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Abstract—In this paper we address the transmit strategy
design for a full-duplex (FD) one-way relaying system which
operates in decode-and-forward (DF) mode. Our study starts
with defining a system model which encompasses the limits of
a FD system to overcome its own loopback self-interference.
Afterwards we present a design strategy for the defined system
focusing on the case with availability of the perfect channel state
information (CSI) at all nodes. Furthermore, we generalize our
solution to the case with erroneous CSI following the max-min
design approach. In the end the proposed methods are evaluated
via numerical simulations and the destructive effect of CSI error
in the loopback channel is observed.

I. INTRODUCTION

The tempting idea of full-duplex (FD) communications,
as the ability to establish two directions of communication at
the same time and frequency, has been long considered to be
infeasible due to the intrinsic self-interference. In theory, since
each node is aware of its own transmitted signal, the interfer-
ence from the loopback path can be estimated and suppressed.
However, in practice this procedure is challenging due to the
high strength of the self-interference channel, limited channel
state information (CSI) precision, as well as the inaccuracies
in the Rx and Tx chains (e.g., power amplifier nonlinearity, os-
cillator phase noise, limited analog to digital convertor (ADC)
and digital to analog convertor (DAC) precision, ...). These
sources of inaccuracy, while being ignorable in many classic
Half-Duplex (HD) communication schemes, may render the
transceiver disfunctional since, due to the proximity of Tx and
Rx antennas on the same node, the aforementioned interference
is passing through a much stronger channel compared to
the deeply attenuated desired signal which originates from a
distant source. Recently, via specialized designs, [1]–[8] have
provided an adequate level of isolation between Tx and Rx
directions to facilitate a FD communication. A common idea
of these approaches is the accurate attenuation of main inter-
ference components in RF (prior to down-conversion), so that
the remaining self-interference can be correctly processed in
the effective dynamic range of the ADC and further attenuated
in the digital domain. The reported result in [6] promises the
suppression of self-interference down to the receiver noise
floor for short distance scenarios throughout the bandwidth of
80 MHz. Hence investigating the possible gains by applying
FD capability on the classic HD scenarios is becoming more
promising. As an interesting use case, [9]–[13] have studied
the FD gains and methodologies for scenarios of multi-hop
wireless communication. As it has been shown, the majority
of FD relaying scenarios while largely benefit from low-delay
and efficient nature of FD relays, remain compatible with

Fig. 1: Half-duplex end users are communicating via a full-
duplex relay. Red arrow represents the self-interference signal
which should be suppressed.

the HD operation of end users. In this work, we extend this
trend by studying the robust transmit strategies for FD decode-
and-forward (DF) relays and provide a convex optimization
framework to tackle the available design complexities. Our
paper is organized as follows: In Section II, inspiring from the
works in [9], [14] and [15], we define a system model that
incorporates the channel knowledge error and hardware limits
of the FD node to overcome its self-interference. In Section III
we study the transmit strategies for a DF relaying system which
benefits from the self interference cancellation mechanism
(FD capability). While the design methodology for a FD-DF
relaying system is addressed by [3], the presented solutions
are neither optimal nor achievable in polynomial time. In
Section IV we focus on methodology of dealing with channel
knowledge inaccuracy and to enhance the respective worst case
performance via appropriate polynomial time solutions. Our
solution in Section V is utilizing the defined framework to
present an energy efficient design with imperfect CSI and in
the end, in Section VI, the performed numerical simulations
investigate the effectiveness of the presented methods.

Notations: Vectors and matrices are denoted as bold-
faced lower-case and upper-case letters, respectively. Com-
plex conjugation, transpose, Hermitian transpose, vectoriza-
tion of a matrix, trace operator, second norm of a vec-
tor and the Kronecker product are respectively denoted as
{·}∗, {·}T, {·}H, vec(·), Tr{·}, ‖ · ‖2 and ⊗.

II. SYSTEM MODEL

We investigate a scenario where a pair of single antenna
HD users (source and destination) communicate via a FD
relay with N transmit and N receive antennas (Fig. 1). The
relay is operating in DF mode and the direct path between
the end users is assumed to be ignorable. Channels are
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following the uncorrelated Rayleigh flat-fading model where
hsr ∈ C

N represents the channel between the source and
the relay, hT

rd ∈ C
1×N is the channel between the relay

and destination and Hrr ∈ C
N×N is the self-interference

channel. The values ρsr, ρrr, ρrd ∈ R
+ represent the variance

of the respective channel coefficients. The estimated versions
of the defined channels are presented as ĥsr, Ĥrr, ĥrd and
δsr,Δrr, δrd are the respective estimation errors. Similar to
the model in [16] we follow the so-called deterministic model
for the estimation error which defines a feasible error set as
δTsrTsrδ

∗
sr ≤ ξsr, δTrdTrdδ

∗
rd ≤ ξrd, Tr

(
ΔrrTrrΔ

H
rr

)
≤ ξrr

where Tsr,Trr,Trd ∈ C
N×N are known positive-definite

matrices with Hermitian symmetry which shape the error’s
feasibility region for the corresponding channel. The real,
positive values ξsr, ξrr, ξrd ∈ R

+ are defining the radios of
the error feasibility region which is dependent on the quality
of our estimation process. The benefits of using this model for
similar use cases is justified in [17] and [18]. The relay node
continuously receives the transmitted signal from the source
while dealing with the loopback interference signal from its
own transmitter front-end:

rin = hsr

√
PT · s + Hrrrout + nr

= hsr

√
PT · s︸ ︷︷ ︸

desired signal

+ Ĥrrrout︸ ︷︷ ︸
suppressible interference

+ nr +Δrrrout,︸ ︷︷ ︸
insuppressible interference

(1)

where rin, rout ∈ C
N are respectively the received and trans-

mitted signals from the relay node, s ∈ C is the transmitted
signal from the source (E {ss∗} = 1 ) and nr ∈ C

N is the
zero-mean circularly symmetric complex Gaussian (ZMCSCG)
noise with variance σ2

nr. It is clear that the major part of
the interference is known to the receiver since it is basically
generated by the same node. Following [9], [14] and [19] we
assume that the known part of the interference can be estimated
and canceled if its power does not exceed the functional range
of the receiver, applying cancellation methods [2]–[6]. Hence
we have

rin,supp = hsr

√
PT · s+ nr +Δrrrout, (2)

E

{∥∥∥Ĥrrrout

∥∥∥2

2

}
≤ Pint, (3)

where rin,supp is the interference-suppressed version of the
received signal, PT represents the transmission power from
the source and Pint defines the system interference power
constraint which ensures accurate receiver operation in facing
with loopback interference. Afterwards, the transmitted symbol
from the source is decoded at the relay (applying a linear
detection filter d, where ‖d‖2 = 1) and amplified to construct
the relay output

ŝ = P{dH · rin,supp}, rout = g · ŝ, (4)

where P{·}, ŝ represent the maximum likelihood detection
and the respective detected symbol in the relay. The relay
amplification vector is denoted as g ∈ C

N . Finally, the
destination receives and decodes the signal from the relay

y = hT
rdrout + nd, (5)

TABLE I: Symbols which are needed for description of the
defined communication cycle.

Notation Description

N number of Tx and Rx antennas on the relay

hsr, ĥsr accurate and estimated channels between source and relay

hrd, ĥrd accurate and estimated channels between relay and destination

Hrr, Ĥrr accurate and estimated self interference channel matrices

Δrr, δsr, δrd corresponding channel estimation error

g the relay amplification vector

d linear detection filter

nr,nd AWGN noise on the relay and destination

σ2
nr, σ

2
nd noise variance in the relay and destination

PT transmit power from the source;

Pmax, P
R
max maximum allowed Tx power from the source and the relay

Pint maximum allowed self interference power

Trr,Tsr,Trd feasible region shaping matrices for CSI error

ξrr, ξsr, ξrd respective feasible CSI error radius

rin, rout input and output signal from the relay node

rin,supp interference-suppressed relay input signal

s, ŝ transmitted data symbol and the estimated version in the relay

where y ∈ C represents the received signal at the destination
and nd ∈ C is a ZMCSCG noise which is added to the received
signal in destination with variance σ2

nd. In addition to the
defined interference power constraint, both source and relay
nodes are limited by their maximum allowed transmit power:

PT ≤ Pmax, E

{
‖rout‖

2

2

}
≤ PR

max, (6)

where Pmax and PR
max respectively define the maximum al-

lowed Tx power in the source and the relay. In the following
parts of this paper, we investigate the optimal set of parameters
(g,d, PT) which result in maximum system performance for
different scenarios of CSI error, subject to the defined power
constraints. In order to avoid confusion in our formulations,
Table I presents a list of the used symbols which are involved
in the defined communication cycle.

III. OPTIMAL DESIGN WITH PERFECT CSI

It is already established that for the defined multi-hop
communication, the end to end mutual information is the
minimum capacity of the available individual links [20]

Cs,d = min {Cs,r, Cr,d} , (7)

where Cs,r, Cr,d, Cs,d represent the mutual information be-
tween source and the relay, the relay and the destination and
the source and the destination, respectively. Due to the single
antenna setup of the end users, we treat the rate maximization
problem equivalently as an SINR maximization on the deci-
sion variables. We should note that while the aforementioned
assumption does not hold in general, it provides a simplifying
framework to formulate our problem. Hence, by assuming the
zero-mean and Gaussian distribution for all signal, noise and
interference components our equivalent problem can be written
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as

max
g,d,PT

t

s.t. SINRr ≥ t, SINRd ≥ t,

E

{∥∥∥Ĥrr · rout

∥∥∥2

2

}
≤ Pint,

E

{
‖rout‖

2

2

}
≤ PR

max, PT ≤ Pmax, (8)

where SINRr,SINRd are the achieved SINR on the relay node
(after applying the detection filter d) and on the destination
node, respectively. Furthermore, the transmit power constraint
in the source is tight at least for one optimal solution (other-
wise, it can be always scaled up to Pmax and improve SINRr

while maintaining feasibility with no effect on SINRd. This
statement also holds for the general case with CSI error).
For the scenario with availability of perfect CSI, due to the
cancellation of the last term in (2), the source to relay and
relay to destination paths become independent and hence (8)
can be treated as two separate SINR maximization problems
on the rely and destination. This readily results in d = hsr

|hsr|

and maximum SINR in the relay to be SINRr,max =
PT‖hsr‖

2
2

σ2
nr

.
Optimal SINR in the destination can be respectively achieved
via the following problem

max
g

hT
rdgg

Hh∗
rd

σ2
nd

s.t. ‖Hrr · g‖
2

2 ≤ Pint, ‖g‖
2

2 ≤ PR
max, (9)

which by defining G = ggH and ignoring the implicit rank-1
constraint on G turns into

max
G

Tr
(
h∗
rdh

T
rdG

)
s.t. Tr

(
HH

rrHrrG
)
≤ Pint,

Tr(G) ≤ PR
max, G ≥ 0, G = GH. (10)

Similar to [9] and due to the Corollary 3.4 in [21] we always
obtain an optimal rank-1 G for the above problem and hence
the relaxed constraint is satisfied. The optimal g can be
consequently achieved via g = G

1
2 . It is worth mentioning that

while the presented solution offers an optimal rate maximizing
strategy, it is not unique and is not taking into account the
power consumption. The problem of energy efficient design
will be further discussed in Section V.

IV. SEMI-DEFINITE RELAXATION FRAMEWORK FOR
WORST-CASE MAXIMIZATION WITH ERRONEOUS CSI

In this section we investigate the effects of CSI imperfec-
tion on the performance of the defined system. We start with
the effects of CSI error in the loopback channel which is of
high importance due to the FD system architecture. Afterwards
we extend our study to the general scenario of CSI error and
provide respective robust designs in each step.

A. Imperfect CSI for Loopback Channel

As it is mentioned in our system model (Section II) the
loopback channel estimation error directly acts as a residual
interference component (2) and significantly degrades the
achievable performance. This problem is considered as a

major bottleneck for cancellation techniques which aim at high
suppression quality [6]. In this part we take into account the
estimation error for the loopback channel and present a robust
design based on the worst case optimization. Our equivalent
SINR maximization problem in (8) turns into

max
g,d,t

min
Δrr

t

s.t.
Pmaxd

Hhsrh
H
srd

dH [σ2
nrIN +ΔrrggHΔH

rr]d
≥ t,

Tr
(
ΔrrTrrΔ

H
rr

)
≤ ξrr, h

T
rdgg

Hh∗
rd ≥ t · σ2

nd,

Tr
(
ĤH

rrĤrrgg
H
)
≤ Pint, ‖d‖2 = 1,

Tr
(
ggH

)
≤ PR

max. (11)

We can infer from (11) that the performance minimization
over feasible estimation errors happens at the boarder of the
error feasible area. In order to observe that, we note that for any
error matrix (Δrr) for which Tr

(
ΔrrTrrΔ

H
rr

)
< ξrr, we may

scale up (with a positive scalar value) the error matrix so that
the noted inequality becomes tight. Since Δrr is been scaled
up, the interference component dH

Δrrgg
H
Δ

H
rrd experiences

an inevitable increase which results in smaller SINR value in
the relay node with no effect on SINRd. This justifies that at
least one performance minimizing error matrix is located on
the boundary of the respective feasible region. We may further
investigate the noted condition as

max
Δrr

dH
Δrrgg

H
Δ

H
rrd

s.t. Tr
(
ΔrrTrrΔ

H
rr

)
= ξrr, (12)

which by defining Δ
′

rr = ΔrrT
1
2
rr , g

′

= T
− 1

2
rr g and δ

′

rr =

vec
(
Δ

′

rr

)
turns into

max
Δrr

δ
′

rr

H
Aδ

′

rr

δ
′

rr
H
δ

′

rr

· ξrr = λmax{A} · ξrr, (13)

where A =
(
g

′∗
⊗ d

)
·
(
g

′∗
⊗ d

)H

and λmax{·} presents
the maximum eigenvalue operator. Note that the above variable
redefinition is always feasible due to the positive definite nature
of error region shaping matrices (including Trr). Due to the
rank-1 nature of A and ‖d‖2 = 1 we have

λmax{A} · ξrr =
∥∥∥g′∗

⊗ d

∥∥∥2

2
· ξrr =

Tr
(
g

′

g
′H

)
· ξrr = Tr

(
T−1
rr · ggH

)
· ξrr. (14)

The above result shows that the worst-case insuppressible self-
interference (corresponding to the worst-case Δrr ) is not
dependent on the design of d and can be simplified as (14).
This turns our problem in (11) as

max
g,d,t

t

s.t. Pmax · d
Hhsrh

H
srd− tσ2

nr − tξrrTr
(
T−1
rr ggH

)
≥ 0,

Tr
(
ggH

)
≤ PR

max, h
T
rdgg

Hh∗
rd − t · σ2

nd ≥ 0,

Tr
(
ĤH

rrĤrrgg
H
)
≤ Pint, ‖d‖2 = 1, (15)

It is observable that one optimal d for the above problem is
hsr

‖hsr‖2
. At this point, we apply a bisection search over values
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of t which for each step turns into a feasibility problem.
By repeating the same semi-definite relaxation procedure as
defined in (10) our feasibility problem can be written as

max
G

1

s.t. Pmax‖hsr‖
2
2 − tσ2

nr − tξrr · Tr
(
T−1
rr G

)
≥ 0,

Tr
(
h∗
rdh

T
rdG

)
− tσ2

nd ≥ 0, G = GH,

Tr
(
ĤH

rrĤrrG
)
≤ Pint, G ≥ 0,

Tr (G) ≤ PR
max, (16)

which should be examined for each value of t. The resulted
G is not a rank-1 matrix in general. To approach this problem
we define an equivalent feasibility test to (16) by formulating
our problem as

min
G

Tr
(
T−1
rr G

)
s.t. Tr

(
h∗
rdh

T
rdG

)
− tσ2

nd ≥ 0, G = GH,

Tr
(
ĤH

rrĤrrG
)
≤ Pint, G ≥ 0,

Tr (G) ≤ PR
max. (17)

It is clear that the feasibility of (16) readily results in
the feasibility of (17). On the other hand, (16) is feasible if
(17) is feasible and the resulted G satisfies: Pmax‖hsr‖

2
2 −

tσ2
nr − tξrr · Tr

(
T−1
rr G

)
≥ 0. The benefit of applying the

formulation in (17) is the fact that if it is feasible for a given t
the corresponding rank-1 G always exists and can be obtained
following the Corollary 3.4 in [21]. The defined feasibility
test will be repeated for different values of t following the bi-
section search procedure until the desired solution precision is
achieved.

B. Generalized Design with Imperfect CSI

In order to address the generalized case, where the CSI
corresponding to all paths are suffered due to the channel
estimation inaccuracy, we formulate our robust SINR maxi-
mization problem as

max
g,d,t

min
Δrr,δsr,δrd

t

s.t.
Pmaxd

H (hsr + δsr) (hsr + δsr)
H
d

dH [σ2
nrIN +ΔrrggHΔH

rr]d
≥ t,

(hrd + δrd)
T
ggH (hrd + δrd)

∗
≥ t · σ2

nd,

Tr
(
ĤH

rrĤrrgg
H
)
≤ Pint, Tr

(
ggH

)
≤ PR

max,

Tr
(
δTsrTsrδ

∗
sr

)
≤ ξsr, Tr

(
δTrdTrdδ

∗
rd

)
≤ ξrd,

Tr
(
ΔrrTrrΔ

H
rr

)
≤ ξrr, ‖d‖2 = 1, (18)

which by recalling (14) and applying a bi-section search over
values of t turns into the following feasibility problem

max
g,d

min
Δrr,δsr,δrd

1

s.t. Tr
(
Pmax(ĥsr + δsr)

Td∗dT(ĥsr + δsr)
∗
)

− t · σ2
nr − t · ξrr · Tr

(
T−1
rr ggH

)
≥ 0,

Tr
(
(ĥrd + δrd)

TggH(ĥrd + δrd)
∗
)

− t · σ2
nd ≥ 0,

Tr
(
ĤH

rrĤrrgg
H
)
≤ Pint,Tr

(
ggH

)
≤ PR

max,

Tr
(
δTsrTsrδ

∗
sr

)
≤ ξsr, ‖d‖2 = 1,

Tr
(
δTrdTrdδ

∗
rd

)
≤ ξrd. (19)

It is observable that each of the constraints is affected by
no more than one of the channel estimation errors. Clearly the
feasibility of (19) is achieved iff all of the included constraints
remain feasible for all of the feasible channel estimation errors.
In order to proceed we apply the following theorem which can
be inferred from the derivations in [9], [16]

Theorem 4.1: Given a vector h ∈ C
N and values ξ, t ∈

R
+, the feasible set on Q, Q = QH which fits in the following

constraint:

{
∀δ, δTTδ∗ ≤ ξ ⇒
(h+ δ)TQ (h+ δ)

∗
≥ t,

(20)

is equivalent to the feasible set over Q defined by

max
Q,Z,μ≥0

1

s.t. Tr
[
(Q−Z)h∗hT

]
− ξ · μ ≥ t,[

Z Q
Q Q+ μT

]
≥ 0, (21)

where T > 0,T = TH and the matrix Z ∈ C
N×N and

μ ∈ R
+ are auxiliary variables.

Proof: The proof is similar to the derivations in [16]
(equations 13-25). The main components of this reasoning
is the so-called S-procedure [22] as a powerful tool to deal
with robust quadratic problems as well as the famous Schur’s
complement [23]. The same derivation steps has been also
discussed in details in [9].

By defining D = d∗dT,G = ggH and applying the same
semi-definite relaxation procedure on (19) we reformulate our
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problem as

max
G,D,Z�,μ�≥0

1

s.t.

[
Z1 D
D D + μ1Tsr

]
≥ 0,[

Z2 G
G G+ μ2Trd

]
≥ 0,

Tr
[
(D −Z1) ĥ

∗
srĥ

T
sr

]
− ξsr · μ1 ≥ t ·

[
σ2
nr

Pmax

+
ξrrTr

(
T−1
rr G

)
Pmax

]
,

Tr
[
(G−Z2) ĥ

∗
rdĥ

T
rd

]
− ξrd · μ2 ≥ t · σ2

nd,

Tr
(
ĤH

rrĤrrG
)
≤ Pint, Tr(G) ≤ PR

max,

Tr(D) = 1, D = DH,D ≥ 0,

G = GH,G ≥ 0, � ∈ {1, 2}. (22)

where t is treated as a constant in each step of the feasi-
bility check. Despite the additional complication imposed by
introducing the new variables (Z�, μ�), it is clear that (22)
follows the semi-definite programming structure and can be
efficiently solved within a polynomial time. We have to note
that the achieved G,D are in general not rank-1 matrices. The
respective rank-1 matrices can be achieved by applying ran-
domization [24] or via direct singular decomposition. Having
the rank-1 approximations we calculate

d� =
(
D

1
2

)∗

, g� = G
1
2 , (23)

where g�,d� are the desired solutions to g,d in each iteration.
The defined process is continued for different values of t, fol-
lowing the bi-section search steps, until the required precision
is achieved.

V. OPTIMAL DESIGN FRAMEWORK WITH MINIMUM
POWER CONSUMPTION

While the solution in (22) offers a polynomial time pro-
cedure to obtain maximum communication rate, the corre-
sponding optimal solution is not unique. Since the end to
end communication rate is usually limited by only one of
the source to relay or the relay to destination links, it will
be inefficient to spend unnecessary power on a link while
it is not the communication bottleneck. Furthermore, there is
no consideration of system power consumption in the offered
design in (22). This encourages us to investigate the energy
efficient transmit strategy as a separated design, given a pre-
defined requirement of end to end communication rate. For
this purpose, we assume that the system power consumption
can be approximated by addition of the transmit signal power
from the source and from the relay node

Ptot = PT + ‖g‖
2

2 , (24)

where Ptot is the total system transmit power. Following
the same semi-definite relaxation framework as in (22) and
defining

D̄:=PTd
∗dT, (25)

we are able to formulate our optimization problem as

min
G,D̄,Z�,μ�≥0

Tr
(
D̄ +G

)
s.t.

[
Z1 D̄

D̄ D̄ + μ1Tsr

]
≥ 0,[

Z2 G
G G+ μ2Trd

]
≥ 0,

Tr
[(
D̄ −Z1

)
ĥ∗
srĥ

T
sr

]
− ξsr · μ1 ≥ t0 ·

[
σ2
nr

+ ξrrTr
(
T−1
rr G

)]
,

Tr
[
(G−Z2) ĥ

∗
rdĥ

T
rd

]
− ξrd · μ2 ≥ t0 · σ

2
nd,

Tr
(
ĤH

rrĤrrG
)
≤ Pint, Tr(G) ≤ PR

max,

D̄ = D̄H, D̄ ≥ 0,Tr
(
D̄

)
≤ Pmax,

G = GH,G ≥ 0, � ∈ {1, 2}. (26)

where the value t0 represents the pre-defined requirement on
the end to end communication rate and the term Tr

(
D̄)

is equal to the source transmit power due to the definition
(24). It is worth mentioning that due to the pre-defined rate
requirement (t0), there is no need to apply bi-section search
steps and the optimal general rank solution is achievable
via single iteration. Similar to (22), the resulted G, D̄ are
in general not rank-1 matrices. The corresponding rank-1
solutions are achieved via randomization technique [24] or
direct singular decomposition of the general rank matrices.
Having the rank-1 approximations we calculate

d̄� =
(
D̄

1
2

)∗

, g� = G
1
2 , (27)

and the respective desired d and the transmit power of the
source are achieved as

P �
T = ‖d̄�‖22, d

� =
d̄�

‖d̄�‖2
, (28)

where g�,d�, P �
T are the desired energy efficient solutions to

g,d, PT corresponding to t0 as the pre-defined link quality in
(26).

VI. SIMULATION RESULTS

In this section we evaluate the performance of the in-
troduced methods via Monte Carlo simulations. We follow
the defined system setup and channel model as described in
Section II and average our results over 100 realizations. The
comparison is made between the performance of the equivalent
HD system (with equal number of Tx and Rx chains as well
as the same CSI error condition as the FD setup), the derived
robust design with FD setup in Section IV, and the non-
robust FD design (assuming no CSI error). As the comparison
metric we have chosen the worst-case communication rate
which maintains for all feasible CSI error conditions. For
the aforementioned system and design strategies, the resulted
performance is been observed for various system settings.
In Fig.2 the effect of self-interference suppression capability
(β := Pint

Pmax
) is been studied. As it can be observed for

small values of CSI error and high suppression capability,
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sion quality (β). ξnsr = ξnrd = ξnrr = 10−4. The FD two-fold
gain is observable for high suppression quality and small CSI
error.
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Fig. 3: Achievable rate (worst-case) vs. CSI error intensity.
ξ = ξnsr = ξnrd = ξnrr. FD operation is highly sensitive to the
CSI error in the loopback path.

the FD system is capable of achieving nearly twice of rate
compared to an equivalent HD system. Fig.3 illustrates the
extremely destructive effect of the CSI error (ξsr = ξnsr ·‖hsr‖

2
2,

ξrd = ξnrd ·‖hrd‖
2
2 and ξrr = ξnrr ·‖Hrr‖

2
fro) in the FD operation.

The aforementioned definition of the values ξnsr, ξ
n
rd, ξ

n
rr adapts

the defined error radios for different channel realizations. Fig.3
verifies our expectation from Section II since any inaccuracy
of the self-interference channel directly results in the residual
interference in the receiver which is not suppressible, since it
is not known. That follows due to the fact that the perfect
estimation of the received interference becomes impossible
due to the defined CSI error. Fig.4 illustrates the effect of
N on the system performance and on the effectiveness of our
robust design. As it was expected, while the overall system
performance experiences an observable increase as the number
of antennas increases, this enhancement is only achieved via
employing the robust transmit strategy. In general, in a setting
with erroneous CSI, more antennas generate more sources of
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Fig. 4: Achievable rate (worst-case) vs. Number of antennas
(N ). The necessity of the robust approach increases for higher
number of antennas.
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Fig. 5: Achievable rate (worst-case) vs. SNR [dB]. The robust
design achieves higher gains for high SNR regions.

error and consequently more components of insuppressible
interference in the loopback path which can be fatal for a FD
operation. On the other hand, higher N promises a higher spa-
tial degree of freedom to adapt our precoding design with the
system conditions. Following the aforementioned arguments,
it can be observed from Fig.4 that while higher N reduces
the performance of the error-prone system, our robust transmit
strategy provides a significant level of resilience against this
degradation. As the other observation, Fig.5 depicts the effect
of noise level on the resulted performance (SNR := Pmax·ρsr

σ2
nr=σ2

rd

).
As it is observed, as the SNR increases, the sensitivity of the
system to the error components increases as well. Hence the
robust design shows more enhancements with the higher SNR
region. Unless stated otherwise, the values of Table II has been
chosen for different system parameters in our simulations.

VII. CONCLUSION

In this paper we have presented a semi-definite relax-
ation framework to address the transmit strategy design in
a full-duplex decode-and-forward relaying system. Our study
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TABLE II: Unless stated otherwise the following values are
set in our simulations.

Parameters Value

Tsr = Trd = Trd IN

ξnsr 5 × 10−2

ξnrd 5 × 10−2

ξnrr 5 × 10−4

ρsr = ρrd −20dB

ρrr 0dB

SNR 10dB

Pmax = PR
max 1W

β 4

encompasses different scenarios of channel knowledge inac-
curacy and provides a robust and computationally efficient
design framework to tackle the resulted degradation. As is
been shown, while benefits of the full-duplex operation is
degraded due to the effects of inaccurate channel estimation,
our proposed design provide a level of robustness for the
resulted system performance. In the end we should once again
note the sensitivity of the FD system to the loopback CSI error
which requires dedicated estimation intervals and specialized
solutions.
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