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Abstract—This paper concerns the capacity of the discrete
noiseless channel introduced by Shannon. A sufficient condition
is given for the capacity to be well-defined. For a general discrete
noiseless channel allowing non-integer valued symbol weights, it
is shown that the capacity—if well-defined—can be determined
from the radius of convergence of its generating function, from
the smallest positive pole of its generating function, or from the
rightmost real singularity of its complex generating function.
A generalisation is given for Pringsheim’s Theorem and for
the Exponential Growth Formula to generating functions of
combinatorial structures with non-integer valued symbol weights.

I. INTRODUCTION

When modelling digital communication systems, there are

situations where we do not explicitly model physical noise.

We rather introduce constraints on the allowed system config-

urations that minimise the influence of undesired effects. An

example is the runlength-limited constraint in magnetic record-

ing [1]. We consider in this paper the discrete noiseless channel

(DNC) as introduced by Shannon [2]. A DNC is specified by

a set of constraints imposed on strings over a certain alphabet,

and only those strings that fulfil the constraints are allowed

for transmission or storage. A DNC allows the specification

of two types of constraints. The first constraint is on symbol

constellations (for example, only binary strings with not more

than two consecutive 0s are allowed), and the second constraint
is on symbol weights (for example, the symbol a has to be of

duration 5.53 seconds). Depending on the system we want to

model, the symbol weights represent the critical resource over

which we want to optimise. This can for example be duration,

length or energy. We then ask the following question. What

is the maximum rate of data per string weight that can be

transmitted over a DNC?

This question was first answered by Shannon in [2]. In [3],

the authors extend Shannon’s results to DNCs with non-integer

valued symbol weights. In both [2] and [3], the authors use

the following approach to derive the capacity of a DNC. They

restrict the class of considered DNCs to those that allow the

transmission of a set of strings forming a regular language.

The regularity allows then to represent the DNC by a finite

state machine and results from matrix theory are applied to

derive the capacity of the DNC.

Our approach is different in the following sense. We con-

sider general DNCs with the only restriction that the capacity

as defined in [2] and generalised in [3] has to be well-defined,

which will turn out to be a restriction on the set of possible

string weights.

This allows us then to represent the combinatorial complex-

ity of a DNC by a generating function with a well-defined

radius of convergence and we use analytical methods to derive

the capacity. In this sense, our work is a generalisation of [3].

Perhaps more important, in many cases that could be treated by

the techniques proposed in [3], it is much simpler to construct

the generating function of the considered DNC and to use our

results to derive the capacity. We give two simple examples

that may serve as illustrations. In this sense, our work can also

be considered as an interesting alternative to [3].

II. DEFINITIONS

We formally define a DNC and its generating function as

follows.

Definition 1. A DNC A = (A,w) consists of a countable

set A of strings accepted by the channel and an associated

weight function w : A 7→ R⊕ (R⊕ denotes the nonnegative

real numbers) with the following property. If s1, s2 ∈ A and

s1s2 ∈ A (s1s2 denotes the concatenation of s1 and s2), then

w(s1s2) = w(s1) + w(s2). (1)

By convention, the empty string ε is always of weight zero,

i.e., w(ε) = 0.

Definition 2. Let A = (A,w) represent a DNC. We define

the generating function of A by

GA(y) =
∑

s∈A

yw(s) y ∈ R. (2)

We order and index the set of possible string weights w(A)
such that w(A) = {wk}

∞
k=1 with w1 < w2 < · · · . We can

then write

GA(y) =

∞
∑

k=1

N [wk]y
wk (3)

where for each k ∈ N, the coefficient N [wk] is equal to the

number of distinct strings of weight wk. Since the coefficients

N [wk] result from an enumeration, they are all nonnegative.

Note that for any DNC A, we have GA(0) = N [0] = 1 since

every DNC allows the transmission of the empty string and

since there is only one empty string.



The maximum rate of data per string weight that can be

transmitted over a DNC is given by its capacity. We define

capacity in accordance with [2] and [3] as follows.

Definition 3. The capacity C of a DNC A = (A,w) is given
by

C = lim sup
k→∞

lnN [wk]

wk
(4)

in nats per symbol weight. This is equivalent to the following.

For all ǫ with C > ǫ > 0, the following two properties hold.

1) The number N [wk] is greater than or equal to ewk(C−ǫ)

infinitely often (i.o.) with respect to k.
2) The number N [wk] is less than or equal to ewk(C+ǫ)

almost everywhere (a.e.) with respect to k.

We assume in the following that the number sequence

{wk}
∞
k=1 is not too dense in the sense that for any integer

n ≥ 0

max
wk<n

k ≤ LnK (5)

for some constant L ≥ 0 and some constantK ≥ 0. Otherwise,
the number of possible string weights in the interval [n, n+1]
increases exponentially with n. In this case, Definition 3 does

not apply. We present in the following example a case where

capacity is not well-defined.

Example 1. Let N [wk] denote the coefficients of the generat-

ing function of some DNC. Assume N [wk] = 1 for all k ∈ N

and assume

max
wk<n

k = ⌈Rn⌉ (6)

for some R > 1. According to Definition 3, the capacity of

the DNC is then equal to zero because of lnN [wk] = 0 for

all k ∈ N. However, the channel accepts Rn distinct strings

of weight smaller than n. The average amount of data per

string weight that we can transmit over the channel is thus

lower-bounded by lnRn/n = lnR, which is according to the

assumption greater than zero. ⊳

Whenever we say that the capacity of a DNC is well-defined,

we mean that (5) is fulfilled.

III. CAPACITY BY RADIUS OF CONVERGENCE

One way to calculate the capacity of a DNC is by determin-

ing the radius of convergence of its generating function.

Lemma 1. Let A be a DNC with the generating function

GA(y). If the capacity C of A is well-defined, then it is given

by C = − lnR where R denotes the radius of convergence of

GA(y).

In the proof of this lemma, we will need the following result

from [3].

Lemma 2. If (5) is fulfilled and if ρ is a positive real number,

then
∑∞

k=1 ρ
wk converges iff ρ < 1.

Proof of Lemma 1: We define M [k] = N1/wk [wk] and
write GA(y) as

GA(y) =

∞
∑

k=1

(

M [k]y
)wk . (7)

We define the two sets D(y) and E(y) as

D(y) =
{

k ∈ N
∣

∣M [k]y < 1
}

(8)

E(y) = N \D(y) =
{

k ∈ N
∣

∣M [k]y ≥ 1
}

(9)

and write

GA(y) =
∑

k∈D(y)

(

M [k]y
)wk +

∑

l∈E(y)

(

M [l]y
)wl . (10)

It follows from Lemma 2 that GA(y) converges iff the set

E(y) is finite. The number R is the radius of convergence

of GA(y), therefore, for any δ > 1, the set E(R/δ) is finite.

Since D(y) = N\E(y), the finiteness of E(R/δ) is equivalent
to

k ∈ D(R/δ) a.e. (11)

We define ǫ = ln δ. Equation (11) is then equivalent to

N [wk] < ewk(− lnR+ǫ) a.e. (12)

which implies

N [wk] ≤ ewk(− lnR+ǫ) a.e. (13)

Again since R is the radius of convergence of GA(y), for any
δ > 1, the set E(Rδ) is infinite. For ǫ = ln δ, this is equivalent
to

N [wk] ≥ ewk(− lnR−ǫ) i.o. (14)

It follows from (13) and (14) and Definition 3 that − lnR is

equal to the capacity of A. We therefore have C = − lnR.

In the following example, we show how Lemma 1 applies

in practice. We denote by A ∪ B the union of the two sets

A and B, we denote by AB the set of all concatenations ab
with a ∈ A and b ∈ B, and we denote by S⋆ the Kleene star

operation on S, which is defined as S⋆ = ǫ ∪ S ∪ SS ∪ · · · .

Example 2. We consider a DNC A = (A,w) with the alphabet

{0, 1} and symbol weights w(0) = 1 and w(1) = π. The DNC
A does not allow strings that contain two or more consecutive

1s. We represent A by a regular expression and write A =
{ε ∪ 1}{0 ∪ 01}⋆. For the generating function of A we get

GA(y) = (1 + yπ)

∞
∑

n=0

(y + y1+π)n. (15)

The radius of convergence is given by the smallest positive

solutionR of the equation y+y1+π = 1. We find R = 0.72937.
According to Lemma 1, the capacity of A is thus given by

C = − lnR = 0.31558. ⊳



IV. CAPACITY BY RIGHTMOST REAL SINGULARITY

There are cases where we derive the closed-form represen-

tation of the generating function of a DNC without explicitly

using its series representation. The techniques introduced in

[4] and [5] may serve as two examples. In this section, we

show how the capacity of a DNC A can be determined from

the closed-form representation of its generating function. We

do this in two steps. We first identify the region of convergence

(r.o.c.) of the complex generating function FA(e
−s) with

its rightmost real singularity. The complex generating func-

tion FA(e
−s) results from evaluating the generating function

GA(y) in y = e−s, s ∈ C. Second, we show that the rightmost

real singularity of FA(e
−s) determines the capacity of A.

Theorem 1. If the r.o.c. of FA(e
−s) is determined by ℜ{s} >

Q, then FA(e
−s) has a singularity in s = Q.

Proof: Suppose in contrary that FA(e
−s) is analytic in

s = Q implying that it is analytic in a disc of radius r centred

at Q. We choose a number h such that 0 < h < r/3, and we

consider the Taylor expansion of FA(e
−s) around s0 = Q+h

as follows.

FA(e
−s) =

∞
∑

n=0

[

FA(e
−s0)

](n)

n!
(s− s0)

n (16)

=

∞
∑

n=0

∞
∑

k=1

N [wk](−wk)
ne−wks0

n!
(s− s0)

n. (17)

For s = Q−h, this is according to our supposition a converg-

ing double sum with positive terms and we can reorganise it

in any way we want. We thus have convergence in

FA(e
−Q+h) =

∞
∑

n=0

∞
∑

k=1

N [wk](−wk)
ne−wks0

n!
(−2h)n (18)

=

∞
∑

k=1

N [wk]e
−wks0

∞
∑

n=0

wn
k (2h)

n

n!
(19)

=

∞
∑

k=1

N [wk]e
−wks0ewk2h (20)

=

∞
∑

k=1

N [wk]e
−wk(Q−h). (21)

But convergence in the last line contradicts that the r.o.c. of

FA(e
−s) is strictly given by ℜ{s} > Q.

We now relate the rightmost real singularity of FA(e
−s) to

the capacity of A.

Theorem 2. Assume that FA(e
−s) has its rightmost real

singularity in s = Q. The capacity of A is then given by

C = Q.

Proof: Since FA(e
−s) has its rightmost real singularity in

s = Q, it follows from Theorem 1 that the r.o.c. of FA(e
−s)

is determined by ℜ{s} > Q. For FA(e
−s), we have

FA(e
−s) =

∞
∑

k=1

N [wk]e
−wks (22)

≤

∞
∑

k=1

|N [wk]e
−wks| (23)

=

∞
∑

k=1

N [wk]|e
−wks| (24)

where equality in (24) holds because the coefficientsN [wk] are
all nonnegative and where we have equality in (23) if s is real.

It follows that if the r.o.c. of FA(e
−s) is given by ℜ{s} > Q,

then the radius of convergence of GA(y) is given by R = e−Q.

Using Lemma 1, we have for the capacity C = − lnR = Q.

Note 1. With Theorem 1 and Theorem 2, we generalised

Pringsheim’s Theorem and the Exponential Growth Formula,

see [6], to generating functions of DNCs with non-integer

valued symbol weights.

V. CAPACITY BY SMALLEST POSITIVE POLE

We formulate the most important application of Theorem 2

in the following corollary:

Corollary 1. Let A represent a DNC with a well-defined

capacity C. Suppose that the generating function GA(y) can
be written as

GA(y) =
n1y

τ2 + n2y
τ2 + · · ·+ npy

τ
p

d1yν1 + d2yν2 + · · ·+ dqyνq
(25)

for some finite positive integers p and q. The capacity C is

then given by − lnP where P is the smallest positive pole of

GA(y).

Note 2. The corollary was already stated in [4, Theorem 1].

However, the proof given by the authors does not apply for

the general case, which we consider in this paper.

Proof of Corollary 1: If GA(y) is of the form (25),

the complex generating function FA(e
−s) as defined in the

previous section is meromorphic, which implies that all its

singularities are poles. The substitution y = e−s, for s real, is a
one-to-one mapping from the real axis to the positive real axis.

Therefore, if Q is the rightmost real singularity of FA(e
−s),

then e−Q is the smallest positive pole of GA(y). Applying
Theorem 2, we get for the capacity C = Q = − lnP .

Example 3. We consider the DNC A = (A,w) where A is

the set of all binary strings that do not contain the substring

111 and where the symbol weights are given by w(0) = w(1).
We use a result from [5] in the form of [6, Proposition 1.4].

It states that the set of binary strings that do not contain a

certain pattern p has the generating function

f(y) =
c(y)

yk + (1− 2y)c(y)
(26)



where k is the length (in bits) of p and where c(y) is the auto-
correlation polynomial of p. It is defined as c(y) =

∑k−1
i=0 ciy

i

with ci given by

ci = δ[p1+ip2+i · · · pk, p1p2 · · · pk−i] (27)

where pi denotes the ith bit (from the left) of p and where

δ[a, b] = 1 if a = b and δ[a, b] = 0 if a 6= b. For p = 111,
we have c(y) = 1 + y + y2 and k = 3. This yields for the

generating function of A

GA(y) =
1 + y + y2

y3 + (1 − 2y)(1 + y + y2)
. (28)

Note that the application of the technique from [4] would have

led to the same formula. For the smallest positive pole P of

GA(y) we find P = 0.54369. According to Corollary 1, the

capacity of A is thus given by C = − lnP = 0.60938. ⊳

VI. CONCLUSIONS

For a general DNC, we identified the capacity with the

characteristics of its generating function, namely the radius

of convergence of its generating function, the rightmost real

singularity of its complex generating function, and the small-

est positive pole of its generating function. We generalised

Pringsheim’s Theorem and the Exponential Growth Formula

as given in [6] to generating functions that allow non-integer

valued symbol weights.

Representing a DNC by its generating function and not by

a finite state machine has an additional advantage. Although

the finite state machine allows the derivation of the correct

capacity of the DNC, it says nothing about the exact number

of valid strings of weight w. The generating function of a DNC
provides this information. The coefficients N [wk] are equal to
the number of distinct strings of length wk that are accepted

by the DNC. The coefficients can either be calculated by an

algebraic expansion of the generating function or they can be

approximated by means of analytic asymptotics as discussed

for integer valued symbol weights in [6]. In [7], the analytic

approach is extended to generating functions of DNCs with

non-integer valued symbol weights.

For a regular DNC fulfilling some further restrictions, the

authors in [3] define a Markov process that generates valid

strings at an entropy rate equal to the capacity of the channel.

Based on generating functions as introduced in this paper, it

is shown in [7] that for a general DNC, any entropy rate C′

smaller than the capacity C is achievable in the sense that

there exists a random process that generates strings that are

transmitted over the channel at an entropy rate C′.
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