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Abstract. Dobbertin has embedded the problem of construction of bent functions in a recursive
framework by using a generalization of bent functions called Z-bent functions. Following his
ideas, we generalize the construction of partial spreads bent functions to partial spreads Z-bent
functions of arbitrary level. Furthermore, we show how these partial spreads Z-bent functions
give rise to a new construction of (classical) bent functions. We underline the variety given by
this construction by showing that all bent function in 6 variables can be constructed in this way.

1 Introduction

Bent functions, first introduced in [5, 9], have maximal distance to the set of all affine function.
This outstanding property, with connection to coding theory and cryptography, makes them
interesting objects to study. Since the introduction of bent functions substantial efforts have
been directed towards their study in the last three decades. Many primary and secondary
constructions are known but a general understanding of bent functions is still missing. Even
the set of all 8 variable bent functions could not be completely classified so far. We refer the
reader to the excellent survey chapter by Carlet [3] for detailed information on what is known
about bent functions in general.

In [4] the problem of constructing bent functions has been embedded into a recursive
framework by generalizing the notion of bent functions to integer-valued functions with certain
properties.

Those functions are referred to as Z-bent functions for level r, where r can be any non-
negative integer. The union of all such functions is said to be the set of Z-bent functions and
the classical bent function correspond to Z-bent functions of level 0.

Most importantly, Z-bent functions of level r on n variables can be used to construct all
Z-bent functions of level r− 1 on n+ 2 variables by a “gluing” technique. Continuing in this
way eventually all Z-bent functions of level 0 on n + 2r variables are obtained (which are
same as classical bent functions on n+ 2r variables).
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The motivation for our work is that one can hope to find new (primary) construction of
bent functions following this gluing process. For this, one could first construct (new) Z-bent
functions of level 1 and than demonstrate that those can be glued together to classical bent
functions.

After fixing our notations and recalling some results on Z-bent functions in Section 2,
we generalize the construction of partial spreads bent functions to partial spreads Z-bent
functions of level r for any r ≥ 1 (see Section 3). Based on a suitable subclass of those Z-bent
functions we give a new primary construction of (classical) bent functions in Section 4. To
demonstrate the variety of bent functions that can efficiently be constructed this way, we
argue that all bent functions on 6 variables, up to affine equivalence, can be obtained by our
construction (see Section 4.1).

2 Preliminaries

Let F2 be the finite field with two elements and Fn2 be the n-dimensional vectorspace over F2.
Any function from Fn2 into F2 is said to be a Boolean function on n variables. The set of all
Boolean functions on n variables is denoted by Bn. Let us denote the set of integers by Z.
Suppose F ∈ Bn.

Throughout this paper n = 2k is a positive integer.
The Walsh transform of a Boolean function F at a point a ∈ Fn2 is defined as

FW (a) =
∑
x∈Fn

2

(−1)F (x)(−1)〈a,x〉,

where 〈a, x〉 is the canonical inner product on Fn2 , that is 〈a, x〉 =
∑
aixi.

A Boolean function is called bent if for all a ∈ Fn2 it holds that FW (a) = ±2k. The identity

wt((F (x) + 〈a, x〉+ ε)x∈Fn
2
) = 2n−1 − (−1)ε

FW (a)

2
. (1)

provides the link between the Walsh-transform and the distance of the function F to the
linear function 〈a, ·〉. It follows from Parseval’s identity∑

a∈Fn
2

FW (a)2 = 22n

that maxa∈Fn
2
|FW (a)| ≥ 2k and therefore bent functions are exactly those Boolean functions

(on an even number of variables) that have the maximal distance to the set of all affine
functions.

2.1 From Bent to Z-bent functions and back

In order to generalize bent functions to Z-bent functions it is most convenient to replace
Boolean, that is {0, 1} valued functions by ±1 valued functions. Given a Boolean function F
we consider the function

f : Fn2 → {−1, 1} ⊆ Z
f(x) = (−1)F (x)



Clearly there is a one-to-one correspondence between the functions defined in these two ways.
Throughout this paper we denote by F , G Boolean functions and by f , g the integer-valued
function f(x) = (−1)F (x), g(x) = (−1)G(x) associated with F and G. By abuse of terminology
we shall refer to these functions from Fn2 to {−1, 1} as Boolean functions as well.

For an integer-valued (or more general real- or complex-valued) function f the Fourier
transform defined by

f̂(a) =
1

2k

∑
x∈Fn

2

f(x)(−1)〈a,x〉

is an important tool. Note the close relation to the Walsh-transform given by

f̂(a) =
1

2k
FW (a).

With this notation at hand a function f is bent if and only if both f and f̂ are {−1, 1}-valued.
From this viewpoint, the generalization to Z-bent function, to be discussed below, is almost
natural.

In order to put the construction of bent functions in a recursive framework, Dobbertin
(see [4]) generalized the notion of bent functions to Z-bent functions. Consider the following
sequence of subsets of Z

W0 = {−1, 1}
Wr = {w ∈ Z| − 2r−1 ≤ w ≤ 2r−1} for r > 0.

Definition 1. A function f : Fn2 −→Wr is said to be a Z-bent function of size k (equivalently
on n variables) and level r if and only if f̂ is also a function into Wr. The set of all Z-bent
functions of size k and level r is denoted by BF kr . Any function belonging to ∪r≥0BF kr is said
to be a Z-bent function.

Next, we recall how Z-bent function of size k and level r can be decomposed into four
Z-bent function of size k − 1 and level r + 1 (cf. Proposition 2 of [4]).

Suppose f ∈ BF kr ,

Uε1ε2 = {(ε1, ε2, y)|y ∈ Fn−22 }, ε1, ε2 ∈ F2.

and
hε1ε2(y) = f(ε1, ε2, y), y ∈ Fn−22 .

Define functions fε1ε2 as follows:
Case 1 For r ≥ 1: (

f00 f10
f01 f11

)
=

(
1 1
1 −1

)(
h00 h10
h01 h11

)
. (2)

Case 2 For r = 0: (
f00 f10
f01 f11

)
=

1

2

(
1 1
1 −1

)(
h00 h10
h01 h11

)
. (3)

Proposition 2 in [4] states that the functions fε1ε2 are Z-bent functions of size k − 1 and
level r + 1 (that is fε1ε2 ∈ BF k−1r+1 ), for all ε1, ε2 ∈ F2.



Conversely, under certain conditions, it is possible to construct bent functions of size k
and level r from bent functions of size k − 1 and level r + 1. This is refereed to as gluing in
[4] (cf. Theorem 3 of [4]). The following theorem summarizes these result in the special case
of level 1 functions being glued together to a classical bent function. Note that our notation
differs slightly from the one in [4] as we avoid to introduce so called bent squares.

Theorem 1 ([4], Theorem 3). Let four Z-bent functions f00, f01, f10, f11 of level 1 and size
k be given such that

f00(x) ≡ f01(x) + 1 mod 2 (4)

f10(x) ≡ f11(x) + 1 mod 2 (5)

f̂00(x) ≡ f̂10(x) + 1 mod 2 (6)

f̂01(x) ≡ f̂11(x) + 1 mod 2. (7)

Then the function

h : F2×F2×Fn2 → {−1, 1}
h(x, y, z) = hx,y(z)

where (
h00 h10
h01 h11

)
=

(
1 1
1 −1

)(
f00 f10
f01 f11

)
is a bent function (of level 0).

Especially in light of this gluing process, the construction of Z-bent functions becomes an
interesting problem.

3 Generalization of partial spreads bent functions to partial spreads
Z-bent functions of arbitrary level

Let E be any subset of Fn2 . The function φE defined by

φE(x) =

{
1 if x ∈ E
0 if x /∈ E

is the indicator function of E. Suppose {Ei : i = 1, 2, · · · , s} is a set of mutually disjoint
k-dimensional subspaces of Fn2 . Here mutually disjoint means Ei ∩ Ej = {0} whenever i 6= j.
The partial spreads class of bent functions (PS) consists of two sub-classes PS− and PS+.
These functions were first constructed by Dillon [5]. The elements of PS− are those functions
whose supports are unions of 2k−1 disjoint k-dimensional subspaces of Fn2 excluding 0, whereas
the elements of PS+ are those whose supports are unions of 2k−1 + 1 disjoint k-dimensional
subspaces of Fn2 . A function F ∈ Bn belonging to the class PS can be expressed as

F (x) =

s∑
i=1

φEi(x)− 2k−1φ{0}(x) for all x ∈ Fn2 ,

where s = 2k−1 if F ∈ PS− and s = 2k−1 + 1 if F ∈ PS+ and the sum is taken over the
integers.



Note that, in general, this construction is not efficient in the sense that it is difficult to
find those disjoint k-dimensional subspaces. For n = 8 a complete classification of all partial
spreads bent functions has been obtained in [7]. However, there is a special choice of subspaces
where the construction becomes effective. This leads to the class of PSap bent functions and
is explained next.

Here, we consider function from F2n to F2 instead, that is we consider the finite field with
2n elements instead of the vectorspace only. Furthermore, let V0 = F2k , the subfield of order
2k of F2n , and Vi = ζiF2k for all i = 1, . . . , 2k, where ζ is a primitive element of F2n . Clearly
the set S = {Vi : i = 0, . . . , 2k} consists of mutually disjoint k-dimensional subspaces of F2n .
A subclass of PS type bent functions is obtained by constructing functions whose supports
are union of any 2k−1 subspaces belonging to S excluding 0.

Based on the parial spread class of bent function we propose a construction technique of
Z-bent functions of level r ≥ 1, on n variables. However it should be noted that the functions
considered so far in this section are from Fn2 into F2, whereas the functions considered below
are integer valued, that is functions from Fn2 into Z, the set of integers.

Theorem 2. Let m1,m2, · · · ,ms be integers and E1, E2, · · · , Es be k-dimensional subspaces
of Fn2 , then the function

f(x) =

s∑
i=1

miφEi(x)

is a Z-bent function and its dual is given by
∑s

i=1miφE⊥
i

(x).

Proof. All we have to show is that both f and f̂ are integer valued. For f this is clear by
definition. The Fourier transform of f at a ∈ Fn2 is as follows

f̂(a) =
1

2k

∑
x∈Fn

2

f(x)(−1)〈a,x〉

=
1

2k

∑
x∈Fn

2

s∑
i=1

miφEi(x)(−1)〈a,x〉

=
1

2k

s∑
i=1

mi

∑
x∈Ei

(−1)〈a,x〉

=
1

2k

s∑
i=1

mi2
kφE⊥

i
(a)

=

s∑
i=1

miφE⊥
i

(a)

Thus, f̂ is also an integer valued function and the result follows.

While the previous theorem is quite general, it is difficult to specify the exact level of the
Z-bent functions constructed. In order to be able to construct bent functions of a specific
level r the following technical lemma is useful.

Lemma 1. Let U and V be k-dimension subspaces of Fn2 such that

U ∩ V = {0}



then

U⊥ ∩ V ⊥ = {0}

Proof. As U and V are k-dimensional U ∩ V = {0} is equivalent to Fn2 = U ⊕ V , that is Fn2
is the direct sum of U and V . Now let x ∈ U⊥ ∩ V ⊥ be given. Then,

〈x, u〉 = 0 ∀u ∈ U
〈x, v〉 = 0 ∀v ∈ V

and as Fn2 = U ⊕ V we conclude that

〈x,w〉 = 0 ∀w ∈ Fn2

implying that x = 0 as claimed.

With this lemma at hand we now can construct bent functions of any specific level.

Corollary 1. Suppose {Ei : i = 1, 2, · · · , s} is a set of k-dimensional subspace of Fn2 with the
property that Ei ∩ Ej = {0} whenever i 6= j. The function

f(x) =

s∑
i=1

ciφEi(x), for all x ∈ Fn2 , (8)

where ci ∈ Wr, for all i = 1, 2, . . . , s, is a Z-bent function of level r, for any r ≥ 1, if and
only if

∑s
i=1 ci ∈Wr.

Proof. From Theorem 2 we already know that f is a Z-bent function. To prove that it is a
bent function of level r we have to show that f(x) ∈ Wr and f̂(a) ∈ Wr for all x, a ∈ Fn2 .
While the first part follows immediately from the construction of f we elaborate a bit on the
second part.

Applying Theorem 2 yields that

f̂(a) =

s∑
i=1

miφE⊥
i

(a)

and Lemma 1 implies that the k-dimensional spaces E⊥i are pairwise disjoint. Thus for a 6= 0
we conclude

f̂(a) ∈ {ci | 1 ≤ i ≤ s} ∪ {0} ⊆Wr

and for a = 0

f̂(0) =
s∑
i=1

ci ∈Wr

by construction.

Remark 1. It is to be noted that in the binary case we obtain bent functions if and only if
s ∈ {2k−1, 2k−1 + 1} while the integer valued case is more flexible. We refer to these integer
valued functions as PS type Z-bent functions of level r.



Remark 2. It is possible to construct the analogue of PSap type bent function by considering
the functions of the form

f(x) =

2k∑
i=0

ciφVi(x), for all x ∈ F2n , (9)

where Vi = ζiF2k for all i = 0, . . . , 2k, ci ∈ Wr for all i = 1, 2, . . . , 2k and
∑s

i=1 ci ∈ Wr. We
shall refer to these functions as PSap type Z-bent functions of level r. In the next section
we use those functions together with Theorem 1 to give a new general construction of bent
functions. In particular, we demonstrate that all the bent functions on 6 variables, up to
affine equivalence, can be constructed by “gluing” PSap type Z-bent functions of level 1 on 4
variables.

Remark 3. It is to be noted that for each i ∈ {0, 1, . . . , 2k} there exists j ∈ {0, 1, . . . , 2k} such
that V ⊥i = Vj . Therefore the dual of a PSap type Z-bent function of level r is also a PSap
type Z-bent function of level r.

4 A New Construction of Bent functions

In this section we describe a new construction of (classical) bent functions based on the bent
functions of level 1 presented in Corollary 1 and the gluing Theorem 1.

While, in general, fulfilling only the conditions given in Theorem 1 on the functions fij
or on their duals f̂ij is easy, fulfilling all four conditions at the same time seems difficult.
However, bent functions of level 1 described in Corollary 1, lead to a special case where
things are a lot easier.

We start by letting S = {Si} be a spread, i.e. a collection of 2k+1 subspaces of dimension
k with the condition that

Sj ∩ Si = {0} and ∪i Si = Fn2 .
Next, we partition this spread S into two parts, A and B, i.e. A∩B = ∅ and A∪B = S and
select four collections of coefficients, each in {−1, 1}

(mA)A∈A such that
∑

mA ∈ {−1, 0, 1}

(m′A)A∈A such that
∑

m′A ∈ {−1, 0, 1}

(nB)B∈B such that
∑

nB ∈ {−1, 0, 1}

(n′B)B∈B such that
∑

n′B ∈ {−1, 0, 1}.

Given those coefficients, we are ready to construct our four Z bent functions of level 1 as
follows

f00(x) =
∑
A∈A

mAφA(x)

f10(x) =
∑
B∈B

nBφB(x)

f01(x) =
∑
B∈B

n′BφB(x)

f11(x) =
∑
A∈A

m′AφA(x).



In order to apply Theorem 1 we have to verify that the four conditions (4) to (7) are fulfilled.
To verify the first condition, let x ∈ Fn2 be given. We compute

f00(x) + f01(x) =
∑
A∈A

mAφA(x) +
∑
B∈B

n′BφB(x)

=
∑
A∈A

φA(x) +
∑
B∈B

φB(x) (mod 2)

=
∑
Si∈S

φSi(x) (mod 2)

If x 6= 0 then, as S is a spread, there exists exactly one subspace Sk such that x ∈ Sk and

f00(x) + f01(x) =
∑
Si∈S

φSi(x) = φSk
(x) = 1 (mod 2).

On the other hand, if x = 0 than

f00(0) + f01(0) =
∑
Si∈S

1 = 2k + 1 = 1 (mod 2).

The other conditions follow in a very similar way. In particular conditions (6) and (7)
follow from the fact that, due to Corollary 1, the duals f̂ij of fij are again of the same type
so the condition carries over to the duals nicely.

4.1 Construction of all 6 variable bents up to affine equivalence

In this section we consider PSap type Z-bent functions of level 1 on 4 variables. Let ζ be a
root of the primitive polynomial x4 + x+ 1 on F2. The finite field

F24 = {ζi : i = 0, 1, . . . , 14} ∪ {0}.

In this case the elements of S can be explicitly written as follows.

V0 = {0, 1, ζ5, ζ10},
V1 = {0, ζ, ζ6, ζ11},
V2 = {0, ζ2, ζ7, ζ12},
V3 = {0, ζ3, ζ8, ζ13},
V4 = {0, ζ4, ζ9, ζ14}.

We generate all the PSap type Z-bent functions of level 1 on 4 variables and “glue” them
to construct bent functions on 6 variables. Then by exhaustive search we find seven PSap
type Z-bent functions of level 1 on 4 variables such that all the 6-variable bent functions
up to affine equivalence can be generated by gluing them. We denote these functions by
g0, g1, g2, g3, g4, g5, g6 and list them below.

g0(x) = 0,
g1(x) = φV0(x),
g2(x) = −φV0(x)− φV1(x) + φV2(x) + φV3(x) + φV4(x),
g3(x) = −φV0(x) + φV1(x)− φV2(x) + φV3(x) + φV4(x),
g4(x) = −φV1(x)− φV2(x) + φV3(x) + φV4(x),
g5(x) = −φV0(x)− φV1(x)− φV2(x) + φV3(x) + φV4(x).
g6(x) = −φV1(x) + φV2(x)− φV3(x) + φV4(x),

The truth tables of the the above functions are as follows.



g0 0000000000000000

g1 1100001100000000

g2 1− 1− 1111− 1− 11111− 11− 11

g3 1− 111− 11− 1− 1111− 1111− 1

g4 00− 11− 1100111− 1− 11− 1− 1

g5 −1− 1− 11− 11− 1− 1111− 1− 11− 1− 1

g6 00− 111− 100− 1111− 1− 1− 11

By “gluing” them we obtain four bent functions on 6 variables which can be demonstrate to
be affine non-equivalent by using the weight distributions of the second derivative spectrum
introduced in [6]. Since by [9] it is known there are only four bent functions on 6-variables,
up to affine equivalence, this proves that all the bent functions up to affine equivalence are
obtained by our construction. Let us denote the four functions obtained is this way by h(1),
h(2), h(3), h(4). Define

h(i)ε1ε2(y) = h(i)(ε1, ε2, y), y ∈ Fn−22 for i = 1, 2, 3, 4.

The functions are defined as follows:(
h
(1)
00 h

(1)
10

h
(1)
01 h

(1)
11

)
=

(
1 1
1 −1

)(
g0 g2
g2 g0

)
.

The truth table of the Boolean function H(1) associated to h(1) is

0110001100001010100111001111010101100011000010100110001100001010.(
h
(2)
00 h

(2)
10

h
(2)
01 h

(2)
11

)
=

(
1 1
1 −1

)(
g0 g3
g2 g0

)
.

The truth table of the Boolean function H(2) associated to h(2) is

0110001100001010100111001111010101001011000100010100101100010001.(
h
(3)
00 h

(3)
10

h
(3)
01 h

(3)
11

)
=

(
1 1
1 −1

)(
g0 g5
g2 g0

)
.

The truth table of the Boolean function H(3) associated to h(3) is

0110001100001010100111001111010111101011000110111110101100011011.(
h
(4)
00 h

(4)
10

h
(4)
01 h

(4)
11

)
=

(
1 1
1 −1

)(
g1 g6
g4 g1

)
.

The truth table of the Boolean function H(4) associated to h(4) is

0010100000011011000101001110010000100100100011101110011110001110.

It can be directly checked that H(i), for i = 1, 2, 3, 4 are bent functions. Moreover, it is not
hard to see (for example using the techniques presented in [6] to show that all those functions
are pairwise inequivalent. Thus we obtain all the bent functions on 6 variables up to affine
equivalence.



5 Conclusion

In this paper we generalize the PS type bents to PS type Z-bent functions of level r for any
r ≥ 1. We also identify the natural analogue of the class PSap. Finally we demonstrate that
all the 6-variable bent functions can be constructed by “gluing” PSap type bent functions of
level 1 on 4 variables.
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