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Abstract—Common approaches for partitioning cell site plan-

ning problems into smaller instances typically suffer from the

lack of knowledge about the number of clusters k that is

appropriate for the particular problem. When applying an

iterative processing over methods such as the k-means algorithm

or the related k-medoids approach to determine the optimum k,

the computational effort can be higher than solving the original

problem instance directly. This is particularly the case if the

optimum k is small, which happens most likely in urban envi-

ronments where the user density and the number of cells are high.

In this paper, we propose a graph-based method using minimum

cut operations to partition a planning instance automatically into

an appropriate number of k sub-problems. We demonstrate the

benefits of this approach by numerical evaluation of exemplary

application to the problem of planning LTE cell site locations in

an urban environment.

Index Terms—LTE network planning, graph theory, multi-

objective optimization, interference modeling.

I. INTRODUCTION

Since recent studies predict a boost of mobile data traffic of
more than one magnitude within the next four years [1], oper-
ators prepare their networks to cope with the future demand.
Most operators introduce fourth generation (4G) wireless
communication systems based on the Long-Term Evolution
/ System Architecture Evolution (LTE / SAE) standard [2].
This means that there is a continuous need for LTE cell
site planning, i.e., deployment and configuration of eNodeBs.
Particularly for urban environments, where the cell density
has to be quite high, this is a very resource consuming task
that suffers from a high computational complexity. Generally,
inter-cell interference causes strong interdependence between
potential sites and configurations, respectively. This makes an
optimal selection a hard combinatorial problem that, more-
over, is of multi-objective nature. Typical Key Performance
Indicators (KPIs) that are combined into a joint objective are
coverage, capacity, and economical aspects [3], [4].

One approach to reduce computational complexity is the
partitioning of the planning problem into smaller instances,
i.e., the spatial decomposition of relevant elements into sep-
arately treated clusters. Common methods for clustering of
multidimensional data sets are, for instance, the k-means
algorithm and the related k-medoids approach [5], [6]. Both
methods aim at finding clusters with minimal intra-cluster
distortion for a prespecified number of clusters k. While

the points representing the clusters in the k-means algorithm
are centroids that are not necessarily elements from the
original data set, the k-medoids method considers medoids
as cluster representatives, i.e., it operates only on initially
existing elements. The latter approach is particularly preferred
if the computation of distances from existing points to new
points is expensive. In the context of wireless communications,
this is the case if signal strength between transmitter and
receiver points is not computed on basis of a distance related
(semi-empirical) path loss model but with respect to more
accurate models, e.g., ray optical methods [7], [8]. Such
methods are utilized preferably for urban environments, where
physical propagation effects at densely deployed buildings
cause a very diverse path loss profile. Figure 1 illustrates this
situation exemplarily for an artificially deployed transmitter.
Both clustering approaches, however, do not automatically
determine the suitable number of clusters k for the considered
scenario. One way to obtain an appropriate k is the iterative
evaluation of problem partitioning, i.e., to start with a large k,
to compute optimal solutions for the corresponding clustering,
and to stop when the objective function is not improved by
using a smaller k. The major drawback of this method is that
for each iteration step over k, the optimization problem has to
be solved for all clusters. If the optimum k is small, the overall
computational effort can be larger than solving the original
problem instance directly.

In this paper, we propose a minimum cut (min-cut) based
approach for problem partitioning that automatically finds an
appropriate number of clusters k without solving any planning
problems in between. Furthermore, our method does not rely
on a random selection of initial cluster center points but
arranges clusters automatically around their native centers.
We apply the proposed method exemplarily to the problem
of planning LTE cell site locations in an urban environment
and demonstrate its benefits by numerical evaluation.

The rest of this paper is organized as follows. In Section II,
we discuss related work before we introduce the considered
system model in Section III and describe the cell site planning
tasks in Section IV. We discuss the problem of partitioning
planning instances into smaller sub-problems and propose our
approach in Section V. In Section VI, we apply our method
exemplarily and evaluate benefits numerically. Finally, we
conclude this paper and discuss future work in Section VII.
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Figure 1. Diverse signal strength distribution in an urban environment.

II. RELATED WORK

In [9] and [10], Yu et al. apply a k-means clustering method
to partition instances for planning 802.16j base station and
relay station locations into smaller sub-problems. Since the
considered path loss models are semi-empirical, computation
of the distance measure to new points, i.e., cluster centroids,
is simple. After reassignment of transmitter-to-receiver links
for the overall deployment solution – obtained by combining
the sub-problem solutions – they achieve results very close
to the optimum, while the clustering approach saves up to
70% of computation time even for small k. The number
of clusters, however, is chosen manually with respect to the
considered planning scenario. In [11], Partitioning Around
Medoids (PAM) – a variant of the k-medoids method – is
combined with a modified Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [12] to partition mobile
network planning problems. The number of clusters k is ini-
tially set to the expected number of required cells concerning
coverage and capacity requirements. The number is iteratively
increased according to a density-based criterion whenever
the demand in a cluster requires deployment of a second
base station, i.e., the computed number of clusters equals
the number of deployed base stations. This approach is very
sensitive to the initial estimation of potentially required k and
might suffer from the risk of ”over-clustering” which can lead
to neglection of inter-cell dependencies such as interference.

Su et al. introduce a graph-based representation of multi-cell
and multi-user wireless networks in [13]. This structure is used
to identify base stations that have to coordinate themselves
for simultaneous downlink transmission with respect to inter-
cell interference. Although our purposes are different from
this context, we utilize a similar graph-based representation to
apply min-cut algorithms for problem partitioning. Clustering
based on minimum-cut trees is a very popular technique in
image segmentation, biology, or general network analysis [14].
The basic idea is to partition the initial data set hierarchically
by applying min-cut operations such that the resulting clusters
have small inter-cluster dependencies and relatively large intra-
cluster dependencies [15]. In [16], cut expansion and cut
conductance are introduced as useful measures to describe
cluster quality. In our work, we use a modified version of
the conductance as quality measure.

III. SYSTEM MODEL

We consider planning of LTE cell sites in an urban environ-
ment, i.e., where to deploy eNodeBs (eNBs) such that given
user demands can be supported by downlink transmission in
the radio network. Generally, LTE cells utilize OFDMA as
access technology to serve users (UEs) in a shared frequency
spectrum. According to the LTE system specification [2], we
distinguish 16 Channel Quality Indicators (CQI) to describe
link quality from eNBs to users. Each CQI corresponds to
a supported modulation scheme and code rate for downlink
transmission with respect to a fixed bit error rate, i.e., we
can compute the spectral efficiency in terms of bits per
second per Hertz for each CQI. The lowest non-zero spectral
efficiency is 0.25 [bps/Hz] for QPSK and code rate 1

/8 and
the largest spectral efficiency is 4.8 [bps/Hz] for 64-QAM and
code rate 4

/5. The system link budget specification defines
what Received Signal Power (RSP) is required to support
a minimum downlink throughput of 95% of the maximum
possible at different CQIs. Different QoS requirements of an
UE can be modeled by modifying the corresponding CQI
specifications accordingly.

To compute link-wise RSP information, we utilize the ray
optical approaches presented in [7] and [8], respectively. By
comparing the achievable RSP to the CQI requirements, the
maximum supportable CQI is selected and the corresponding
spectral efficiency describes the maximum supported link
quality. Since interference is one of the main limiting effects
for network coverage, capacity, and performance, we introduce
the following model to incorporate inter-cell interference.

A. Interference Approximation Model

Generally, resource allocation considering interference is
performed on basis of the Signal-to-Interference plus Noise
Ratio (SINR) that Physical Resource Block (PRB) experience
for a certain UE-to-eNB assignment [17]. Taking into account
the SINR, optimal resource allocation is a combinatorial
problem that is computationally hard for practical problem
sizes. Hence, we utilize a linear approximation model that par-
titions the consumed bandwidth into resource b

SRV
s utilized for

transmission on basis of the Signal-to-Noise Ratio (SNR) and
into resource b

ITF
s that is blocked for interference mitigation,

i.e., the total consumed bandwidth is

b

SRV
s + b

ITF
s .

The blocked bandwidth is computed as linear combination
over resources of interfered transmissions, where a link from s

0

to user t is interfered by s with impact factor qss0t 2 [0, 1].
The impact factor basically depends on the signal strength
ratio and the frequency reuse potential of related cells. Since
the model describes the potential amount of bandwidth that
has to be reserved in the spectrum to support the overall UE
demand, we call it Bandwidth Reservation Concept (BRC). In
particular, our approach models the expected average amount
of bandwidth that is consumed according to resource allocation
algorithms performed by an eNB. Note that it does not
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Figure 2. Exemplary PRB allocation at eNBs and estimated spectrum
consumption for eNB 1 .

describe where the consumed resources are allocated in the
spectrum and, hence, skips the combinatorial problem of PRB
assignment.

Figure 2 exemplarily illustrates application of the approxi-
mation assuming equal signal power for all transmission and
all interference links and that each eNB-to-UE transmission
requires two PRBs to fulfill UE rate demand. The depicted
allocation is obtained by assuming resource allocation algo-
rithms that can take advantage of an average frequency reuse
potential of 1

/2 for each eNB. For practical application, the
reuse potential might be calibrated differently for inner cells
and outer cells, i.e., cells with many and a few interfering
neighbors, respectively.

IV. LTE CELL SITE PLANNING

Considering notation according to Table I, the cell site
planning problem is the following: Which eNBs out of the
set of candidates S should be deployed to serve a maximum
of expected user rate demand at minimum costs. We apply the
demand node concept from [18] to abstract from single UEs by
aggregating a suitable number of UEs into one Demand Node
(DN). Hence, DNs model the spatial distribution of aggregated
UEs as well as their cumulated rate demand on average.

Inspired by [19] and [20], we consider the optimization
problem

max

2

4
X

(s,t)2S⇤T

zst (�basic + �ratert)�
X

s2S
csxs

3

5

subject to
X

s2St

zst  1 8 t 2 T (1)

zst  xs 8 (s, t) 2 S ⇤ T (2)
X

t2Ts

rt

est
zst+ b

ITF
s  Bs+(1� xs)·1 8 s 2 S (3)

b

ITF
s =

X

(s0,t)2S⇤T ,s0 6=s

qss0t
rt

es0t
zs0t 8 s 2 S (4)

Table I
INPUT PARAMETERS AND VARIABLES.

Symbol & domain Parameter description
S = {1, . . . , NS} Index set of eNB candidates
T = {1, . . . , NT } Index set of demand nodes (DN)
s 2 S, t 2 T Representative indices
cs 2 R�0 eNB costs
rt 2 R�0 DN data rate demand
Bs 2 R�0 Total bandwidth available at eNB

est 2 R�0
Supported spectral efficiency from eNB
to DN according to Sec. III

emin 2 R>0
Minimum spectral efficiency to enable
transmission (CQI 1)

qss0t 2 [0, 1] Interference impact factors
Symbol & domain Variable description
xs 2 {0, 1} eNB deployment indicator
zst 2 {0, 1} Coverage (assignment) indicator

where the sets S ⇤ T , St, and Ts are defined as

S ⇤ T = {(s, t) 2 S ⇥ T | est � emin} ,
St = {s 2 S | (s, t) 2 S ⇤ T } , Ts = {t 2 T | (s, t) 2 S ⇤ T } .

For appropriately chosen parameters �basic and �rate, the ob-
jective leads to maximization of operator profit [20]. By (1)
and (2), each DN t can be covered by at most one deployed
BS s (zst = 1). The rate demand rt of each covered DN
is fully served. The corresponding bandwidth is reserved
according to the first term of constraint (3). The amount of
required bandwidth depends on the link quality, i.e., on the
spectral efficiency est the link supports. The bandwidth b

ITF
s

that has to be blocked to mitigate inter-cell interference is
computed according to the model from Section III-A as (4).
For each deployed eNB, the overall consumed bandwidth has
to stay below the available bandwidth Bs. The infinity term
on the right hand side of (3) removes this constraint for all
non-deployed eNBs to avoid feasibility problems.

Since objective function and constraints of the optimization
problem are linear, it is an Integer Linear Program (ILP) [21]
that can be solved by solvers such as CPLEX or Gurobi.

V. PARTITIONING OF PLANNING PROBLEMS

The general processing for partitioning cell site planning
problems is the following: The planning instance is separated
into clusters that contain subsets of base station (BS) candi-
dates and DNs. The corresponding sub-problems are solved
independently and sub-solutions are aggregated to an overall
solution by selecting deployed BSs from the clusters. Since
inter-cluster interference is ignored, reassignment of DNs
with respect to fixed BS deployment in the original planning
scenario is necessary to obtain a reliable objective value.
No matter what clustering approach is chosen, the distance
measure between points is the key component that determines
which points belong to the same cluster. In the context of
wireless networks, a reliable distance measure has to reflect
dependencies between points strongly related to signal quality.
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Figure 3. Graph-based representation of wireless networks.

A. A graph-based distance measure
As mentioned in Section I and illustrated by Figure 1,

Euclidean distance or semi-empirical path loss are not the
right measures to describe signal quality between points in an
urban environment. Hence, we propose the following distance
measure that is pre-computable between all relevant points
of the planning problem. According to Figure 3, we describe
a cell planning instance – or a wireless network scenario –
as bipartite graph G = (S, T,E), where S contains all BS
(eNB) candidates, T the DNs (UEs), and the weights wij of
undirected edges E are equal to the spectral efficiency (alter-
natively RSP) on the corresponding links and are computed
by a ray optical approach according to Section III. A suitable
distance measure for clustering is then given by the cost of
the shortest path [21] between nodes in G, where the cost
function for an edge is the reciprocal of its weight, i.e., 1

/wij .

B. Min-cut based partitioning
Considering the graph-based representation of a cell site

planning instance as described above, we propose a hierarchi-
cal approach [6] to partition the graph G into clusters that have
a strong intra-cluster and a weak inter-cluster relationship. The
strength of inter-cluster relationship between two clusters is
quantified by the cost of the cut that separates the disjoint
partitions P,

¯

P ⇢ G. Similarly, the strength of intra-cluster
relationship is indicated by the sum over all edge weights
in the cluster. To find an appropriate clustering criterion, we
consider the conductance [16] of a cut (P, ¯P )

�(P,

¯

P ) =

P

i2P, j2P̄

wij

min

�
w(P ), w(

¯

P )

 
, (5)

where w(P ) is the sum over all edge weights in partition
(cluster) P . Roughly speaking, a cut with low conductance
provides a good trade-off between cost for decomposition and
cluster quality. It turned out that the sum over edge weights
can become fairly large if DNs are located in line-of-sight
positions and that, hence, even well assessed clusterings can
be very unbalanced. Therefore, conductance is not sufficient
to achieve a beneficial partitioning for cell site planning prob-
lems. We extend measure (5) by considering partition balance
and the BS-to-sum-rate ratio in clusters as multiplicative terms,

i.e.,

�(P,

¯

P )=�(P,

¯

P )·
max

�
|P |, | ¯P |

 

min

�
|P |, | ¯P |

 ·max

⇢
|SP |
RP

,

|SP̄ |
RP̄

�
(6)

serves as trade-off measure to assess a cut (P, ¯P ), where RP

is the DN sum rate in a partition P ; when considering equal
rate demand for all DNs, the sum rate might be replaced
by DN cardinality |TP |. Finding a cut that minimizes (6)
is computationally hard since the number of possible cuts
grows exponentially with the number of nodes in G. Therefore,
we apply the following heuristic to shrink the number of
cut candidates: First, the considered graph is extended by an
artificial source node q that is connected to all BS nodes s 2 S,
where each edge from q to s is weighted slightly larger than
the sum over all further edges of s, e.g.,

wqs =

X

t2T

wst + 1 .

Second, we successively compute the minimum cuts (min-cuts)
from q to each node t 2 T , where all edges to a respective
sink node t temporarily get an infinite weight. Adapting edge
weights of source and sink node in the described way prevents
from finding trivial cuts that simply separate one of these
nodes. Algorithms to compute min-cuts are computationally
efficient, e.g., by solving the max-flow problem [21]. From
the set of min-cuts over T we select the one for which (6)
is minimal and consider the corresponding two partitions as
cluster candidates with achieved trade-off measure �. Whether
the candidates are accepted as suitable clustering is decided
by a criterion that takes into account � and the trade-off
of previous partitioning. Algorithm 1 describes the overall
procedure for hierarchical partitioning of G utilizing min-cut
based clustering as described above. By choosing a degrada-

Algorithm 1 Hierarchical graph partitioning

Require:

G = (S, T,E) : Initial graph
⌧ : Initial bounding factor
↵ : Degradation factor

1: Init: k  0, n 0, P0  G, �0  ⌧
↵

|SG|
RG

2: while (k  n) do

3: (P,

¯

P ),� min-cut based clustering of Pk

4: if �  ↵�k then

5: Pn+1  P, Pn+2  ¯

P , �n+1 = �n+2  �

6: n n+ 2

7: end if

8: k  k + 1

9: end while

10: return dendrogram of P0, . . . , Pn

tion factor ↵  1, we ensure that a subsequent partitioning is
applied only if it keeps or improves its parent cluster trade-off
measure. The decision might be complemented by requiring
a minimum number of BSs and DNs in the sub-clusters. The
initial trade-off measure �0 in line 1 is derived on basis of
the bounding factor ⌧ that reflects the worst case constellation
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of conductance and partition balance that is still tolerable for
partitioning G. The leaf nodes of the returned dendrogram
describe the partitioning of G, see Figure 4 (d).

For subsequent partitioning, conductance tends to increase
and partitions get more balanced. The BS-to-sum-rate ratio
does not vary that much but provides a valuable criterion in
split decision situations. The number of clusters k equals the
number of dendrogram leaf nodes and is implicitly determined
by the evolution of hierarchical partitioning trade-offs.

VI. NUMERICAL EVALUATION

To demonstrate performance and benefits of our approach,
we consider the following setup for planning LTE cell sites
in an urban environment: Figure 4 (a) shows the relevant
city area and 60 potential locations for eNB deployment (red
dots). Each eNB operates with 43 dBm average transmit power
and provides B = 5MHz DL transmission bandwidth at a
center frequency of 2GHz. While typical cell site planning
might cover multiple configurations for eNBs, we simply
consider average transmission power and one antenna pat-
tern (omnidirectional, 0

� downtilt). We assume operational
expenses of 1800 e per month covering site rental, leased line
rental, air-conditioning, and maintenance [4]. Furthermore, we
choose �basic = 50 e and �rate = 0.5

e
/kbps to describe

the monthly fee paid to the operator. Resulting from an
aggregation of service-related average rates, we consider a
constant rate demand of 320 kbps per DN. We compute the
maximum supported spectral efficiency for all potential eNB-
to-DN links according to Section III and assume interference
impact factors to scale with the ratio of related link qualities.
All computations were executed on a 2.2GHz Intel Core i7
architecture with 8GB RAM and using Gurobi Optimizer
version 5.0 [22] for optimization.

Since we want to evaluate our partitioning approach par-
ticularly for planning scenarios that actually have a clustered
structure, we carry out a 2-dimensional Gaussian sampling [6]
on a set of quasi-uniformly distributed DNs. Figure 4 (b)
depicts such a sampling for a random choice of 5 Gaussian
distributions, where crosses visualize the distribution means.
After applying our min-cut based partitioning to the original
planning instance, we solve the planning problem for all sub-
instances and obtain the overall eNB deployment set as union
over the sub deployment decisions. To keep comparison to
results from solving the original problem fair, we perform
a final reassignment of eNB-to-DN links by solving the
initial instance for the fixed eNB deployment solution: All
comparison values are taken from the corresponding result.

We consider time savings and solution quality as relevant
assessment criteria, both with respect to the optimal solution
obtained for the original planning instance. Table II shows
the evaluation results for three different cluster sampling sizes
carried out on the same planning scenario. The number of
sampled clusters is positively correlated with the number of
DNs and, hence, positively correlated with the (average) com-
putation time that is required to solve the planning instance
optimally. For each sampling size, we generated five planning

Table II
EVALUATION RESULTS.

No. of
sampled
clusters

Average
no. of
DNs

Average
computation
time [s]

Computation
time with
partitioning

Solution
quality with
partitioning

3 194 1229 21% (1.6%) 95% (94%)
4 272 3755 9% 96.8%
5 325 9690 22% (2.4%) 99.3% (99%)

scenarios at random and applied Algorithm 1 for ↵ = 1 and
initial conductance-balance bounding factor ⌧ = 0.75·2 = 1.5.
Figure 4 (d) shows the algorithm results for this parameter
setting and exemplary application. The depicted numbers
describe the trade-off measure � on the corresponding parti-
tioning level and partitioning stops (red cross) when the trade-
off measure starts to increase.

Table II demonstrates that we achieve significant savings
of computation time while keeping at least 95% solution
quality. For a number of five sampled clusters, we observe an
even higher accuracy of over 99%. This might be explained
by the fact that inaccuracies due to partitioning have higher
potential to cancel out in larger planning scenarios. We obtain
a planning instance with three sampled clusters that is not
partitioned and another unpartitioned one for five sampled
clusters. Excluding those instances from the evaluation ex-
amples leads to the results written in brackets: While solution
quality degrades only marginally, removing the corresponding
computation times affects time savings significantly. The best
solution quality that we observe in the latter case is 100%,
associated with 7% of original computation time – which is the
worst time saving. The average number of optimally deployed
eNBs increases from 5 to 7 and 9 over the number of sampled
clusters. Applying the partitioning approach leads on average
to one more deployed eNB in cell planning solutions.

A. The wrong choice of k

Due to the diversity in urban radio wave propagation, it
is not obvious which points potentially form a cluster and,
hence, how many clusters exist in an urban environment. This
is illustrated, for instance, by the clustering results depicted
in Figure 4 (c): The lower right (yellow) cluster is connected
to points that are located in the upper left part of the scenario
as well as to points in the middle left part. Comparing those
connections to the free space (white) areas of the city indicates
that this effect is strongly related to the path loss characteristics
amongst involved points. Thus, it is difficult to determine an
appropriate number of clusters k even by human decision.

To quantify the impact of choosing an inappropriate k, we
exemplarily took the two clusters from above that are not
partitioned and forced a partitioning into k = 4 clusters. For
both examples, the related solution quality degraded to 91%.
While in both solutions too many eNBs were deployed due to
the fact that candidates from other artificial clusters were not
“visible“, interference effects additionally affected the overall
solution negatively for the larger planning example.
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(a) Cell site planning scenario. (b) Clustered DN distribution. (c) Min-cut based partitioning.
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Figure 4. Exemplary planning scenario considering 60 eNB deployment candidates in Munich city (building data from [23]).

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an approach for min-cut based
partitioning of cell site planning problems in urban environ-
ments. Compared to common clustering methods such as k-
means clustering or PAM, our approach does not include any
random components and does not require a priori knowledge
of intended number of clusters k. In fact, our approach
automatically finds a beneficial number of partitions according
to a natural clustering criterion that evolutionary evolves in
a hierarchical manner. Application of our approach to the
problem of LTE cell site planning in an urban environment
demonstrates its effectiveness in terms of solution accuracy
and its potential to yield significant time savings. Such savings
are essential for solving practical planning problems that grow
exponentially with the instance size, e.g., if multiple configu-
rations are considered for each eNB deployment candidate.

Future work particularly covers the adaption of the proposed
partitioning approach to automatically determine cooperation
clusters in the operating network, which allows for optimal
configuration of cluster eNBs independently from eNBs of
other clusters.
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