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Abstract— In this paper we introduce a symmetry-
based approach to visualize the OFDMA downlink
capacity region and its convex hull. These sets are
compared to numerically analyse the fact that the
capacity region of an OFDMA system with an infinite
number of subcarriers is convex. We believe that this
approach offers a unique perspective on the structural
properties of the capacity region which in turn might
spawn new ideas concerning the complex problem of
allocating subcarriers in order to maximize weighted
sum rates (WSRmax problem).

Index Terms— OFDMA, capacity region, convex
hull, WSRmax

I. I NTRODUCTION

Resource allocation in OFDMA systems is a com-
plex and computationally prohibitive task. Single
points on the boundary of the OFDMA downlink
capacity region can be obtained by applying convex
optimization techniques to varying weighted sum
rate maximization problems. As the capacity region
is in general non-convex, this Lagrange Duality
approach relies on the results of [1], ensuring a
vanishing duality gap as the number of subcarriers
approaches infinity.

An important open problem in network informa-
tion theory is the derivation of the capacity region
of a multiple access channel. Structural results of
the capacity region are of great importance as, e.g.,
convexity would allow for a toolset of efficient
and reliable algorithms in resource allocation. This
correspondence investigates the capacity region of
an OFDMA system by using a symmetry-based
approach.

Section II describes the system model and for-
mulates the problem of resource allocation and rate
maximization in an OFDMA system. Section III
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covers the convex hull of the capacity region and
its importance to the weighted sum rate maximiza-
tion problem. In Section IV the symmetry-based
approach is explained in detail, and Section V covers
the visualization and numerical results. Section VI
concludes the paper.

II. SYSTEM MODEL AND PROBLEM

FORMULATION

We assume a basic OFDMA downlink model
with U users,N subcarriers equally dividing the
bandwith, a fixed power constraintPtot and perfect
channel state information. For useru on subcarriern,
the channel gain is denoted bygu,n. The channel
is completely characterized by the channel gain to
noise ratio (CNR) matrixc with

cu,n =
|gu,n|

2

σ2
u,n

,

whereσ2
u,n is the variance of the zero-mean inde-

pendent and identically distributed Gaussian noise
that is added at the receiver part.

Let pu,n denote the power of useru on subcar-
rier n. Then, the achievable rateru,n computes to

ru,n =
1

2
log2(1 + pu,n · cu,n) bits/dim.

Given a weight vectorw = (w1, . . . , wU ) ≥ 0
we consider the weighted sum rate maximization
problem

maximize
U

∑

u=1

wu

N
∑

n=1

ru,n (1)

such that
U

∑

u=1

N
∑

n=1

pu,n ≤ Ptot, (2)

pu,n ≥ 0 ∀u ∀n, (3)

∀n ∃u s.t. pk,n = 0 ∀ k 6= u. (4)



Following [2], this optimization problem will sub-
sequently be referred to as the WSRmax problem.
In (2), “≤” can be replaced by “=”, as using more
power will always result in higher rates. Note that
(4) requires that each subcarrier is used by at most
one user. A solution to the WSRmax problem is a
power allocation matrixp = (pu,n) that satisfies the
constraints such that there is no other viable power
allocation with a greater weighted sum rate. In a
slight abuse of notation, the corresponding sum rate
vector is also called a solution.

The complexity of the WSRmax problem lies
within the subcarrier allocation. For any given sub-
carrier assignment, there is a multi-user waterfilling
solution that maximizes the weighted sum rate.
However, there areUN distinct allocations, which
makes any kind of exhaustive search unfeasible.

III. C APACITY REGION AND CONVEX HULL

Let Ru =
∑N

n=1
ru,n, R = (R1, . . . , RU ). The

capacity region of the OFDMA system described
above is defined as

C = C(Ptot, c) =

{

R ∈ R
U
≥0

∣

∣

∣

∣

∃ pu,n such that
(2), (3), (4) hold

}

.

The setC is in general not convex. Denote byH =
H(C) the convex hull ofC, and by∆H the set of
pareto optimal points ofH. This is a subset of the
boundary∂H of H, namely

∆H = {R ∈ ∂H |R > 0},

whereM is defined as the closure of a setM. With
these definitions, the following holds:

C ∩ ∆H = {R | ∃w ≥ 0 s.t. R solves WSRmax} .

Therefore the solution(s) to every single WSRmax
problem (based on the weight vectorw) is located on
the convex hull of the capacity region. This justifies
the interest in the convex hull of the capacity region
in a more natural way than the Lagrange Duality
approach of convex optimization. In addition, it
shows that exactly those subcarrier allocations are
feasible that have a nonempty intersection with∆H.
We believe that this approach could be utilized to
drastically reduce the number of potential subcarrier
allocations, and therefore the computational com-
plexity of the WSRmax problem. See Figure 1 for
an exemplary illustration of the allocations that make
up the capacity region and its convex hull. Figure 1
is discussed in detail in Sections IV and V.

On a related note, the Lagrange Duality approach
relies on a vanishing duality gap asN approaches

infinity, which is guaranteed if the capacity region
approaches convexity with growingN . This makes
it even more interesting to compareC andH for a
varying number of subcarriers.

IV. A SYMMETRY-BASED APPROACH

To visualize and compute the capacity region
and its convex hull, several problems have to be
addressed. The first is the problem of comparability,
as different channel state information matricesc for
a varying number of subcarriersN can greatly affect
the shape and volume of the capacity region and its
convex hull, which would make any kind of com-
parison, i.e., based on volume ratios, questionable
at least. The second is the problem of complexity,
as growingN makes it impossible to check every
single subcarrier allocation. In this paper, we pursue
a simple, yet effective, symmetry-based approach to
solve both problems at once. For complexity and
visualization purposes the number of usersU is set
to 2. However, the results can be generalized.

How does this approach work? To begin with,
one needs a rather smallN , i.e., N ≤ 4, and a
CNR matrix c ∈ R

2×N . Combined with the total
power constraintPtot, one gets a problem which is
easy to compute. The idea now is to take another
matrix c̃ = [c| . . . |c] ∈ R

2×kN which consists
of k copies of c. This matrix can be interpreted
as dividing each of the original subcarriers intok
parts, each with the same CNR. Because of this,
there is almost no diversity gain. This is comparable
to applying FDMA techniques to a flat channel or
TDMA to a channel which is constant over time.

As the 2N allocations which are based on the
original CNR matrix c are a subset of the2kN

allocations based oñc, it follows that the capacity
region of c is a subset of the capacity region ofc̃,
which extends to the convex hulls:

H(C(Ptot, c)) ⊆ H(C(Ptot, c̃)).

Furthermore, because of the missing diversity gain,
the convex hull increases only marginally with grow-
ing k. In the simulations we noted an increase
in area of less than1% when comparingH(C(c))
to H(C(c̃)) for large values ofk. This is a negligible
difference for the purpose of comparing capacity
regions with similar convex hulls, and it is fair
to say that the convex hulls are basically equal.
Figure 1 illustrates this point. This leads to the
desired comparability of area ratios for growingk,
which forms the basis of our computations.
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Fig. 1. The capacity regionsC(c) andC(c̃) (for k = 10).

To address the second problem, not all of the2kN

subcarrier assignments are distinguishable. Applying
simple combinatorics to the symmetric matrix̃c
shows that there are at most(k + 1)N distinct
allocations. This solves the complexity problem for
a wide range of values ofN andk.

It should be noted that channel matrices likec̃
are of course most artificial. However, while in
a way excluding diversity gain, the effects of the
FDMA-like subcarrier sharing simulate the way that
additional subcarriers lead to a more convex capacity
region.

V. V ISUALIZATION AND NUMERICAL RESULTS

Figure 1 provides a good visualization of the
above concepts. Note that the second plot is the
result of an exhaustive search with2·10 = 20 subcar-
riers. Instead of220 ≈ 106 allocations, only121 had

TABLE I

APPROACHING CONVEXITY: AREA RATIO OF CAPACITY

REGIONC AND CONVEX HULL H W.R.T. N AND k.

N CNR matrixc
|C|
|H|

≥ 95% 99% 99.5%

1 (a) [ 1

1
] k ≥ 5 11 15

1 (b) [ 1

5
] k ≥ 6 13 19

2 (a) [ 2.4 0.9

1.4 1.2
] 2k ≥ 4 10 14

2 (b) [ 0.6 1.8

2.2 0.9
] 2k ≥ 4 6 10

3 [ 2.4 1.2 1.5

1.4 0.9 1.8
] 3k ≥ 6 12 15

4 [ 0.5 2.7 1.6 4.0

1.0 2.0 2.9 2.2
] 4k ≥ 4 12 16

to be considered due to the underlying symmetry.
The capacity regions were computed for differ-

ent N , c, andk. Table I showcases the data used in
the computations (withPtot set to 2). In addition,
the last columns show which number of subcarriers
(k ·N ) was needed to reach a certain area ratio. Note
that in every computation, less than20 subcarriers
were needed for the capacity region to cover 99.5%
of its convex hull, independent of the value ofN .
Refer to Figure 2 for a plotted version of the results.
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Fig. 2. Area ratio versus number of subcarriers (see Table I).

Interestingly, although naturally varying in the
area ratios fork = 1 (no symmetry), the plots show
a very similar behaviour. Even more, the amount
of symmetry introduced (which decreases withN )



does not have a notable impact. In our computations,
the difference in CNR played a much larger role,
as can be witnessed by the plots forN = 1 (b)
and N = 2 (b), respectively. However, even these
adhere remarkably well to the overall pattern.

VI. CONCLUSION AND FUTURE WORK

We have introduced a symmetry-based approach
to visualize capacity regions and their convex hulls
which would otherwise have been almost impossible
to compute. Figure 2 as well as Table I indicate that
the introduced symmetry does not have a notable
effect on area ratio increase. This leads to the
conclusion that regular, nonsymmetric channel ma-
trices must adhere to similar patterns, which means
capacity regions that are almost equal to their convex
hulls, even for a small number of subcarriers. In fact,
the number of subcarriers that was needed to obtain
99.5% of the convex hull area is much smaller than
what we see in real-world applications.

The second notable observation is the impact of
CNR ratios. As can be seen in Figure 1, the two
straight linesegments that are part of the convex
hull are basically respected even after introducing
a large amount of symmetry. This suggests that the
two CNR ratios (in this particular case,2.4/1.4
and 0.9/1.2) play a more important role than pre-
viously thought, possibly even more important than
the actual CNR values. It will be very interesting
to further analyze the impact of varying CNR ratios
with the goal to further improve subcarrier allocation
strategies and algorithms.

One possible restriction of allocations based on
the analysis of CNR ratios is shown in Figure 3.
This might be a first step to reduce the computational
complexity of the weighted sum rate maximization
problem. We believe that a combination of convex
optimization techniques and exploiting some more
structural properties of the problem might lead to
greater insight into the subcarrier allocation problem,
even for a large number of users.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User 1 data rate sum R
1
 (bits/dim)

U
se

r 
2 

da
ta

 r
at

e 
su

m
 R

2 (
bi

ts
/d

im
)

N=2 (a)
k=10
21 allocations

Fig. 3. Figure 1 restricted to 21 allocations.
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