] ∈ PSIR(γ) for all α ≥ 0.

A related result, however, not including convexity and
without shifting PSIR(γ) to the origin is derived in [23].

The uniformly minimal point p∗(γ) ∈ PSIR(γ) is of partic-
ular interest since it requires minimal power while maintaining
the SIR demands γ = (γ1, . . . , γn)T of all users. In the
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following we deal with the behavior of p∗(γ) as a function
of γ.

Proposition 4: The function p∗(γ) is monotonically in-
creasing, i.e., if PSIR(γ(2)) �= ∅ and γ(1) ≤ γ(2), then
p∗(γ(1)) ≤ p∗(γ(2)). Furthermore, p∗(γ) → 0 as γ → 0.

From Proposition 1 a) it follows that ρ(Γ (2)B) < 1. Hence,
expanding representation (4) in a von Neumann series gives

p∗(γ(1)) = [I − Γ (1)B]−1Γ (1)τ

=
∞∑

l=0

(Γ (1)B)lΓ (1)τ

≤
∞∑

l=0

(Γ (2)B)lΓ (2)τ

= [I − Γ (2)B]−1Γ (2)τ

= p∗(γ(2)),

where Γ (i) = diag(γ(i)).
It is immediate from (4) that p∗(γ) → 0 as γ → 0. Observe

that [I − ΓB]−1 exists in a sufficiently small neighborhood
of 0.

Further conditions for strict monotonicity of p∗(γ) are
given in [15]. It should be mentioned that for a different,
but related model the generic concept of p∗(γ) as a one-
dimensional manifold and its monotonicity are also considered
in [24].

III. PROPORTIONAL POWER ADJUSTMENT

As we have seen in the previous section, PSIR(γ) �= ∅
whenever γ is sufficiently small. If the requirements γ of a
community of users are such that there is no power allocation,
i.e., PSIR(γ) = ∅, access control becomes inevitable. A ratio-
nal concept is to request that each user sets aside a proportional
fraction of his requirement until a feasible power allocation
can be found. This concept quantifies to a certain extent the
notion of graceful degradation of CDMA as discussed in [25]
and leads to investigating the behavior of

p∗(αγ) = [I − αΓB]−1αΓτ , α ≥ 0.

By Proposition 1, the point p∗(αγ) exists whenever α <
1/ρ(ΓB). This breakpoint can be described as the solution
of the following max-min problem.

Proposition 5: Let γ > 0 be fixed and B be irreducible. A
proportional SIR requirement vector αγ, α > 0, allows for a
feasible power assignment if and only if

α < sup
p>0

min
i=1,...,K

SIRi(p)
γi

. (5)

The only point remaining is to show that the right hand
side of (5) coincides with 1/ρ(ΓB). For this purpose we
use Corollary 8.1.31 in [26], stating that for any irreducible
nonnegative matrix C = (cij)i,j=1,...,K the spectral radius is
given by

ρ(C) = min
p>0

max
i=1,...,K

1
pi

K∑
j=1

cijpj .

Some elementary algebra gives that

γi

SIRi(p)
=

∑
j cijpj + γiτi

pi

with C = ΓB. Hence,

inf
p>0

max
i

γi

SIRi(p)
= min

p>0
max

i

1
pi

K∑
j=1

cijpj

= ρ(C) = ρ(ΓB),

which yields the assertion by considering the reciprocal value.
To describe the set {p∗(αγ) | 0 < α < 1/ρ(ΓB)} the

componentwise derivative with respect to α is important.
Proposition 6: For any 0 < α < 1/ρ(ΓB), the derivative

of p∗(αγ) = [I − αΓB]−1αΓτ is given by

d

dα
p∗(αγ) = [I − αΓB]−2Γτ . (6)

First write p∗(αγ) = [ 1
αI − ΓB]−1Γτ . The derivative of

the inverse is given by (see, e.g., [27])

d

dα

[ 1
α

I − ΓB
]−1 =

1
α2

[ 1
α

I − ΓB
]−2 =

[
I − αΓB

]−2
.

By linearity, (6) follows from multiplication by Γτ .
Since [I − αΓB]−1 consists of nonnegative entries,

d
dαp∗(αγ) in (6) is nonnegative for each component, in
accordance with the componentwise monotonicity property in
Proposition 4.

If power is not the limiting factor, as may be assumed
approximately true for the downlink in cellular networks, it
is relevant to determine how the power adjustment p∗(αγ)
diverges as the quality profile αγ tends to its limit at α =
1/ρ(ΓB). This is important if power consumption is of no
concern and the main objective is to achieve best possible
performance.

Since γ is fixed in the sequel we may reparametrize β =
1/α and write

p∗(β) = [βI − ΓB]−1Γτ ,

provided that β > ρ(ΓB).
If B is irreducible, in [28], p. 315, and [29], (2.3), the fol-

lowing spectral representation of [βI−A]−1 for the nonnega-
tive matrix A = ΓB is shown. Let {λ1 = ρ(A), λ2, . . . , λK}
denote the spectrum of A and m(λ) = (λ−ρ(A))

∏K
k=2(λ−

λk)mk the minimal polynomial of A. Then for β > ρ(A) it
holds that

[βI − A]−1 =
1

β − ρ(A)
xyT +

K∑
k=2

mk∑
j=1

(j − 1)!
(β − λk)j

Zkj

=
1

β − ρ(A)
xyT + R(β),

(7)

where x and y denote the right and left Perron vectors of A,
respectively, and Zkj are fixed matrices, known as principal
component matrices. The right and left Perron vector are
defined as the the right and left eigenvectors of A with positive
components corresponding to eigenvalue ρ(A), the spectral
radius.

From representation (7) the order and direction of diver-
gence can be easily deduced. As β → ρ(A) the first term

1
β−ρ(A)xyT tends componentwise to infinity while R(β)
tends to a fixed matrix R

(
ρ(C)

)
. Note that ρ(A) > λk for
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Fig. 1. The dotted line is the orbit p∗(β) for β ∈ (ρ(ΓB),∞), the cones
PSIR( 1

β
γ) are depicted for β = 0.9, 1.2, 2.

all k = 2, . . . ,K. Hence, multiplication by Γτ yields in the
limit as β → ρ(A) that

p∗(β) − yTΓτ

β − ρ(A)
x − R

(
ρ(A)

)
Γτ → 0.

The interpretation is that p∗(β) diverges to infinity along
direction x up to the constant shift vector R

(
ρ(A)

)
Γτ . In

summary we obtain the following result.
Proposition 7: It holds that

lim
β→ρ(Γ B)

(
p∗(β) − yTΓτ

β − ρ(ΓB)
x
)

= R
(
ρ(ΓB)

)
Γτ .

Hence, p∗(β) diverges as β → ρ(ΓB). The factor yTΓ τ
β−ρ(Γ B)

represents the order of divergence, the right Perron vector x is
the direction of divergence, and R

(
ρ(ΓB)

)
Γτ is a constant

deviation between p∗(β) and the limiting direction.
Spectral representation (7) is also employed in [12] for

analyzing the asymptotic behavior of the minimum total
power.

Our results so far are visualized in Figure 1 for K =
2, A11 = 0.6, A22 = 1, A12 = 0.1, A21 = 0.3, γi =
3.16W,Ciiσ

2 = 10−7W, i = 1, 2. The orbit p∗(β) is shown
as a parametric plot of β ∈ (ρ(ΓB),∞). The convex cones
PSIR( 1

β γ) are depicted for three cases β = 0.9, 1.2, 2.
Divergence along a fixed direction can be clearly recognized
as β → ρ(ΓB).

IV. ACCESS CONTROL WITH LIMITED POWER BUDGET

In practice, power is limited, particularly for small handsets
as are used for the uplink. Hence, mobiles may select their
power adjustment only from a bounded set P , say. To be quite
general, we describe power constraints by help of a convex
function g : R

K → R satisfying g(0) = 0. The set of feasible
power allocations is then defined as

Pfeas = {p ≥ 0 | g(p) ≤ m}
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Fig. 2. An example where p∗(γ) �∈ Pfeas. The dotted line is the orbit
p∗(β) for β ∈ (ρ(ΓB),∞). Circles indicate iteration steps of the algorithm
in section IV starting with β0 = 0.9.

for some positive threshold m > 0. It is clear that Pfeas is a
convex set which contains with each power assignment p > 0
any componentwise smaller q > 0.

Important special cases are covered by this approach. In-
dividual peak power constraints pi ≤ mi for positive bounds
mi, i = 1, . . . , K, evolve from choosing g(p) = maxi

pi

mi

and m = 1. Total power restrictions like
∑

i pi ≤ m follow
by setting g(p) =

∑
i pi. Both are special cases of general

restrictions of the form g(p) = ‖p‖ for some norm ‖ · ‖.
We will deal with this case later under numerical aspects. The
intersection of peak and sum power constraints is also covered
by the present general approach.

Let γ > 0 be given and assume that p∗(γ) �∈ Pfeas, as
visualized in Figure 2 for K = 2 and parameters according
to Figure 1. We search for a minimum proportional reduction
of γ by some 0 ≤ α ≤ 1 such that p∗(αγ) ∈ Pfeas. With
β = 1/α it is clear from the above that a solution of the
system

(βI − ΓB)p = Γτ

g(p) = m
(8)

with variables p and β is sought. Observe that a solution exists
and is unique, however, in general it is hard to determine. For
this purpose rewrite (8) as

F :
(
ρ(ΓB),∞) → R : β 
→ g

(
[βI−ΓB]−1Γτ

)−m. (9)

Seeking the roots of F yields the solution β∗ of(8).
In the case that g is continuously differentiable Newton’s

Method is a favorite candidate for finding a solution β∗ of (9)
as follows,

βn+1 = βn + Δβn, Δβn = − F (βn)
F ′(βn)

. (10)

Algorithm (10) converges locally quadratic, see, e.g., [30].
Using the chain rule for multivariate functions and setting
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p(β) = [βI − ΓB]−1Γτ gives

d

dβ
F (β) =

d

du
g(u)

∣∣
u=p(β)

d

dβ
p(β)

= − d

du
g(u)

∣∣
u=p(β)

[βI − ΓB]−2Γτ ,

(11)

cp. Proposition 6.
We evaluate (11) for the 
q-norms, 1 ≤ q < ∞, i.e., g(u) =

‖u‖q =
( ∑K

i=1 uq
i

)1/q

, u > 0. The derivative of g(u) =
‖u‖q is given by

d

du
g(u) =

d

du
‖u‖q = ‖u‖1−q

q

(
uq−1

1 , . . . , uq−1
K

)
.

Abbreviating componentwise exponentiation as(
uq−1

1 , . . . , uq−1
K

)
=

(
uq−1

)T
, Newton’s iteration (10)

becomes

βn+1 = βn +
‖[βnI − ΓB]−1Γτ‖q − m

‖p(βn)‖1−q
q (pq−1(βn))T[βnI − ΓB]−2Γτ

= βn − ‖p(βn)‖q − m

‖p(βn)‖1−q
q (pq−1(βn))Tp′(βn)

, (12)

where p′(β) = d
dβ p(β) means the column vector of compo-

nentwise derivatives w.r.t. β.
Important special cases are q = 1, describing a total limited

power budget (cf. [12]), and q = 2. In the case q = 1 iteration
(12) reads as

βn+1 = βn − ‖p(βn)‖1 − m

(1, . . . , 1)Tp′(βn)
= βn +

‖p(βn)‖1 − m

‖p′(βn)‖1
,

since p′(βn) ≤ 0 by Proposition 4. For q = 2 we obtain from
(12)

βn+1 = βn − ‖p(βn)‖2 − m

‖p′(βn)‖−1
2 p(βn)Tp′(βn)

.

A numerical problem in implementing algorithms (10),
or (12), respectively, lies in computing p(βn) = [βnI −
ΓB]−1Γτ and p′(βn) = −[βnI − ΓB]−2Γτ .

The following algorithm converges towards p(βn). The i-th
component in the iteration pn(k) is given by

pn,i(k) =
γi

βn

(
τi +

∑
j �=i

Aij

Aii
pn,j(k − 1)

)
, (13)

i = 1, . . . ,K, k ∈ N. If βn > ρ(ΓB), then it holds that
limk→∞ pn(k) = p(βn) for any initial value pn(0), as is
shown in the appendix.

Similarly, the following sequence p′
n(k) converges towards

p′(βn),

p′
n(k) =

( 2
βn

ΓB − 1
β2

n

(ΓB)2
)
p′

n(k − 1) +
1
β2

n

Γτ , (14)

k ∈ N. If ρ( 2
βn

ΓB − 1
β2

n
(ΓB)2) < 1, then limk→∞ p′

n(k) =
p′(βn) holds for any n and any initial value p′

n(0).
We conclude this section by evaluating the proposed algo-

rithm on the example depicted in Figure 1 and 2 for sum
power constraints. Table I shows the results, convergence is
fast giving an optimum value β∗ = 1.1469 with corresponding
power allocation p∗(β∗) = 10−6(0.944, 1.056)T after 6 itera-
tions with a relative error of 10−6. The results p(βn) of the
iterations n = 0, 1, . . . , 5 are also indicated by open circles in
Figure 2.

TABLE I

NUMERICAL CONVERGENCE FOR THE VALUES USED IN FIGURE 1 AND 2,

CONVERGENCE UP TO 4 DIGITS ACHIEVED AFTER 5 ITERATIONS.

n 0 1 2 3 4

βn 0.9 1.0084 1.1032 1.1426 1.1468

106p(βn)

�
2.061

2.522

� �
1.348

1.580

� �
1.041

1.181

� �
0.953

1.067

� �
0.944

1.056

�

V. CONCLUSIONS

This paper has introduced the concept of proportional SIR
reduction for a community of users if there exists no feasible
power adjustment for given transmission rate requirements.
We have derived an algorithm to determine the point of
minimal reduction numerically for a rather general class of
power restrictions, including the case of limited total power.
To achieve these results we have investigated the geometrical
structure of the set of admissible power assignments, and
furthermore, monotonicity and asymptotic properties when the
proportionality factor tends to its boundaries.

Interesting open problems are the development of algo-
rithms for a nonsmooth boundary of the power restrictions, and
decentralizing the computation such that power assignments
can be determined locally with only small global information
exchange.

APPENDIX

We complement the convergence proofs of (13) and (14).
As βnI −ΓB is an M-matrix, we can apply Jakobi’s method
which is convergent for all initial vectors, see [31]. Equa-
tion (13) is the i-th component of

pn(k) =
1
βn

ΓBpn(k − 1) +
1
βn

Γτ .

Successive application yields

pn(k) =
( 1

βn
ΓB

)k

pn(0) +
[ k−1∑

i=0

( 1
βn

ΓB
)i] 1

βn
Γτ . (15)

As βn > ρ(ΓB) by assumption, using the von Neumann
Series yields (I− 1

βn
ΓB)−1 =

∑∞
i=0

(
1

βn
ΓB

)i
. In particular,

it holds that

lim
k→∞

( 1
βn

ΓB
)k

= 0 and lim
k→∞

[ k−1∑
i=0

( 1
βn

ΓB
)i]

Γτ = pn.

(16)
Thus, we get limk→∞ pn(k) = p(βn) which concludes the
proof of (13). Equation (14) is shown in a similar way noting
that (βnI − ΓB)−2 = (β2

nI − (2βnΓB − (ΓB)2))−1.
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