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Abstract—This paper studies the analytical bit error probabil-
ity of Discrete Wavelet Transform and Fast Fourier Transform
based Orthogonal Frequency Division Multiplexing (OFDM)
systems. Closed form expressions of the bit error probabilities for
both two methods are derived and validated. In the simulation,
two channels with different impulse response are adopted. The
results show that the Discrete Wavelet Transform based OFDM
performs better than the classic OFDM in both channels.

I. INTRODUCTION

OFDM is a very important scheme used in modern commu-
nication systems. It has succeeded in quite a few applications.
Traditional OFDM methods apply the Inverse Fast Fourier
Transform (IFFT) in the transmitting part and Fast Fourier
Transform (FFT) in the receiving part. Nevertheless, wavelet
transforms are adopted to substitute the Fourier transform in
some recent researches. The advantage of the wavelet based
OFDM is that the transmission scheme of the system has
the ability to adapt to different environments. This flexibility
meets the requirement of future communication systems. The
wavelet transforms in these new systems are various, such as
Discrete Wavelet Transform (DWT) [1], Wavelet Packet Trans-
form (WPT) [2][3], Dual-Tree Complex Wavelet Transform
(DTWT) [4] and so on.

The bit error rate (BER) performance of these methods are
better than the traditional FFT to some extent, according to
simulation results. However, the analytical bit error probability
(BEP) expressions of them have yet been derived. In this
paper, we consider the model where DWT is an alternative
of FFT. And closed-form BEP expressions of both DWT and
FFT based OFDM are derived and validated. The model for
both FFT and DWT methods is shown in Figure 1. Based on
this model, we achieve the closed-form BEP expressions for
both DWT and FFT based OFDM.

The rest of the paper is organised as follows. The system
model is analysed in Section II. From it, the noise influencing
the demodulation is obtained. In Section III, the expressions
of the noise variances for different carriers of FFT and DWT
are obtained. By combining these two expressions of the
variances with the theoretical bit error expression of the
QAM modulation, the analytical BEP expressions of FFT and
DWT based OFDM are derived. The expressions of BEP and
variances are proved to be correct by the simulations in Section
III, and the comparison between DWT and FFT based OFDM
is conducted at the end of Section III, too.

II. ANALYSIS OF THE MODEL

A. FFT Based model
If the model uses I-ary QAM modulation and has M

carriers (which also means that the FFT transform size is M ),

IFFT

IDWT
Modulator

Transmitter

S(t)
sf(t)

sw(t) h

ZF equalizer

c
FFT

DWT

rf(t)

rw(t)

rf,eq(t)

rw,eq(t)

Demodulator

z(t)

Receiver

Gaussian noise

Channel

Rf(t)

Rw(t)

I(t)
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Fig. 1. The system model

the received signal before the channel equalization rf (t) can
be expressed as

rf (t) = sf (t) ∗ h + z(t), t = 0, 1, 2, . . . , T, (1)

where ∗ denotes the linear convolution. sf (t) is the transmitted
signal, which is also the IFFT of the modulated signal S(t).
The vector h is the channel impulse response for any time-
invariant communication channel. The M independent and
identically distributed (i.d.d) complex Gaussian noises are rep-
resented by the vector z(t). Each element of it is represented
by zi(t) which is the noise adding to the i-th carrier. Thus,
zi(t) is independent to other noises and has a zero-mean
normal distribution over time t, denoted as zi(t) ∼ N(0, δ2).
T is the signalling interval. The boldface letter represents a
M point vector.

In the zero-forcing process, the channel equalization coef-
ficients c are obtained, which satisfy,

h ∗ c = δ. (2)

Here, the δ represents the Dirac Delta function. Therefore, the
received signal after equalization is

rf,eq(t) = c ∗ rf (t)

= sf (t) + c ∗ z(t)

= sf (t) + ẑ(t).

(3)

By conducting FFT to the equation (3), the signal before the
QAM demodulation Rf (t) can be given as:

Rf (t) = FFT {rf,eq (t)}
= FFT {sf (t) + ẑ(t)}
= FFT {sf (t)}+ FFT {ẑ(t)}
= S(t) + Zf (t).

(4)
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Obviously, from (4) we can see that the second term Zf (t) in
the equation is the noises influencing the demodulation.

B. DWT based model
The discrete wavelet transform is usually realised by passing

the signal through a high pass filter and a low pass filter
separately and subsampling the output of each filter by 2 [5].
We use h and g to indicate the high pass and low pass filter’s
impulse response respectively. These two filters are also known
as a quadrature mirror filter pair. Therefore, the output of DWT
contains two parts, Detail Coefficients (DC) from the high
pass filter and Approximation Coefficients (AC) from the low
pass filter. The procedure is shown in the block diagram, see
Figure 2.
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Fig. 2. The DWT

To conduct the multi-level DWT, the filter bank can be
applied. At each level, the AC can be decomposed into the
AC and DC for the next level. This tree structure is shown in
Figure 3.
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Fig. 3. The 3 levels DWT

Apparently, just like FFT, the DWT is also a linear trans-
form. From the same model, the received modulated signal
Rw(t) is

Rw(t) = DWT {rw,eq(t)}
= DWT {sw(t) + ẑ(t)}
= DWT {sw(t)}+ DWT {ẑ(t)}
= S(t) + Zw(t).

(5)

Now it is clear that only the term Zw(t) of (5) will influence
the demodulation process. Thus, the comparison between
Zf (t) with Zw(t) must be studied.

III. ANALYTICAL DERIVATION OF BEP
The analytical BEP expression of the QAM modulation

usually is a function of the variable Eb/N0. Here, the N0 is
the variance of the channel noise received by the demodulator.
However, for the OFDM system, this noise is clearly related
to the FFT, DWT and the channel equalization. In order to get
a more accurate BEP expression, the exact variances of the
noises influencing the demodulation must be obtained. These
will be discussed in the following sections.

A. FFT Model
For the FFT model, we know from the equation (4) that

the received noise of the demodulator is Zf (t). In order to
use Eb/N0 to compute the BEP, the N0 of Zf (t) should
be acquired. In the section II, the expression of it is given

as Zf (t) = FFT {ẑ(t)} = FFT {c ∗ z(t)}. Thus, for each
element of Zf (t), we have

Zfm(t) =
1√
M

M∑

k=0

ẑk(t)e−i
2π
M km

=
1√
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(∑

n

ck−nzn(t)

)
e−i

2π
M km

=
1√
M

∑

n

zn(t)
M∑

k=0

ck−ne
−i 2πM km ,

(6)

where m = 0, 1, . . . ,M − 1 indicates the subscript of the
carriers. Consequently, the mean value of Zf (t) is

E
{
Zfm(t)

}
= E

{
1√
M

∑

n
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M∑
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ck−ne
−i 2πM km

}

=
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∑
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n

0
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= 0,

(7)

and the variance can be obtained as
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(8)

Thus, the variance of Zf (t) is a function of m, which means
that the noises added to the corresponding carriers are different
in their variance. In another words, the power of the noise for
each carrier is changed and not equal to each other anymore.

B. DWT Model
From the previous section, we know that using the DWT

simply means passing the input through quadrature mirror
filter banks. Hence, the convolution of the input signal and
the filter must be applied. However, the linear convolution
will introduce an excessive length of the output. In order to
avoid this, we use the circular convolution in the DWT. We
denote the length of the quadrature mirror filter as L. Thus,
the circular convolution means adding the last L/2 elements
of the normal convolution to the first L/2 elements. Because
of the causality of the filter, the L/2 left circular shift must
be conducted for the input of each DWT process in order to
guarantee the perfect reconstruction of the signal.

As mentioned in the previous section, the expression of
Zw(t) is known as Zw(t) = DWT {ẑ(t)} = DWT {c ∗ z(t)}.
As the AC and DC parts of DWT are obtained by the same
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process with different filters, we only show the derivation of
the AC part of DWT {ẑ(t)} in the following.

1) Left circular shift of L/2 elements of the input: A
circular shift can be expressed by a particular permutation. We
define the operation in DWT as σ (i,X) ≡ (i+ L/2) mod X .
So, the each shifted element of the input can be given as

z̄m(t) = ẑσ(m,M)(t)

= cσ(m,M) ∗ zm(t)

=
∑

n

cσ(m,M)−nzn(t)

=
∑

n

cm+σ(−n,M)zn(t).

(9)

2) Circular convolution of the shifted signal with quadra-
ture mirror filter and downsampling of the output: As we use
the AC part for the analysis, the filter used here is the low
pass filter g. We define the circular convolution of two series
x and y with period N as xn ⊗ yNn =

∑
m xmy

N
n−m. We use

↓ to denote the downsampling operator. For any sequence yn,
we have yn ↓ k = ykn. Thus, for the first level of the DWT,
we have

xl1m = (z̄m(t)⊗ gm) ↓ 2

=
∑

n

z̄n(t) · gM2m−n

=
∑

n

(∑

a

cσ(n,M)−a · za(t)

)
gM2m−n

=
∑

a

za(t)
∑

n

cσ(n,M)−ag
M
2m−n.

(10)

Consequently, the expectation and variance of xl1m can be
obtained as,

E {xl1m} = E

{∑
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a

0
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(11)
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m
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{
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m

}

=
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a

E
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n
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= δ2
∑

a

(
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.

(12)

Now we can obtain the expectation and variance of the
multilevel DWT. For the second level, we have,

xh2m=
(
xl1σ(m,M2 ) ⊗ h

M
2
m

)
↓2

=
∑

b
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M
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∑
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M
2
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(13)

Similar to xl1m, the expectation of xh2m is 0, too. And the
variance of it is

Var{xh2m}=E
{
xh22

m
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=
∑
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2
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∑
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(∑

n

ca+σ(−n,M)sn
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=δ2
∑

a

(
cσ(a,M) ∗ sa

)2

(14)
In order to compute sn, we introduce a kind of special
convolution, called separated convolution. Suppose there are
two sequences, x and y. The length of x is twice the length of
y, denoted as 2N and N . Then the sequence x is partitioned
into two parts, xe and xo, where xe = [x0, x2, x4 . . . x2N−2]
and xo = [x1, x3, x5 . . . x2N−1]. By conducting the circular
convolution of xe and xo with y respectively, we get,

zek = xek ⊗ yNk =
∑

n

xek−ny
N
n

zok = xok ⊗ yNk =
∑

n

xok−ny
N
n .

(15)

By combining ze with zo we can get the sequence z, which
is z = [ze0, z

o
0 , z

e
1, z

o
1 , . . . z

e
N−1, z

o
N−1]. This is the result of

the separated convolution and can be expressed in a simple
formula. By using the symbol � to denote this operation, we
have

za = xa � yb
=
∑

n

xa−2n · yNn , (16)
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with a = 0, 1, 2 . . . 2N−1; b = 0, 1, 2 . . . N−1. It is evident
that the equation (16) has the same expression with sn of
equation (14), except for the circular shift. The circular shift
of (14) actually performs a circular shift of xek and xok in the
equation (15), respectively. The left circular shift has length
L/2. So, the sequence z will be left circular shifted with
length L instead of L/2. We define a function σ̄ (i,X) ≡
(i+ L) mod X to indicate this L left shift, thus,

zσ̄(a,X) = xσ̄(a,X) � yb
=
∑

n

xσ̄(a,X)−2n · y
X
2
n

=
∑

n

xa+2σ(−n,X2 ) · y
X
2
n .

(17)

From (17) we can rewrite sn in (14) as

sn =
∑

b

gM
n+2σ(−b,M2 )h

M
2

b

= gσ̄(n,M) � hk .
(18)

By substituting (18) into (14), we obtain the variance of the
DWT’s DC part of the second level, which is

Var{xh2m} = δ2
∑

a

(
cσ(a,M) ∗

(
gσ̄(a,M) � h

M
2

k

))2

. (19)

Analogously, we can get the variance of the coefficients of the
third level, which can be expressed as

Var{xh3m}=δ2
∑

a

(
cσ(a,M)∗

(
gσ̄(a,M)�

(
gσ̄(b,M2 )�h

M
4

k

)))2

,

Var{xg3m}=δ2
∑

a

(
cσ(a,M)∗

(
gσ̄(a,M)�

(
gσ̄(b,M2 )�g

M
4

k

)))2

.

(20)

From the equations about the variance above, we can see that
the variances of each carrier within DC or AC in the same
level are constant. In other words, their variances over the
M carriers form a step function. Based on the tree structure
of the DWT, we use the function VW (m,M, J) to represent
this step function, where J is the DWT level. For example,
for J=3, M=64 we have

VW (m, 64, 3) =





Var {xg1m} 0 ≤ m < 32
Var {xg2m} 32 ≤ m < 48
Var {xg3m} 48 ≤ m < 56
Var {xh3m} 56 ≤ m < 64 .

(21)

Therefore, the variance of Zw(t) can be calculated easily,
which is

NW
m = VW (m,M, J). (22)

C. BEP derivation

For arbitrary I-ary rectangular QAM modulation with even
number of bits per symbol, the theoretical BEP of it can be
calculated approximately by

Pb ≈
√
I − 1√

I log2

√
I

erfc

[√
3 log2 I

2 (I − 1)
· Eb
N0

]
, see [6]. (23)
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Fig. 4. The test of the noise variances expressions of DWT and FFT

It is clear that after using the FFT and DWT, the N0 of this
equation for each carrier is no longer the same. If we combine
(8) with (23), the BEP of each carrier after FFT is

PbFm ≈
√
I − 1√

I log2

√
I

erfc

[√
3 log2 I

2 (I − 1)
· Eb
NF
m

]
. (24)

Therefore, the average BEP over m carriers is

P̂b
F

=
1

M

∑

m

PbFm. (25)

Similarly, the BEP for each carrier after DWT, PbWm , can be
obtained by replacing NF

m in equation (24) with NW
m . Thus,

the average BEP of the DWT based OFDM system is

P̂b
W

=
1

M

∑

m

PbWm . (26)

IV. SIMULATION AND EVALUATION

In this section, first we will show that the derived variances
after FFT and DWT are correct by conducting simulation.
Second the BEP expressions of both methods are tested. Third
we will evaluate the BEP performance of FFT and DWT.

A. Variances simulation
In the simulation of the variances of the noises after the FFT

(NF
m) and DWT (NW

m ), we use 64 as the carriers size, and
the channel (ch1) [7] introduced here has an impulse response
of [0.04, -0.05, 0.07, -0.21, -0.5, 0.72, 0.36, 0, 0.21, 0.03,
0.07]. The ZF equalizer has 21 taps. The Gaussian noise added
to each carrier has a power of 0 dB. The DWT level is 4.
Figure 4 shows the result of the simulation with 500000 runs.
From it, we can see that the simulation result fits the analytical
expression well.

B. Simulated and analytical BEP
As we have already shown that the expressions of the

variances over each carrier after FFT and DWT are correct,
we now conduct the simulation to test the BEP expressions
(25) and (26) that are derived from the variances. In this
simulation, 16-QAM is applied for the modulation and the
carriers size is 64. The wavelet used here is the Haar wavelet
with a DWT level of 2. The result is shown in Figure 5, which
demonstrates that the analytical BEP fits the simulated BEP
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well. The theoretical BEP of 16-QAM is also plotted in the
figure as a baseline by using equation (23). The N0 for it is
the mean value of NF

m.
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Fig. 5. The simulated and analytical BEP comparison over ch1

C. FFT and DWT evaluation based on analytical BEP
In this part, we look into the BEP performance of DWT

and FFT based OFDM systems depending on the analytical
expression. Not only the channel ch1, but also a frequency
selective channel ch2 [8] is used for the comparison. The
impulse response of ch2 is [0.08, 0.18, 0.08, 0.3, 0.28, -0.005,
0.05, -0.005, -0.18, 0.2, 0.12, -0.3, -0.28, 0.14, 0.04].

First of all, the DWT performance with different decompo-
sition levels J are compared. The Daubechies wavelet (db4)
is used in the calculation over ch1. Figure 6 shows that the
DWT level does not influence the performance significantly.
In fact, the calculated data from the equation proves that the
BEP difference between them are negligible.
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Fig. 6. The BEP performance of different DWT levels over ch1

Second, the comparison of different wavelets over both ch1
and ch2 are conducted. The wavelets used for the comparison
include Haar, Daubechies (db10), Coiflets (coif4), Symlets
(sym8) and Discrete Meyer (dmey)[9]. As shown in Figure 7,
there is no big difference between each kind of wavelet for
ch1. For ch2, the Haar wavelet performs slightly better than
the other wavelets in higher Eb/N0, see Figure 8.

V. CONCLUSION

In this paper, we analysed the DWT and FFT based OFDM
systems. We proposed a new method to achieve the BEP for
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Fig. 7. The BEP performance of different wavelets over ch1
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Fig. 8. The BEP performance of different wavelets over ch2

both QAM modulated OFDM systems with ZF equalizer. Our
model and the expressions of the BEP are validated by a
comparison between simulations and analytical computation.
According to these BEP expressions, we shown that the DWT
based OFDM performs better than the traditional OFDM in
higher Eb/N0 for both frequency selective and nonselective
channels.
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