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Abstract—In this paper, a joint iterative channel estimation
and low-density parity-check (LDPC) decoding algorithm based
on factor graphs and the sum-product algorithm is proposed
for orthogonal frequency division multiplexing (OFDM) systems
employing multiple transmit and receive antennas (MIMO). By
modeling time-varying frequency-selective fading channels as
autoregressive (AR) processes and approximating messages as
Gaussian pdf, this receiver algorithm is able to maintain a low
complexity. Moreover, with the help of strong channel coding,
pilot overhead can be significantly reduced.

Index Terms—MIMO, OFDM, LDPC, channel estimation,
iterative receiver, factor graph.

I. INTRODUCTION

Powerful error-correcting codes based on iterative decoding,
epitomized by LDPC codes and turbo codes, exhibit near-
capacity performance over Rayleigh fading channels when
perfect channel state information (CSI) is available at the
receiver [1]. In practice, the knowledge of CSI is often ac-
quired through channel estimation. To achieve better decoding
performance, pilot symbols are periodically inserted [2] to
extract CSI at the receiver. However, pure pilot based channel
estimation is approved to be highly sub-optimal [3]. Therefore,
soft channel estimators using detected data symbols as a-
priori information are adopted[4]. Unluckily, joint detection
and channel estimation algorithms show good performance but
generally have high computational complexity, especially for
MIMO systems. Recently, low complexity message passing
algorithms designed on factor graphs are developed to track
fast-varying frequency-selective MIMO channels with known
channel statistics [5].

For OFDM systems, pilot symbols are allocated on the 2D
time-frequency grid. The distance between pilot symbols is
upper bounded by sampling theorem. While multiple transmit
(Tx) antennas are employed, number of pilot symbols grows
proportionally to the number of Tx antennas [3]. With LDPC
codes, time and frequency diversity is considerably exploited
by encoding the whole data frame to a long code word. Thus,
the pilot overhead can be reduced.

In this paper, the message passing algorithms are repre-
sented by factor graphs. The variances of estimated channel
frequency response (CFR) are used as reliability information
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for detection as well as refined channel estimation. Time
and frequency correlations are considered in two kinds of
correlation nodes. By approximating the correlation functions
as low order AR processes, low complexity can be preserved
while the number of pilots is reduced.

This paper is organized as follows. The system and channel
models are described in Section II. Factor graphs are briefly
explained in Section III. Section IV illustrates the details about
the iterative channel estimation and decoding algorithm. Sim-
ulation results are presented in Section V. Finally, conclusions
are made in Section VI.

II. SYSTEM MODEL

Consider a MIMO system with NT and NR antennas for
transmitter and receiver, respectively. On sth Tx antenna,
info word as ∈ {0, 1}Ku is non-systematically encoded to
cs = e(as) ∈ {0, 1}Kc , where s = 1, 2, · · · , NT is Tx antenna
index. Interleavers are avoided due to the non-systematic
encoding. The coded bit streams are modulated to sequence of
symbols xs chosen from an M-ary constellation X . The en-
coding and mapping process can be expressed as xs = C(as).
With parallelization and properly inserted pilot symbols, the
modulated symbol stream are then modulated by orthogonal
subcarriers via inverse fast Fourier transform (IFFT), and an
additional cyclic prefix is added on the tail of OFDM symbols
to remove inter-symbol interferences (ISI). The parallel signals
are converted to serial form and transmitted through different
antennas.

A. Channel model

With appropriate cyclic prefix insertion and sampling,
the MIMO-OFDM system with K subcarriers decouples
frequency-selective channel into K correlated flat-fading chan-
nel. The received signal on each receive (Rx) antenna at the
kth tone of the nth OFDM block is the superposition of NT

distorted transmitted signals, thus, can be expressed as

yu[n, k] =

NT∑
s=1

hu,s[n, k]xs[n, k] + wu[n, k], (1)

where u = 1, 2, · · · , NR is Rx antenna index. Additive
white Gaussian noise (AWGN) with zero mean and vari-
ance σ2

w is denoted by wu[n, k], while the symbol power
is normalized to 1. The CFR between the sth Tx and the
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Fig. 1. Factor graph of 2× 2 MIMO system for one subcarrier at one time
index.

uth Rx antenna is denoted by hu,s[n, k]. The average power
of the CFR in each subchannel is normalized to 1. Define
yu = [yu[0, 0], yu[0, 1], · · · , yu[N − 1,K − 1]], and hu,s =
[hu,s[0, 0], hu,s[0, 1], · · · , hu,s[N − 1,K − 1]], (1) can also be
written in vector form:

yu =

NT∑
s=1

hu,sxs +wu, (2)

Assuming there is no spatial correlation, the correlation
function of CFR for different times and frequencies can be
decoupled as

E{h[n+∆n, k +∆k]h∗[n, k]} = rt[∆n]rf [∆k], (3)

where rt is the time domain correlation depending on the
Doppler frequency [6] and rf is the frequency domain cor-
relation depending on the power delay profile [7].

B. Pilot allocation
Known pilot symbols are inserted to the two dimensional

time-frequency grid for each Tx antenna. To keep the orthog-
onal separation of pilots in both time and frequency, during
a pilot grid, only one antenna is allowed to transmit. The
position of a pilot can be denoted by a vector p = [s, n, k]T.
The position vector can be uniquely determined by [8]

p = Dp̃+ p0 ( mod m) (4)

with

D =

 Ds δst δsf
dst Dt δft
dsf dft Df

 ,p0 =

 s0
n0

k0

 ,m =

 NT

N
K


(5)

where p̃ is the pilot index, p0 is the position of the first pilot,
Ds, Dt and Df are distance between pilots in space, time and
frequency, respectively. The off-diagonal entries in D indicates
the shift on time-frequency grid. Due to the double selectivity,
pilots must be scattered in both time and frequency domain.
Thus, these off-diagonal elements should be carefully chosen,
such that pilots are properly separated as well as the time and
frequency orthogonality can still be preserved.

According to Nyquist sampling theorem, to perfectly recon-
struct a time varying frequency selective channel from pilot
symbols, the maximum spacings of pilot symbols are bounded
by [9]

Df ≤
τmax

Ts
, Dt ≤

1

2fdT
. (6)

Later we will show this bound can be surpassed with the help
of channel coding.
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Fig. 2. Factor graph of QAM mapping and LDPC coding.

III. FACTOR GRAPHS

Consider a global function g(x1, · · · , xn) which can be
factorized into the product of several local functions

g(x1, · · · , xn) =
∏
j∈J

fj(Xj) (7)

where J is the discrete index set, Xj is a subset of
{x1, · · · , xn}, and fj(Xj) is a function having the elements
of Xj as arguments. The factor graph corresponding to the
factorization consists of variable nodes for xi, function nodes
for fj and edges connecting function nodes to their associated
variable nodes. For example, the channel model described in
(1) can be represented by factor graph depicted in Fig. 1, where
transmitted symbols and CFR are both treated as variables. The
factor graph of QAM mapping and LDPC coding is illustrated
in Fig. 2, where the mapping and parity check functions take
coded bits as variables.

A general method for computing the global function g is
to apply the sum-product algorithm [10]. In the sum-product
algorithm, function nodes and variable nodes send messages
to their associated nodes, the messages can be described as
follows:
messages from variable nodes to function nodes:

µx→f (x) =
∏

h∈Sx\{f}

µh→x(x), (8)

message from function nodes to variable nodes:

µf→x(x) =
∑
∼x

f(X)
∏

y∈Sf\{x}

µy→f (y)

 , (9)

where Sv denote the set of neighbors of a node v in a factor
graph,

∑
∼x means summation over all unknown variables

in the summand except x. To get reasonable complexity, low
factor node degrees are usually preferred [11]. For instance, the
correlation function in (3) can be described by factor graph in
Fig. 3. A further simplification is to consider only first order
channel correlation, corresponding factor graph is shown in
Fig. 4.
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Fig. 3. Factor graph for decoupled channel correlations
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IV. ITERATIVE RECEIVER DESIGN

A. Receiver structure

For simplicity reasons, time and subcarrier indices are
omitted in this section. Consider uncoded bits as, define Y as
the matrix which collects all the received symbols, the optimal
receiver with respect to bit-error probability is:

âs , arg max
as∈{0,1}

p(as|Y) (10)

Assuming as uniformly distributed, according to Bayes’ rule,
we obtain:

p(as|Y) =
∑
∼as

p(A|Y) ∝
∑
∼as

p(Y|A) (11)

where A is the matrix consisting of all the uncoded bits,
∝ means equality up to irrelevant additive and multiplicative
constants. We can factor p(Y|A) as

p(Y|A) =
∑
X

p(Y|X)

NT∏
s=1

I(xs = C(as)), (12)

because of the one-to-one encoding and mapping procedure.
The indicator function I(statement) is one if the statement
is true and zero otherwise. Consider unknown channel coeffi-
cients also as variables, we have

p(Y|X) =

∫
H

p(Y|X,H)p(H)dH (13)

where H is a matrix collecting all the channel frequency
response, which has NTNRKN entries. Since spatial corre-
lation is not considered in this work, noticing the fact that
received signals on different Rx antennas or at different indices
have weak correlation[12], the following approximation can be
made to reduce complexity:

p(Y|X,H) ≈
NR∏
u=1

NT∏
s=1

p(yu|xs,hu,s), (14)

the integration in (13) becomes

p(Y|X) ≈
∫

hu,s

NR∏
u=1

NT∏
s=1

p(yu|xs,hu,s)p(hu,s)dhu,s (15)

Furthermore, using (1), with inserted pilot symbols, we have

p(yu|xs,hu,s) =
∏

xs /∈Ps

p(yu|xs, hu,s)
∏

xs∈Ps

p(yu|hu,s), (16)

where Ps is the set of pilots on antenna s. Till this step, the
conditional pdf in (10) has been noticeably simplified. Further
simplifications are possible with suitable approximations. The
message passing algorithm is described in detail below.

B. Gaussian approximation

To simplify MIMO detection, the Gaussian approximation
is made. Consider an arbitrary symbol xs and its observation
yu, all the signal components contributed by symbols other
than xs can be regarded as effective noises:

yu = hu,sxs + vu, (17)

where the effective noise sample defined as

vu =

NT∑
ς=1,ς ̸=s

hu,ςxς + wu (18)

is approximated by a Gaussian distribution. Due to the inac-
curacy of the channel estimation, the noisy estimate of CFR
can be written as:

ĥu,s = hu,s + eu,s, (19)

where the estimation error eu,s can be assumed to have a
Gaussian distribution CN (0, σ2

hu,s
) [13]. Therefore, mean and

variance of effective noise vu,s can be calculated via

µvu,s =

NT∑
ς=1,ς ̸=s

ĥu,ς x̂ς

σ2
vu,s

=

NT∑
ς=1,ς ̸=s

σ2
hu,ς

+ σ2
xς
|ĥu,ς |2 + σ2

w, (20)

where x̂ς and σ2
xς

are mean and variance of the detected
symbol xς . Statistics of effective noise samples are calculated
during every iteration for both detection and channel estima-
tion purposes.

C. Message update for channel estimation

The message from observation nodes to channel variable
nodes are

µyu→hu,s(hu,s) =
∑
xs

∫
∼hu,s

p(yu|xs, hu,s)

NT∏
ς=1

µxς→yu(xς)

NT∏
ν=1,ν ̸=s

µhu,ν→yu(hu,ν)dhu,s, (21)

Since no close form integration can be deduced, we use the
Gaussian approximation to simplify (21) to

µyu→hu,s(hu,s) =
∑

xs∈X

p(yu|xs, hu,s)P (xs) (22)

where X is the set of all constellation points. With a-priori
information P (xs), which is feeded by the symbol detector,
this conditional pdf is mixed Gaussian. Since mixed Gaussian
distribution cannot be calculated in a fast and accurate manner,
proper approximation has to be made. With a successful



detection, we have P (xs = qi) ≫ P (xs = qν), ν ̸= i, hence
p(yu|hu,s) can be well approximated by a Gaussian distribu-
tion CN (µhu,s , σ

2
hu,s

). The message passing from observation
nodes to channel variable nodes can be expressed as

µyu→hu,s(hu,s) =
1

πσ2
hu,s

exp

(
−|hu,s − ĥu,s|2

σ2
hu,s

)
, (23)

where the estimator ĥu,s is obtained by least-square estimation

ĥu,s = (yu − µvu,s
)x̂∗

s (24)

where (·)∗ denotes complex conjugate. The variance is calcu-
lated from

σ2
hu,s

= σ2
vu,s

+ σ2
xs
|yu − µvu,s |2. (25)

As the distribution of hu,s is already known, only ĥu,s and
σ2
hu,s

actually need to be passed.

D. Refined channel estimation

The estimated CFR are further refined using channel statis-
tics. Define h′

u,s = hu,s[n + ∆n, k + ∆k], to simplify this
procedure, we make the following approximation:

h′
u,s = rhu,s+

√
1− r2ξ = rĥu,s+reu,s+

√
1− |r|2ξ (26)

where r = E{h′
u,sh

∗
u,s}, ξ ∼ N (0, 1). Because of the noisy

channel estimation, h′
u,s follows the Gaussian distribution with

mean rĥu,s and variance r2σ2
hu,s

+ (1 − |r|2). The refined
information is generated in correlation nodes and passed to
channel nodes. Only first order correlation is considered in
this work, i.e. ∆n+∆k = ±1.

As variable nodes, channel nodes update messages follow-
ing the rule in (8)

µhu,s→f (hu,s) =
∏

g∈Shu,s\{f}

µg→hu,s(hu,s) (27)

where f and g can be either observation nodes or correlation
nodes, Shu,s is the set of all function nodes connected to hu,s.
Since p(hu,s) is Gaussian, the product will also be Gaussian
with mean and variance:

µf =

∑
g

µg

σ2
g∑

g
1
σ2
g

, σ2
f =

1∑
g

1
σ2
g

, (28)

where µg and σ2
g are mean and variance of message

µg→hu,s(hu,s).

E. Message update for detection

Based on the same consideration of (21) The message
passing from observation nodes to symbol nodes can be
written as

µyu→xs(xs) = p(yu|xs)

∝ exp

(
−
|yu − ĥu,sxs − µvu,s |2

|xs|2σ2
hu,s

+ σ2
vu,s

)
(29)

Generally, log likelihood ratios (LLR) are used for LDPC
decoding. Since for M-ary modulation, coded bit cis, i ∈

{1, · · · , log2 M} has NR independent observations. The out-
put the output LLRs of the data detector is given as [14]

LLR(cis) =

NR∑
u=1

log
P (cis = 0|yu)
P (cis = 1|yu)

(30)

=

NR∑
u=1

max
xs∈X i

0

log p(yu|xs)− max
ss∈X i

1

log p(yu|xs)

where X i
b denotes the set of constellation points correspond-

ing to cis = b. LLR messages are combined at the parity check
function nodes and feed back to bit variable nodes following
LDPC decoding constraint [1]. The feed back LLR messages
are additive. The probability of each bit can be recovered from
the summed LLR of each bit variable nodes by

P (cis = 0) =
exp(LLR(cis))

1 + exp(LLR(cis))

P (cis = 1) =
1

1 + exp(LLR(cis))
. (31)

For symbol by symbol detection, the decision is yield by
taking average among all constellation points

x̂s =
M∑
l=1

(

log2 M∏
i=1

P (cis)I(xs = ql))ql (32)

where ql are M-ary constellation points. The corresponding
variance is

σ2
xs

= 1− |x̂s|2, (33)

as symbol energy is normalized to 1.

F. Scheduling and complexity

The message updating starts from the initial pilot based
channel estimation. The CFR corresponding to data symbols
are updated by channel correlation nodes. Afterwards, in each
iteration, observation nodes simultaneously update messages
to each symbol node, bit metrics are generated from sym-
bol nodes and forwarded to LDPC decoder. After decoding,
symbol estimators are generated according to LLR values and
utilized in observation nodes to perform data aided channel
estimation. The data aided channel estimator are further refined
using channel correlations for the next iteration. Since in
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Fig. 5. Pilot allocation for simulation, NT = 4, N = 32, K = 128,
Df = 32, Dt = 16.
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Fig. 6. Comparison of BER versus Eb/N0 for different pilot spacing.

every iteration, each message updating operation is performed
only once, the complexity of this receiver grows linearly with
respect to the number of Tx and Rx antennas, number of
OFDM symbols and subcarriers, modulation order and degree
of correlations.

V. SIMULATION RESULTS

We consider a 4×4 MIMO systems with block transmission.
Each block consists of 32 symbols. Baseband modulation is
4-QAM. A total bandwidth of 10 MHz is divided into 128
subchannels, resulting in a symbol length of 12.8 µs. A non-
systematic LDPC code with coding rate 1/4 and column
weight 3 is applied to each Tx antenna. The carrier frequency
is 5 GHz. Normalized Doppler frequency is fdT = 0.02,
corresponds to a moving speed around 80 km/h. The maximum
delay spread is 2 µs. According to sampling theorem, pilot
spacing is bounded by Dt ≤ 25 and Df ≤ 20. Setting
positioning parametersDs = 1, dsf = Df/NT, δft = 2dsf and
the other off-diagonal elements in D to 0 results in a diamond
pilot allocation [15] depicted in Fig. 5.

The performance is evaluated by both bit error ratio (BER)
in Fig. 6 and mean square error (MSE) in Fig. 7. While
the pilot spacing in time is fixed to Dt = 16, systems with
different pilot spacing in frequency domain are compared. The
experimental results show that both BER and MSE goes down
when the pilot spacing gets smaller. However, comparing to
systems with Df = 16, systems with Df = 32 lose only 0.5
dB in signal to noise ratio (SNR), while only half of the pilots
are used. Furthermore, even when the pilot spacing is larger
than the upper bound set by sampling theorem, the system still
works with a penalty in SNR. Performance of systems with
pilot based channel estimation using linear interpolation is also
plotted for comparison. In the whole SNR range, our receiver
evidently outperforms systems with linear interpolation even
if a much smaller number of pilots is employed.

VI. CONCLUSION

In this paper, we address the problem of joint channel
estimation and LDPC decoding for MIMO-OFDM systems
with factor graphs and the sum-product algorithm. Using
different simplifications of the graph, an iterative receiver with
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low complexity is obtained. Even when the number of pilots
is smaller than the limit according to sampling theorem, this
receiver is able to track the time-varying frequency-selective
channel.
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