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Abstract—Cognitive radio and dynamic spectrum access (DSA)
promise to ease the scarcity of radio spectrum, which is growing
more acute as the demand for wireless connectivity increases.
One of the key ingredients of a reliable and efficient DSA
system is spectrum sensing, i.e., the act of checking a spectral
resource’s occupancy state before opportunistically accessing it.
To this end, the present work proposes two new eigenvalue-based
detectors, the Maximum-Minus-Minimum-Eigenvalue (MMME)
detector and the Difference-of-Means-of-Eigenvalues (DME) de-
tector, both of which exploit the properties of the eigenvalues of
the covariance matrix of a received signal, which is contaminated
with i.i.d. noise. We explain the intuition behind the new
detectors, investigate the choice of the DME detector’s parameter
and assess their performance in comparison to other covariance-
based detectors.

Index Terms—Spectrum Sensing, Eigenvalues, Covariance Ma-
trix, Cognitive Radio

I. INTRODUCTION

In the recent years, radio spectrum has become a tremen-
dously scarce resource. This is due to a dramatically increased
demand for wireless services on the one side and the legacy of
spectrum licensing policies from the last decades on the other
side. The growing spectral scarcity stands in stark contrast
to a continued underutilization of large parts of the licensed
spectrum. Many licensees only make use of their share of the
spectrum at certain geographic regions or certain points in
time, thus creating so called spectrum holes.

In order to make better use of the resources given, op-
portunistic spectrum access has been proposed as part of
the cognitive radio vision [1]. The idea is to let unlicensed
transceivers (secondary users) access spectral bands while their
licensees (primary users) don’t occupy them. To facilitate safe
spectrum reuse such that the unlicensed transmission doesn’t
cause interference in the primary system, the secondary system
has to monitor the spectrum for primary user activity reliably
and free the spectral resources as soon as the licensee tries to
access them. Determining the occupancy status of a spectral
band is known as spectrum sensing.

The spectrum sensing problem can be cast as a hypothesis
test as follows. Consider a secondary system receiver sampling
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some frequency band, resulting in the baseband signal x(t).
To make a statement about the band’s occupancy, it has to be
decided which of the following two hypotheses is true.

H0 : x(n) = η(n),
H1 : x(n) = s(n) + η(n),

(1)

where η(n) denotes receiver noise and s(n) stands for a
primary user signal after propagation effects.

To this end, a number of solutions have been proposed in the
literature [2]–[4]. Based on the amount of information about
the primary user signal incorporated, these solutions can be
classified into the following three categories: energy detection,
feature detection and matched filter detection. While energy
detectors don’t make use of any prior knowledge in regard to
the primary user’s (PU) signal, matched filter detectors need to
know the exact waveform of at least part of the signal emitted
by the PU, typically a pilot or preamble. Feature detectors are
an in-between, as they only make assumptions about structural
or statistical properties of the signal.

One class of feature detectors are eigenvalue-based detec-
tors, several of which have been proposed in the literature,
see e.g. [5]–[9]. These algorithms exploit the properties of the
eigenvalues of a signal’s covariance matrix in order to detect
primary user activity.

The contribution of this work lies in proposing two new
eigenvalue-based detection algorithms, the Maximum-Minus-
Minimum-Eigenvalue (MMME) detector and the Difference-
of-Means-of-Eigenvalues (DME) detector, giving an intuition
of their respective inner workings as well as discussing the
choice of the second detector’s parameter. Subsequently, we
analyze their performance in comparison to other known
eigenvalue-based detectors via numerical simulation.

The remainder of this work is structured as follows. In
section II the system model is layed out. Following that,
section III presents some covariance-based detectors, which
will be considered in the performance comparison. Section IV
contains the proposition of the new detectors and explains the
respective intuitions behind them. The numerical evaluation
and its results are described in section V, while section
VI concludes the work and presents some future research
directions.
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II. SYSTEM MODEL

The system model used in this work is a close adaptation
of the model introduced in [6], which is beneficial regarding
comparability of the results. For completeness, we shortly
introduce it in the following.

Consider a system of P primary users, each transmitting
a signal sj(t), with j ∈ {1, . . . , P}. The secondary system
receives a noise-contaminated superposition of these primary
user signals after the effects of path loss, multipath fading and
time dispersion. The noise mixed into the received signal is
assumed to be zero-mean, i.i.d. and Gaussian with variance
σ2. The secondary system oversamples the symbols of the
PU signal by the factor M , i.e., either there is one cognitive
radio (CR) possessing M receive antennas or there are M
collaborating CRs.

The samples acquired in the discrete time-domain during
one symbol duration are given by

x(n) = [x1(n), x2(n), . . . , xM (n)]T (2)

for the nth symbol.
We define the channel between the jth PU and the respective

receive antennas of the CR at the time of symbol n as

hj(n) = [h1j(n), h2j(n), . . . , hMj(n)]
T, (3)

while the additive noise corrupting the reception of symbol n
is denoted by

η(n) = [η1(n), η2(n), . . . , ηM (n)]T. (4)

We consider sets of L consecutive outputs, which we express
as

x̂(n) =[xT(n),xT(n− 1), . . . ,xT(n− L+ 1)]T,

η̂(n) =[ηT(n),ηT(n− 1), . . . ,ηT(n− L+ 1)]T and
ŝ(n) =[s1(n), s1(n− 1), . . . , s1(n−Nc − L+ 1), . . . ,

sP (n), sP (n− 1), . . . , sP (n−Nc − L+ 1)]T,

(5)

where the nth symbol of the jth PU is denoted by sj(n) and
Nc stands for the order of the channel, i.e. the length of the
channel impulse response. L is a so-called smoothing factor.

Given the above definitions, we can write

x̂(n) = Hŝ(n) + η̂(n), (6)

with H = [H1,H2, . . . ,HP ], where

Hj=

 hj(0) . . . . . . hj(Nc) 0
. . . . . .

0 hj(0) . . . . . . hj(Nc)

 . (7)

The statistical covariance matrix of the received signal can
now be written as

Rx = E(x̂(n)x̂H(n))

= HRsH
H +Rη

= HRsH
H + σ2I,

(8)

with Rs = E(ŝ(n)ŝH(n)) and Rη = E(η̂(n)η̂H(n)) being
the statistical covariance matrices of the PU signals and the

additive noise respectively and I denoting the identity matrix.
Note that the last step in (8) is due to the noise being i.i.d..

Since we are not able to acquire an infinite amount of
samples, we cannot come by the statistical covariance matrix
and have to settle for its estimation, the ML ×ML sample
covariance matrix, which for our signal model is obtained as

R̂x(Ns) =
1

NS

L−2+N∑
n=L−1

x̂(n)x̂H(n), (9)

with Ns being the number of collected symbols.

III. PRIOR WORK

Several spectrum sensing algorithms exploiting the prop-
erties of the covariance matrix can be found in the literature.
Some of these will be employed in a performance evaluation of
the two new eigenvalue-based detectors in section V. They will
shortly be covered in the following. For each of the detectors,
a test-statistic T will be given such that for some threshold γ,
the detector decides on the occupancy status of the spectral
resource according to the following test:

T
H1

≷
H0

γ, (10)

i.e., if the test statistic is higher than the threshold γ, the
detector decides that a PU signal is present. If it is lower,
the detector decides that there is no PU signal present.

A. Maximum-Minimum-Eigenvalue (MME) Detector

We denote the maximum - and minimum eigenvalue of
R̂x(Ns) as λ̂max and λ̂min respectively. The MME detector
as introduced in [5] is given by

TMME =
λ̂max

λ̂min

H1

≷
H0

γMME. (11)

B. Maximum-Eigenvalue-Trace (MET) Detector

The MET detector has initially been introduced in [7]. It
can be written as

TMET =
λ̂max

Tr(R̂x(Ns))

H1

≷
H0

γMET, (12)

where Tr(·) stands for the trace operation.

C. Cholesky Factorization Squares (CFS) detector

Considering the Cholesky factorization R̂x(Ns) = Q̂TQ̂,
the CFS detector introduced in [8] is defined as

TCFS =

∑
1≤i≤j≤ML q̂

2
ij∑

1≤i≤ML q̂
2
ii

H1

≷
H0

γCFS, (13)

where q̂ij is the (i, j)th element of Q̂.
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D. Quadratic Sphericity Test (QST)

Given the ordered eigenvalues of R̂x(Ns) as

λ̂max = λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂ML = λ̂min, (14)

the QST as described in [9] is given as

TQST =

√∑
1≤i≤ML λ̂

2
i∑

1≤i≤ML λ̂i

H1

≷
H0

γQST. (15)

IV. TWO NEW EIGENVALUE-BASED DETECTORS

A. Maximum-Minus-Minimum-Eigenvalue (MMME) Detector

Consider the ordered eigenvalues λ1, . . . , λML of the statis-
tical covariance matrix Rx as well as the ordered eigenvalues
ρ1, . . . , ρML of HRsH

H analogous to (14). The MME detec-
tor (11) is based on the idea that since λn = ρn+σ

2, it holds
that λ1

λML
= 1 for H0 (if no PU signal is present, ρi = 0|ML

i=1 )
and λ1

λML
> 1 for H1.

As the authors of [6] find, choosing L large enough leads
to ρML = 0 even if a PU signal is present. Taking this into
account and including the estimation noise caused by the finite
amount of samples gathered, we can express the detector’s test
statistic as

TMME,H1
=

λ̂1

λ̂ML

=
ρ1 + σ2 + ε1
σ2 + ε2

=
σ2 + ε1
σ2 + ε2

+
ρ1

σ2 + ε2
,

TMME,H0 =
λ̂1

λ̂ML

=
σ2 + ε3
σ2 + ε4

,

(16)

where −ε ≤ εi ≤ ε|i∈{1,2,3,4} models the perturbation of the
eigenvalues. The estimation noise vanishes for high Ns, i.e.,
lim

Ns→∞
ε = 0. Thus, we can see that on top of the estimation

noise, the MME detector is affected by the SNR. The lower
the SNR, the lower ρ1/(σ2 + ε2).

To tackle this disadvantage, we propose the MMME detec-
tor as a modification of the MME detector. Its test statistic is
given as

TMMME = ln

(
eλ̂max

eλ̂min

)
= λ̂max − λ̂min

H1

≷
H0

γMMME (17)

Note that the ln(·) has no influence on the detector’s perfor-
mance. Investigating this detector, we find that

TMMME,H1
=ln

(
eλ̂1

eλ̂ML

)
=ln

(
eρ1+σ

2+ε1

eσ2+ε2

)
=ρ1 + ε1 − ε2,

TMMME,H0
=ln

(
eλ̂1

eλ̂ML

)
=ln

(
eσ

2+ε3

eσ2+ε4

)
=ε3 − ε4,

(18)

which shows that asymptotically, the detector is independent
of the SNR.

B. Difference-of-Means-of-Eigenvalues (DME) detector

A typical strategy to diminish noise is to average over
multiple values. Neither the MME -, nor the MMME detector
exploits this. Both only make use of two of the ML available
eigenvalues. Building on the idea of the MMME detector, we
implement this concept by proposing the DME detector as

TDME(N1)=
1

N1

N1∑
i=1

λ̂i −
1

ML−N1

ML∑
i=N1+1

λ̂i
H1

≷
H0

γDME. (19)

The choice of N1 comes down to a tradeoff between multiple
objectives. In order to achieve a good detection performance, it
would generally be favorable to minimize the overlap between
the PDF of TDME,H0 and the PDF of TDME,H1 . In fact, if
the overlap of the two PDFs was zero and a way of setting
the correct decision threshold was known, perfect detection
could be achieved. When setting N1, we are thus interested
in minimizing the mean of TDME,H0

as well as maximizing
the mean of TDME,H1 . We should also try to minimize the
respective variances of TDME,H0 and TDME,H1 . An empirical
evaluation of these objectives is given in section V.

V. NUMERICAL EVALUATION

For the simulation, we consider a scenario exhibiting the
parameters given in table I. For each of the Monte Carlo
realizations, a random BPSK signal for each PU, a random
Gaussian distributed channel and random noise is generated.

TABLE I
SCENARIO PARAMETERS

Parameter Symbol Value(s)
Number of PUs P 2
Number of receive antennas / collab. CRs M 4
Channel order Nc 9
Smoothing factor L 8
Number of symbols Ns 105

Number of Monte Carlo realizations 104

In figure 1, the mean of TDME over the Monte Carlo
realizations is plotted for different SNRs in the case where
a PU signal is present (H1) as well as in the case where no
PU signal is present (H0). Recall that while making the choice
of N1 we try to minimize TDME in the case of H0, but try to
maximize it in the case of H1.

What we can see in figure 1 is that the lower the SNR, the
closer the H1-curve comes to the H0-curve. We also see, that
the lower the SNR, the more closely the H1-curve resembles
the H0-curve in its shape. These effects are brought along by
the decreasing influence of the signal eigenvalues in the test
statistic caused by a decreasing SNR. The figure gives us a
clear picture of the forces, which have to be traded off against
each other. In order to minimize TDME,H0 , N1 would have to
be chosen to be roughly ML

2 . However, even for low SNRs
N1 has to be set to 1 to maximize TDME,H1

.
As we can see in figure 2, minimizing the variance of

TDME,H0
can again be achieved by choosing N1 ≈ ML

2 .
Regarding the minimization of the variance of TDME,H1

, the
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Fig. 1. Mean of TDME(N1) over 104 Monte Carlo realizations for different
SNRs in the case of a present PU signal (H1) as well as in the case of noise
only (H0).
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Fig. 2. Variance of TDME(N1) over 104 Monte Carlo realizations for
different SNRs in the case of a present PU signal (H1) as well as in the
case of noise only (H0).

higher the SNR, the higher N1 has to be chosen. For very low
SNRs it is approximately the same as for TDME,H0

.
The right choice of N1 has a large effect on the performance

of the DME detector. Thus, it would be advantageous to have
an analytic way of setting it optimally.

In figure 3, the performance of the two new detectors is
compared against other detectors from the literature. For the
scenario used in the simulation, the optimal choice of N1

empirically turned out to be 8. The figure shows the receiver
operating characteristic (ROC) of the detectors at an SNR
of −20dB. We observe, that the DME detector shows the
highest probability of detection (Pd) for all probabilities of
false alarm (Pfa). What can also be seen, is that although the
MMME detector is weaker than the top contenders, it clearly
outperforms the MME detector.

VI. CONCLUSION

In this work, we have introduced two new eigenvalue-
based detectors for spectrum sensing, the Maximum-Minus-
Minimum-Eigenvalue (MMME) detector and the Difference-
of-Means-of-Eigenvalues (DME) detector. We have discussed
the respective ideas behind them and have investigated the
tradeoff leading to an optimal parameter choice for the
DME test statistic. Finally, we have numerically evaluated
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Fig. 3. Receiver operating characteristics of DME (19) with N1 = 8, QST
(15), CFS (13), MMME (17), MET (12) and MME (11) at an SNR of −20dB.

the performance of the two new detectors in comparison to
other detectors. Based on the MME detector, the MMME
detector improves upon the performance of its origin, while the
DME detector shows the best performance of all considered
detectors.

Since the choice of the DME detector’s parameter heavily
influences its performance, an interesting research direction
would be to find an analytic way of obtaining the optimal
parameter. It would also be interesting to find an analytic
expression for the new detectors’ thresholds based on a desired
false alarm rate.
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