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Abstract—In this paper we consider the transmission of jointly
sparse signals over a MIMO MAC composed of two transmitters
and one receiver. Distributed compression is performed at the
transmitters using a liner transformation and joint reconstruc-
tion at the receiver is enabled using the theory of distributed
compressed sensing. The objective is to minimize the sum MSE
between the uncompressed signals at the transmitter and the
recovered signals at the receiver. We present a new theoretical
framework to study this problem and provide an algorithm
enabling to transmit correlated signals over a MIMO MAC,
which performs provably close to optimal. To validate our
approach we analyze the performance of our system for different
noise conditions and varying compression factors. The results
show that distributed compressed sensing can be performed
reliably over a MIMO MAC.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication has
been the main driver of the increased data throughput of
mobile communication systems in the recent past years. Nev-
ertheless, the increasing demand for mobile traffic requires
novel methods to further improve the efficiency of MIMO
systems. One very promising approach to meet this challenge
is cooperation. In this paper we consider the MIMO multi-
ple access channel (MIMO MAC), which consists in letting
several transmitters access concurrently the same resources.
This problem has been extensively studied and we recall here
some of the main results. In [1], the authors provide an
iterative water-filling algorithm, which achieves the capacity
of the MIMO MAC with individual power constraints for each
transmitter. In [2], the authors extend the approach of [1] to
the case of a global power constraint on all transmitters. While
the two previous works consider rate maximization, in [3], the
authors derive methods to minimize the sum mean-square error
(MSE) given individual power constraints.

These works however do not consider correlated sources
and the performance improvement that can be achieved by
exploiting this correlation. In [4], the authors examine a setup
consisting of one MIMO transmitter communicating in a first
step with several MIMO base stations. In a second step, the
base stations compress the received signals using distributed
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Wyner-Ziv coding and forward them onto a lossless backhaul
to a central base station. In [5], the authors consider a similar
setup, where a transmitter with several antennas transmits a
signal to multiple agents with a single antenna, which distribu-
tively compress and forward their received signal onto lossless
links with finite capacity. As opposed to these approaches, we
want to directly transmit distributively compressed signal over
a MIMO MAC in a single step.

The main idea of the present work is to use distributed
compressed sensing (DCS) in order to separately compress the
source signals, transmit them over a MIMO MAC and finally
jointly recover these signals while exploiting their correlation.

DCS is an extension of compressed sensing (CS) [6], which
considers the compression and recovery of a global signal z
decomposed in subsignals z1, . . . , zn, with z = [zT

1, . . . , z
T
n]

T,
which are compressed independently. The global signal is
recovered in its entirety at one location. DCS is particularly
interesting to compress sources that are correlated but cannot
be processed together (e.g., sensors at different locations).
A simple setup of DCS for wireless sensor networks has
been presented in [7]. Each source j, with j = 1, . . . , n,
wants to transmit a scalar zj ∈ C to a sink. At time t
each source transmits φj(t)zj where φj(t) is a random value
known at the sink. The sink receives

∑n
j=1 φj(t)zj + n(t).

After m channel uses, the sink received y ∈ Cm with
y = Φz + n, Φ ∈ Cm×n, Φij = φj(i), z = [z1 z2 . . . zn]

T

and n = [n(1) n(2) . . . n(m)]T. If z is sparse then it can be
reconstructed with m < n using CS theory.

In [7] the main signal is assumed to be compressible, i.e.,
sparse in some domain. In [8], the authors extend the scope of
DCS and define the concept of joint sparsity, which represents
the fact that several subsignals have a joint structure. The
authors present several joint sparsity models (JSM) which
are interesting for different practical scenarios. For example
the JSM-1 model, describes subsignals sharing a common
sparse component and having an individual sparse innovation
component which is, e.g., a model for distributed sensor mea-
surements. The JSMs account both for intra-signal correlation
(inside the subsignals) and inter-signal correlation (among
subsignals). For each JSM, the authors provide reconstruction
algorithms and error bounds. In [9], distributed compressed
sensing has been applied to amplified and forward relay
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networks to perform distributed compression of jointly sparse
signals. However, in contrast to the present work, correlated
signals are not considered (i.e., the common sparse component
of the JSM-1 model is set to zero), and the optimization of
the transmit strategy ignores the noise in the system.

The contribution of the present paper is manifolds. First
we introduce a new theoretical framework to analyze the
performance of DCS over a MIMO MAC. Second we provide
a lower bound on the achievable sum MSE for the transmission
of correlated signals over a MIMO MAC and most importantly
we derive a heuristic, which achieves a sum MSE matching, in
practice, this lower bound. Finally we verify our methodology
by proceeding to numerical analysis and discuss the perfor-
mance achieved by such a system, as well as the influence of
the compression rate on the reconstruction error.

The rest of the present paper is organized as follow. In Sec-
tion II, we describe the problem statement and our theoretical
framework. In Section III we derive a lower bound on the
achievable error and present a heuristic to minimize the sum
MSE with individual transmit power constraints. In Section IV
we show numerical results in order to validate our approach.
Finally, section V concludes this work.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM

We consider a MIMO MAC with two transmitters and one
receiver. Each transmitter i has a source signal zi ∈ Cn. These
source signals are correlated and obey the JSM-1 [8], i.e.,

zi = ẑi + zc, i ∈ {1, 2}, (1)

where ẑi is a sparse innovation vector and zc is a sparse vector
common to both sources. A vector is said to be k-sparse if it
has no more than k nonzero components. In order to analyze
our system we need to be able to generate signals zi obeying
the JSM-1. In this work we adopt the following methodology.
The entries of the vectors ẑ1, ẑ2 and ẑc are independently and
identically-distributed as follows

ẑi,j ∼ NC(0, 1), with probability pi,
ẑi,j = 0, with probability 1− pi

(2)

and

zc,j ∼ NC(0, 1), with probability pc,
zc,j = 0, with probability 1− pc,

(3)

where ẑi,j and zc,j are the j-th component of ẑi and zc
respectively. Note that ẑi,j and zc,j are pin-sparse and pcn-
sparse respectively in average, i.e., of the n entries, no more
than pin and pcn are nonzero in average respectively.

Each transmitter i has m antennas. It compresses its source
signal using a Gaussian matrix Φi ∈ Rm×n with m < n and
all entries of Φi are independently and identically-distributed
as [Φi]jk ∼ NC(0, 1/m). Note that the matrices Φi are
generated once and are fixed and known to the transmitter and
the receiver in the following. The signals xi ∈ Rm resulting
from this compression are given by

xi = Φizi, i ∈ {1, 2}. (4)

The entries of xi have zero mean and the covariance matrix
Ci of xi is given by

Ci = (pi + pc)ΦiΦ
H
i , i ∈ {1, 2}. (5)

Similarly the cross-correlation matrix C12 between x1 and x2

is given by

C12 = pcΦ1Φ
H
2 , i ∈ {1, 2}. (6)

The signals xi are precoded with matrices Pi ∈ Cm×m

and transmitted over the wireless channel. The received signal
y ∈ Cm is given by

y = H1P1x1 + H2P2x2 + n, (7)

where Hi ∈ Cm×m is a channel gain matrix and n ∈ Cm is a
noise vector with entries taken from the Gaussian distribution
as n ∼ NC(0,Cn). In the present work, we consider a global
power constraint on the two transmitters, i.e., tr(P1C1P

H
1 +

P2C2P
H
2 ) ≤ PT .

By defining x , [(P1x1)
T (P2x2)

T]T, z , [zT
1 zT

2]
T,

H , [H1 H2], P ,
ï
P1 0
0 P2

ò
and Φ ,

ï
Φ1 0
0 Φ2

ò
,

we can rewrite (7) as follows

y = Hx + n = HPΦz + n. (8)

The signal y is linearly filtered by a filter matrix
W ∈ C2m×m. The final filtered signal x̃ ∈ C2m is given by

x̃ = WHy. (9)

Finally the receiver tries to recover z1 and z2 using DCS by
solving the following convex program

minimize
ẑ1,ẑ2,zc

‖ẑ2‖l1 + ‖ẑ1‖l1 + ‖zc‖l1

subject to
∥∥∥∥WHHPΦ

ï
ẑ1 + zc
ẑ2 + zc

ò
− x̃

∥∥∥∥
l2

≤
√

tr(WHCnW),

(10)
where

√
tr(WHCnW) is the average norm of the received

noise, ‖.‖l1 denotes the l1-norm, i.e., the sum of the absolute
value of the entries of the vector and ‖.‖l2 denotes the Eu-
clidean norm. The constraint of the problem amounts to only
taking into account signals z1 and z2, which are consistent
with the received vector x̃. The objective then chooses among
all possible consistent signals, the ones, which are the sparsest.
Indeed, the l1-norm is the tightest convex approximation of the
cardinality function.

The fundamental questions that are of interest in the present
work, are 1) how to design the matrices P1, P2 and W to
minimize the MSE between x and x̃ by choosing P1, P2 and
W, while fulfilling the power constraint

tr(P1C1P
H
1 + P2C2P

H
2 ) ≤ PT , (11)

2) how small can m be chosen, in other words how much
antenna should we have for a given n and 3) what performance
can be achieved.
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III. FILTER AND PRECODER DESIGN

The contribution of this section is to extend the approach
of [3] to colored noise and, most important, to correlated
sources. The MSE matrix, denoted by E ∈ R2n×2n, is given
by E = E[(x̃− x)(x̃− x)H]. We define the matrix Q as the
covariance matrix of x, i.e.,

Q ,
ï

P1C1P
H
1 P1C12P

H
2

P2C
H
12P

H
1 P2C2P

H
2

ò
. (12)

We start with Q as our optimization variable without consider-
ing its structure given in (12) and come back to this point later
in our derivations. We want to solve the following optimization
problem

minimize
Q,W

tr(Q− 1
2 EQ− 1

2 )

subject to tr(Q) ≤ PT

Q < 0,

(13)

where E is given by

E = WH(HQHH+Cn)W−WHHQ−QHHW+Q. (14)

and tr(Q− 1
2 EQ− 1

2 ) is the normalized MSE by Q.

A. Optimal Filter Design

It can be easily shown that the minimum MSE filter matrix
W? is given by

W? = (HQHH + Cn)
−1HQ. (15)

By plugging (15) into (14), we get the MSE matrix with
optimal filtering given by

E = Q−QHH(HQHH + Cn)
−1HQ. (16)

B. Optimal Precoder Design

We can rewrite the objective function of the problem (13)
as follows

tr(Q− 1
2 EQ− 1

2 ) = tr(I−Q
1
2 HH(HQHH + Cn)

−1HQ
1
2 )

= m+ tr((HQHH + Cn)
−1Cn)

= m+ tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1).
(17)

We can now find the optimal value for Q, denoted Q? by
solving the following convex optimization problem

minimize
Q

tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1)

subject to tr(Q) ≤ PT

Q < 0.

(18)

Now, the problem is, as mentioned earlier, that we do not
have the complete freedom for choosing Q since the two
transmitters precode independently their own signal. We make
explicit the block structure of Q as follows

Q =

ï
Q1 Q12

QH
12 Q2

ò
. (19)

By comparing this expression for Q to the one in (12), we can
see that it is only possible to generate a matrix Q with the
precoders P1 and P2 if the following system has a solution P1C1P

H
1 = Q1

P2C2P
H
2 = Q2

P1C12P
H
2 = Q12.

(20)

Definition 1. A matrix Q is said to be generable if and only
if it there exist precoder matrices P1 and P2 solutions to the
system (20).

If we could calculate Q? using problem (18) and if there
would exist matrices P1 and P2 solving the system (20), then
we would have our optimal P1 and P2. The problem is that Q?

will most often not be generable using P1 and P2. So instead
of computing Q? and hoping it is generable, we would like to
find the best Q for problem (18) with the constraint that Q is
generable, i.e., find the best signal covariance matrix among
those we can actually achieve.

Proposition 1. Define Rc , C
− 1

2
1 C12C

− 1
2

2 . A matrix Q is
generable if and only if there exists two orthogonal matrices
U1 and U2 such that

Q
1
2
1 UH

1 RcU2Q
1
2
2 = Q12 (21)

holds.

Proof: First we show that if Q is generable then (21)
holds. Since Q1 and C1 are symmetric positive semidefinite
matrices, all the solutions to P1C1P

H
1 = Q1 are of the

form P1C
1
2
1 U1 = Q

1
2
1 where U1 can be any orthogonal

matrix. Similarly all the solutions to P2C2P
H
2 = Q2 are

of the form P2C
1
2
2 U2 = Q

1
2
2 . Plugging those two re-

sults into the expression P1C12P
H
2 = Q12, we find that

Q
1
2
1 UH

1C
− 1

2
1 C12C

− 1
2

2 U2Q
1
2
2 = Q12 must hold.

Second we show that if (21) holds for some matrices
U1 and U2, then Q must be generable, i.e., we can find
a solution to the system (20). Simply take the matrices
P1 = Q

1
2
1 UH

1C
− 1

2
1 and P2 = Q

1
2
2 UH

2C
− 1

2
2 . We have directly

that the first two conditions of (20) are fulfilled. Furthermore
since Q

1
2
1 UH

1RcU2Q
1
2
2 = Q12 holds, we can calculate that

Q12 equals P1C12P
H
2 , which is exactly the last condition of

(20).
The problem to minimize the MSE over all generable

covariance matrices can therefore be formulated as follows

minimize
Q,U1,U2

tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1)

subject to tr(Q) ≤ PT

Q < 0

Q
1
2
1 UH

1RcU2Q
1
2
2 = Q12

U1U
H
1 = I, U2U

H
2 = I.

(22)

This problem is however nonconvex and hard to solve. We
propose next a suboptimal heuristic to solve this problem,
which works close to optimal in practice.
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C. Heuristic for Precoder Design
In this section we describe an iterative algorithm to solve

problem (22).
1) Initialization: The variable Q is determined by Q1,

Q2 and Q12 as described in (19). We initialize the matrix
Q12 = Q?

12, where Q?
12 is the corresponding submatrix of

the solution of problem (18).
2) Step 1, find Q1 and Q2: Solve the following convex

problem, for which Q12 is fixed,

minimize
Q1,Q2

tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1)

subject to tr(Q) ≤ PT

Q < 0.

(23)

Note that for the first iteration the solution of this problem is
the same as the one of problem (18). At this stage Q does not
fulfill the condition (21).

3) Step 2, find Q12, U1 and U2: For the first iteration
we fix U2 = I and then solve the following convex problem
where Q1 and Q2 are fix.

minimize
Q12,U1

tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1)

subject to Q < 0

Q
1
2
1 UH

1RcU2Q
1
2
2 = Q12.

(24)

In this problem, the optimal value U?
1 is not orthogonal since

we dropped the constraint U1U
H
1 = I. To make U1 feasible

for problem (22), we take the singular value decomposition
(SVD) of U?

1 as U?
1 = X1Σ1Y

H
1 and set U1 to the closest

orthogonal matrix to U?
1, i.e., U1 = X1Y

H
1 .

Second, to find U2 and Q12, we solve the following convex
problem

minimize
Q12,U2

tr((Cn
− 1

2 HQHHCn
− 1

2 + I)−1)

subject to Q < 0

Q
1
2
1 UH

1RcU2Q
1
2
2 = Q12.

(25)

Here again U?
2 is not orthogonal. As for U1, we set

U2 = X2Y
H
2 . Finally it remains to make Q12 feasible by

setting it to Q12 = Q
1
2
1 UH

1RcU2Q
1
2
2 . The iteration is finished

and we go back to Step 1 until the algorithm converges. In
practice the convergence happens after very few iterations,
typically two or three.

IV. NUMERICAL EVALUATION

We simulate a system with the parameters described in
Table I to evaluate the performance of the filter and precoders
design presented in Section III. The channel matrix H is taken

TABLE I
SYSTEM PARAMETERS FOR EVALUATING SUM MSE VS. SNR

Parameter Symbol Value
Size of uncompressed signal zi n 16
Size of compressed signal xi m 4 to 12
Probabilities of nonzero entries in zi p1, p2, pc 0.1
Noise covariance matrix Cn I
SNR PT /tr(Cn) −20dB to 40dB

at random from the Gaussian distribution.
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Fig. 1. Theoretical average Sum MSE of compressed vectors with respect
to SNR for m = 8.
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Fig. 2. Experimental average Sum MSE of decompressed vectors with respect
to SNR for m = 8.

A. Sum MSE with respect to SNR

In this section we want to evaluate the performance of the
system under different SNR conditions. In Fig. 1, we plot the
theoretical average normalized MSE, between the compressed
vectors x̃ and x, given by formula (17). In dotted red, we
present a lower bound on the achievable sum MSE, obtained
by solving problem (18), in dashed blue is the sum MSE we
achieve using our optimization method described in Section
III-C and in solid brown is the sum MSE attained by simply
taking P1 = I and P2 = I, i.e., the communication is not
optimized. This figure solely describes the performance of the
MIMO MAC. First we can see that our optimization method
always achieves performance close to the optimal sum MSE
and second we can observe that the gain of optimizing is rather
small in very low and high SNR regime but can be as high as
15% for moderate SNR.

In Fig. 2 and 3, we plot the experimental average MSE
obtained by generating several vectors z as described in (2)
and (3), and decompressing using algorithm (10). In solid
brown and dashed blue, we can see the performance for an
unoptimized and optimized system, respectively. In Fig. 2, we
took m = 8, i.e., a strong compression factor of 1/2 and in
Fig. 3, we took m = 12, i.e., a moderate compression factor
of 3/4. Observe the difference between the unoptimized and
optimized case. For high compression rate (Fig. 2), we can
see a large gain for very low SNR (close to 30%) and a small
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Fig. 3. Experimental average Sum MSE of decompressed vectors with respect
to SNR for m = 12.
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Fig. 4. Theoretical average Sum MSE of compressed vectors with respect
to m for SNR = 0dB.

gain at moderate SNR. The two curves converge at high SNR.
Interestingly, for moderate compression rate (Fig. 3), the gain
at high SNR is smaller but the gain at moderate SNR increases
significantly (up to 15%).

Most importantly these figures show that it is possible
to perform distributed compressed sensing reliably over a
MIMO MAC. Note that ẑ1, ẑ2 and zc, are in average 1.6-
sparse. In the moderate to high SNR regime (from 20 to
40dB), for a moderate compression rate, we achieve an error,
which is smaller than 1.5. It turns out that we reconstruct the
common sparse component zc and one of the sparse innovation
component ẑi perfectly. As the SNR grows, we reconstruct the
last innovation component with less and less error.

B. Influence of the Number of Antennas

In this section we want to transmit a vector z of fixed size
(2n) and evaluate the performance of the system for different
number of antennas (m). In Fig. (4), we plot the theoretical
average normalized MSE, between the compressed vectors x̃
and x with respect to m. In this case again, our optimization
algorithm attains the lower bound. For high compression rate,
the gain of optimizing is rather small but becomes always
larger when the compression factor becomes more moderate.
It is important to understand that the error between x̃ and
x increases with m since the vectors have an increasing
number of entries. This does no go against the intuition that
compressing z less, i.e., taking m large, should provide less
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Fig. 5. Experimental average Sum MSE of decompressed vectors with respect
to m for SNR = 0dB.

error on the reconstruction of z. Indeed in Fig. (5), we plot the
reconstruction error of z with respect to m. We clearly see that
as m increases, the reconstruction error decreases. Another
important point is that as m becomes large, the difference
between the unoptimized and optimized case becomes always
larger.

V. CONCLUSION

We have presented a new theoretical framework enabling
to analyze the performance of distributed compressed sensing
over the MIMO MAC. In our approach, we first compress
separately the correlated signals and then transmit them close
to optimal over the MIMO MAC, using a new optimization
algorithm. We have shown that our method gives significant
improvement over a simple communication strategy and fur-
thermore that distributed compressed sensing can be performed
reliably over the MIMO MAC. Future works consist in con-
sidering different JSMs and implementing our concept on a
cognitive radio platform to verify experimentally our results.
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