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Abstract—In this work, we investigate a model which is related
to the class of stochastic pooling networks (SPN). These networks
consist of a parallel structure of noisy and compressive sensors,
which observe a common input signal. They have proven to be
useful in interdisciplinary research, e.g., in physics and neurobi-
ology. By adding a second source of parallel noise and allowing
cross-connections using a channel matrix, we merge these models
with the multiple-input multiple-output (MIMO) framework. In
contrast to typical wireless communication scenarios, we assume
the channel matrix to be changed deliberately in order to
study the information processing and interconnection of neurons.
We investigate which channel matrix maximizes the mutual
information for the MIMO case and a single-input multiple-
output (SIMO) special case and present two convex relaxations of
the original problems. Based on a modified non-negative matrix
factorization (NMF) algorithm, we formulate a heuristic to obtain
feasible channel matrices. Finally, we evaluate the performance
of the suggested heuristic.

I. INTRODUCTION AND MOTIVATION

Biological systems are highly complex and rely on bio-
chemical processes, many of which are not fully understood
to date. To analyze such systems it is desirable to model
them using mathematical concepts, in order to be capable
of predicting the outcome of experiments. One successful
example is the use of information theoretical concepts in
neurobiology.

In this work, we investigate a model which is related to the
class of stochastic pooling networks (SPN) [1]. Such networks
exhibit a parallel structure of sensors which observe a common
input signal, afflicted by some form of noise. Compression,
e.g., by quantization, is present at each sensor and all sensor
outputs are fused into a single output by a pooling function.
We study a generalization of a model incorporating binary
quantization from [2], see Fig. 1. Since the individual nodes
behave identically in the absence of noise, their output is a
very coarse approximation of the input signal. Interestingly,
the maximum of the mutual information between the input
and the output of this network occurs for nonzero levels of
noise, see [3].

In biological systems, parallel information processing seems
to be an inherent principle. Many biological sensor systems
bear a strong resemblance to the SPN definition, such as the
retina in the human eye, the cochlea in the auditory system
or the olfactory system of mammals. The latter example, in
particular the accessory olfactory bulb (AOB) of mice, was
the main inspiration for our approach.
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Fig. 1. A model complying with the SPN definition, as studied in [2].

The AOB is the first of only two to three synaptic re-
lay sites in the accessory olfactory pathway — a neuronal
information processing stream that extends from sensory
neurons to higher order brain cells. Sensory neurons detect
environmental pheromone signals, whereas the higher order
brain cells determine the endocrine state and behavior of an
individual [4]. The rodent AOB is built by a few hundred
mitral cells, which receive massive parallel synaptic input from
several thousand sensory neurons, see also [5]. Despite the
AOB’s fundamental biological role, however, the basic rules
of information processing in this brain region are still poorly
understood.

We will examine two problems in this work, which corre-
spond to two hypotheses about the connectivity within the
AOB. The first hypothesis is that different types of sen-
sors are connected to several mitral cells, thus forming a
multiple-input multiple-output (MIMO) network. In contrast,
the second hypothesis is that sensors detecting a certain class
of pheromones are only connected to several mitral cells
associated with the same class. This can be seen as single-
input multiple-output (SIMO) networks working in parallel.
To get quantifiable insights into the information transmission
and the connectivity structure, we extend the model in Fig. 1
by a MIMO channel matrix. By assuming the channel ma-
trix, which represents neuronal connections, can be changed,
we formulate an optimization problem to find the optimal
channel matrix to maximize the mutual information of the
non quantized part of the model. Using convex optimization
techniques, we relax this problem into a convex problem which
can be solved efficiently by numerical methods. Due to a
variable change, the optimal channel matrix is not directly
obtained by solving the convex problem. Thus, we propose
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Fig. 2. Our extension of the model depicted in Fig. 1 with MIMO channel
matrix H.

a heuristic which approximately recovers the channel matrix.
It is based on a modified non-negative matrix factorization
(NMF) algorithm and we evaluate the performance of said
heuristic. The SIMO special case is treated in a similar fashion.

In Section II we define the system model and necessary
notation. Section III covers the optimization problems and
their relaxations. The heuristic and the modified non-negative
matrix factorization algorithm is introduced in Section IV. The
performance of the heuristic is evaluated in Section V. Finally,
we conclude the paper in Section VI.

II. SYSTEM MODEL AND NOTATION

Extending previous approaches, we propose a generaliza-
tion of the model shown in Fig. 1 using the multiple-input
multiple-output (MIMO) framework, broadening its scope and
applicability, see Fig. 2. Instead of a single random variable
X , a random vector X = (X1, X2, . . . , Xt)

T is considered as
the models’ input. A random vector N = (N1, N2, . . . , Nt)

T

symbolizes additive input noise. A channel matrix H with
real entries of dimension r × t describes the channel gain
of the direct- and cross-links from the transmitter to the
receiver stage. After the channel matrix, a second noise vector
W = (W1,W2, . . . ,Wr)

T is added. Thus, the input vector
of the parallel quantizers V = (V1, V2, . . . , Vr)

T can be
expressed as V = H (X + N) + W.

We consider the input signal and the noise vectors to
follow zero mean multivariate normal distributions with full
rank covariance matrices ΣX, ΣN and ΣW respectively.
Furthermore, the input signal vector X is assumed to be
independent of the noise vectors N and W as well as the
noise vectors N and W are assumed to be independent of
each other. ΣN and ΣW are assumed to be diagonal. The
quantizers are binary and their threshold is set to zero.

To establish notations for the following treatment, we define
the mutual information between the two random vectors X and
Y as I(X;Y) = H(Y)−H(Y|X) = H(X)−H(X|Y).

Here, H(X) denotes the entropy of a random vector X and
H(Y|X) the conditional entropy of Y given X [6].

Note, that we use curly relational operators, e.g., A � 0
to indicate semi-definiteness of a matrix, whereas regular re-
lational operators denote element-wise relations of the matrix
entries, i.e., A ≥ 0. A single element of the matrix A will be
referenced as aij and ai refers to the i-th column of A.

Analytical formulation of the mutual information between
input and output of the system I(X;U) is a hard problem

for most input and noise distributions (compare results of the
original model [3], [2]). Through the use of the information
processing inequality [6], we can bound the mutual informa-
tion between input and output (cf. [7], [3]):

I(X;U) ≤ min{I(X;V), I(V;U)}, (1)

where I(V;U) ≤ log(r + 1). This is the trivial upper bound
of the support cardinality of the discrete output U .

We can state the mutual information between X and V as:

I(X;V) =
1

2
log

(
det(H(ΣX + ΣN)HT + ΣW)

det(HΣNHT + ΣW)

)
. (2)

Using straightforward matrix identities, Sylvester’s deter-
minant theorem and the matrix inversion lemma, we can
reformulate (2) as

I(X;V) =
1

2
log det

(
I + ΣXHTΣ−1

W H (3)

−ΣXHTΣ−1
W H(Σ−1

N +HTΣ−1
W H)−1HTΣ−1

W H
)
.

III. OPTIMIZATION PROBLEM FORMULATION

As opposed to typical communication systems, we will
assume in the following that the behavior of the channel, repre-
sented by the matrix H, can be deliberately changed. Here, the
channel matrix H describes interconnections between neurons.
By evolutionary progress the mammal body has optimized the
neural information processing subject to a set of constraints.
Hence, also the channel was part of this process.

In this section, we want to find the optimal channel, which
maximizes the mutual information I(X;V). We assume that
the channel matrix, i.e., the neuronal connections, are not able
to amplify signals and perform only additive processing of
the signals. This can be stated in the following optimization
problem with solution p?:

maximize
H

I(X;V)

subject to 0 ≤ H ≤ 1.
(4)

We can make a change of variable in the objective function
(3) to obtain an optimization problem which is equivalent to
problem (4):

maximize
Z

1

2
log det

(
I + ΣXZ−ΣXZ(Σ−1

N + Z)−1Z
)

subject to Z = HTΣ−1
W H, 0 ≤ H ≤ 1.

(5)
Problem (5) is not convex. To find an upper bound on the

solution efficiently, we will introduce a convex relaxation of
this problem in the following. Thereafter, we will examine
the single-input multiple-output (SIMO) special case of this
problem.

A. Convex Relaxation of the MIMO Problem

Since ΣW is a diagonal full rank covariance matrix, its
inverse Σ−1

W � 0 and it also holds that Z = HTΣ−1
W H � 0.

Therefore we relax problem (5) by replacing the constraint
Z = HTΣ−1

W H by Z � 0. We can relax the element-wise con-
straints on H by 0 ≤ Z ≤ tr(Σ−1

W ), where tr(·) denotes the



trace. The minimum element of this set corresponds to H = 0,
while the maximum element corresponds to H = 11T. From
this relaxation we obtain the following optimization problem:

maximize
Z

1

2
log det

(
I + ΣXZ−ΣXZ(Σ−1

N + Z)−1Z
)

subject to 0 ≤ Z ≤ tr(Σ−1
W ), Z � 0.

(6)
Note that problem (6) is still non-convex since the objective
function is not concave. Therefore, we introduce a slack matrix
variable Γ. By adding the constraint Γ = Z(Σ−1

N + Z)−1Z
and replacing the corresponding term in the objective function
by Γ, we get a problem that is equivalent to problem (6),
now maximizing over the variables H and Γ. Relaxing the
new constraint to Γ � Z(Σ−1

N + Z)−1Z and using the
Schur-complement, we obtain the following problem with
solution q?:

maximize
Z,Γ

1

2
log det

(
I + ΣX(Z− Γ)

)
subject to 0 ≤ Z ≤ tr(Σ−1

W ), Z � 0,[
(Σ−1

N + Z) Z
Z Γ

]
� 0.

(7)

As the objective function is concave and all constraints are
convex, (7) is a convex optimization problem, which can be
solved numerically in an efficient manner. The constraint set
of problem (7) contains the one of problem (4), thus we have
q? ≥ p?. We will use the solution Z? of problem (7) in
section IV as a basis for a heuristic to find good solutions
for problem (5).

B. Convex Relaxation of the SIMO Problem

A notable special case of the MIMO model from Fig. 2 is
to restrict the input to a common scalar input X , as depicted
in Fig. 3. The random variable X is assumed to follow a

W1

W2

Wr

U

V1

V2

Vr

Y1

Y2

Yr

HX

N1

N2

Nt

Fig. 3. Single-input multiple-output (SIMO) special case of the original
MIMO model from Fig. 2.

zero mean Gaussian distribution with variance σ2
X and it

is independent of the noise vectors N and W. In order to
gain an optimization problem similar to the MIMO case,
we start with problem (6) and substitute ΣX by σ2

X11T in
the objective function. Here, 1 is a column vector with all
entries equal to one of appropriate dimension. Application
of Sylvester’s determinant theorem on the objective function
results in a scalar argument of the determinant. The relaxed

SIMO problem formulation can thus be stated as:

maximize
Z

1

2
log
(
1 + σ2

X(1TZ1− 1TZ(Σ−1
N + Z)−1Z1)

)
subject to Z = HTΣ−1

W H, 0 ≤ H ≤ 1.
(8)

Similarly to the treatment in section III-A, we intro-
duce a slack variable γ. Then we add the constraint γ ≥
1TZ(Σ−1

N + Z)−1Z1 and substitute the corresponding term
in the objective function by γ. Finally, application of the
Schur-complement results in:

maximize
Z,γ

1

2
log
(
1 + σ2

X(1TZ1− γ)
)

subject to 0 ≤ Z ≤ tr(Σ−1
W ), Z � 0,[

(Σ−1
N + Z) Z1
1TZ γ

]
� 0.

(9)

Note that γ is scalar and we are maximizing over the variables
Z and γ. Thus, problem (9) is equivalent to problem (8).
Furthermore, since problem (9) is convex and contains the
constraint set of the original SIMO problem, we can use it
to efficiently compute an upper bound on the solution of the
original SIMO problem. If each of the noise vectors are i.i.d.,
so that the covariance matrices can be written as ΣN = σ2

NI
and ΣW = σ2

W I, the optimal channel matrix is H?
f = 11T.

This can be shown by straightforward application of the KKT
conditions of problem (9). Noticing that the solution is also
feasible for the original problem means that Hf is also optimal
for the original and unrelaxed problem in this case.

IV. CHANNEL MATRIX HEURISTIC

In the previous section, a change of variable followed
by a convex relaxation was used to formulate two convex
optimization problems for the MIMO and the SIMO approach.
Since we aim at interpreting these models in a biological
context, we are not only interested in an upper bound on
the solution, but also in the optimal channel matrix itself.
However, solving problems (7) or (9) does not provide the
optimal channel matrix, but rather a matrix Z? which was
substituted as Z = HTΣ−1

W H before relaxation. We will
examine a heuristic in this section, which yields an estimate
of the optimal channel matrix.

Given the optimal matrix Z?, if a decomposition of the form
Z? = H?TΣ−1

W H? exists, where H? satisfies the constraint of
the original unrelaxed problem (4), then H? is also optimal
for the latter. In case the amount of transmitters and receivers
are equal, i.e. r = t, one can analytically find a decomposi-
tion as Hd = Σ

1
2

WD
1
2 QT, where Q and D form a spectral

decomposition Z = QDQT.
However, the matrix Hd often contains negative entries,

which violates the corresponding constraint in problem (4).
A second disadvantage is that such a decomposition cannot
be explicitly given for the case when r 6= t. Thus, we
propose a heuristic to find a channel matrix Hh, so that
Z? ≈ HhΣ−1

W Hh, while Hh satisfies the constraints of the
original problem (4).



Decomposing a non-negative matrix approximately into two
other non-negative matrices is known as the non-negative
matrix factorization (NMF) problem. It was introduced in [8]
and became more widely known by the application in a neural
network learning context [9]. Given a non-negative m × n
matrix C, the NMF problem can be stated as:

minimize
A,B

1

2
‖C−ABT‖2F

subject to A ≥ 0, B ≥ 0.
(10)

Here, the matrix A is of dimension m× o, B is of dimension
n×o and ‖·‖F denotes the Frobenius norm. The NMF problem
is often associated with a rank reduction, i.e. o ≤ min(m,n).
Several different algorithms have been proposed to estimate
the optimal solution of the non-convex optimization prob-
lem (10), e.g. in [8], [9], [10].

The basic idea behind our heuristic is to find a good
approximate decomposition of the optimal matrix Z? of either
problem (7) or problem (9). This problem is very similar to
the NMF problem explained above and we can state it in the
following way. Given a t × t matrix Z, the diagonal r × r
covariance matrix Σ = ΣW and the optimization variables
A,B ∈ Rt×r, solve:

minimize
A,B

1

2
‖Z−AΣ−1BT‖2F +

α

2
‖A−B‖2F

subject to A ≥ 0, B ≥ 0.
(11)

The second term in the objective function is a penalty with
parameter α > 0, which is used to get a symmetric decompo-
sition, so that ideally A = B, see chapter 7 in [10]. To solve
this problem we extended the rank-one residue iteration (RRI)
algorithm from [10] (Algorithm 13, p. 141) by the diagonal
scaling Σ−1. By rewriting the first term of the objective
function of problem (11) into 1

2‖Z −
∑r
i=1 σiiaib

T
i ‖2F , we

see that the matrix product can be interpreted as a sum of
rank-one matrices. The main idea of the RRI algorithm is to
fix all of those vectors except one and solve the resulting non-
negative least square problem:

minimize
x

1

2
‖R− σiiaix

T‖2F +
α

2
‖ai − x‖2F

subject to x ≥ 0,
(12)

where R = Z −
∑
k 6=i σkkakbT

k can be interpreted as
a residuum matrix. The optimal solution to problem (12)
can be analytically found as x? = [σiiR

Tai+αai]+
α+σ2

ii‖ai‖22
, where

[·]+ = max(0, ·). Then, x? is used to update bi. Likewise, an
update rule for ai can be created. Iteratively updating bi and
ai to create rank-one approximations of the residuum matrix
results in the core part of the RRI algorithm, as can be seen
in Algorithm 1 lines 4, 5 and 7. In Line 1 the same random
start point is assigned to A and B and then both matrices are
scaled to get a first crude approximation of Z, cp. [10], p. 85. A
balancing step is performed after updating one of the vectors,
as suggested in [10], p. 141. Also, to account for update
vectors being equal to zero, a suitable procedure to assign
a better non-zero update vector is performed in line 9 for a

limited number of iterations, see [10], p. 71 - 72. As a stopping
condition, it is checked whether ‖[OA,OB]‖F ≤ ε G0, or
if a maximum iteration count is reached. Here, OA is the
difference between the matrices obtained in the current and
last iteration and G0 is the Frobenius norm of the differences
from the start point in the first iteration, see [10], p. 62.

Algorithm 1: extended RRI algorithm for problem (11)
Data: Z, Σ, α
Result: A, B

1 [A, B] = initialize startpoint()
2 repeat
3 for i ∈ [1, r]:
4 R = Z−

∑
k 6=i σkkakbT

k

5 bi = [σiiR
Tai + αai]+ / [α+ σ2

ii‖ai‖22]
6 [ai,bi] = balancing(ai, bi)
7 ai = [σiiRbi + αbi]+ / [α+ σ2

ii‖bi‖22]
8 [ai,bi] = balancing(ai, bi)
9 [ai,bi] = fix zero vectors(ai, bi)

10 until stopping condition

Using the methodology that was introduced in sections III
and IV, we can now formulate a heuristic to find feasible
matrices Ĥ for the original MIMO and SIMO problems.
First, we solve problem (7) or (9) to get Z?. Then we use
Algorithm 1 to get an approximate decomposition. Note that in
practice, using a suitable parameter α, the asymmetry between
A and B is usually very small and can be neglected. Thus,
we set the channel matrix to Ĥ = AT. Because of the convex
relaxation involving the variable change Z = HTΣ−1

W H, the
upper element-wise constraint H ≤ 1 was lost. As a result
Ĥ typically contains some entries which are bigger than one.
Therefore, as a final step of the heuristic, we threshold the
matrix entries of Ĥ to one, i.e. Ht = min(Ĥ, 1) to generate
a feasible matrix Ht for the original problem.

V. HEURISTIC EVALUATION

In this section, the performance of the heuristic which was
introduced above will be evaluated. Lacking other heuristics
as a performance comparison and the optimal channel matrix
of either the SIMO or the MIMO problem, the performance of
the heuristic, which will be labeled as Zt, will be compared
to the solutions of problems (7) or (9), respectively. To obtain
numerical solutions of these problems, we used CVX, a
software package for solving convex programs [11]. As a
second comparison, random channel matrices Hr with entries
following a uniform distribution in the interval [0, 1], labeled
as Zr, will be considered. We will additionally compare the
heuristic performance for the SIMO special case to the SIMO
solution for i.i.d. noise, labeled as Zf with Hf = 11T.

For the following simulations, we generated 2000 instances
of the problems (7) and (9). The diagonal entries of the
covariance matrices ΣN and ΣW were independently drawn
from a uniform distribution with expectations EN = E(σNii)
and EW = E(σWii). For the SIMO problem the variance
of the input signal was set to one, whereas for the MIMO



case the covariance matrices were generated by drawing a
matrix Q from a uniform distribution in the interval [0, 1] and
setting ΣX = const. ·QTQ. The scaling constant is chosen,
so that the expectation of the resulting Beta distribution is
EX = E(σXii).

In Fig. 4 the average of the mutual information I(X;V)
of the 2000 simulated instances is depicted for the MIMO
and the SIMO case. As can be seen, the SIMO case is very
robust so that the improvement over randomly chosen channel
matrices is relatively small, which can be explained by the
limited degrees of freedom in the system. Especially in the
MIMO case with high noise (lines with squares in Fig. 4), the
average deviation to the solution Z? is very small. However,
no statement can be made about the deviation that the heuristic
achieves when compared to the true optimum, since we only
know the optimal solution of the relaxed problems.
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Fig. 4. Average mutual information after 2000 instances, left: SIMO model
and right: MIMO model with EX = 1. For the lines with circles EW =
EN = 0.01, for the lines with squares EW = EN = 0.1. For all plots,
r = t. Algorithm 1 was configured with ε = 10−6 with a maximum iteration
count of 2500.

In Fig. 5 an approximation of the cumulative distribution
function (CDF) of the relative deviation between the mutual
information I(X;V)|Z=Zk

,k ∈ {t, r, f} and I(X;V)|Z=Z?

is shown. Clearly, the heuristic generates channel matrices
that achieve a higher mutual information with a much higher
probability, compared to a randomly chosen matrix. For the
MIMO case, about 90% of the generated matrices result in a
mutual information value, which deviates less than 22% from
the upper bound on the optimal solution, which was obtained
by solving problem (7).

VI. CONCLUSION

In this work, we presented an extension of a well studied
SPN model for biological applications, which ties said model
to the MIMO framework. To study the interconnections and
the information processing of neurons in the olfactory system
of mammals using our information theoretic model, we assume
the channel matrix H to be changed deliberately. Using convex
optimization techniques we have found convex relaxations of
the optimization problems for finding the optimal channel ma-
trix for the MIMO case and the SIMO special case, which can
be used to efficiently compute upper bounds on the solution
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Fig. 5. Approximate cumulative distribution function (CDF) of the relative
deviation from I(X;V)|Z=Z? left: SIMO model with EW = EN = 0.01,
right: MIMO model with EW = EN = 0.1 and EX = 0.1. For both plots,
r = t = 20. Algorithm 1 was configured with ε = 10−6 with a maximum
iteration count of 2500.

of the original problems. Furthermore, we have introduced
an extension of a non-negative matrix factorization (NMF)
algorithm, which includes a diagonal scaling matrix. Based on
the convex relaxation and the NMF algorithm, we formulated a
heuristic to generate feasible channel matrices. We found that
in about 90% of the cases, the mutual information obtained by
the MIMO channel matrix, which was found by the heuristic,
deviates less than 22% from the upper bound on the optimal
solution obtained by solving problems (7).
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