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Abstract—The optimization of wireless orthogonal frequency
division multiplexing (OFDM) systems is based on the knowledge
of the signal-to-noise ratio (SNR). Most of the existing methods
for the SNR estimation operates in the frequency-domain and
assumes perfect carrier frequency offset (CFO) synchronization.
However, it has been shown that in real systems in the presence
of the residual CFO this estimators are prone to performance
degradation. This problem can be avoided by estimating the
SNR in the time-domain. In this paper, a novel low-complexity
time-domain SNR estimator based on time periodic Zadoff-Chu
(ZC) sequence, named TDZCE, is proposed. When applied to
the time periodic synchronization preamble, commonly used in
packed based OFDM systems, the special property of a ZC
sequence preserves the considered comb-type structure both in
the frequency and time-domain. This allows for easy adaptation
of previously proposed moment-based SNR estimator to be
applied to the time-domain samples. The TDZCE outperforms
the existing time-domain SNR estimators in frequency-flat chan-
nels in the presence of the CFO, and approaches the Cramer-
Rao bound (CRB) as the number of periodic parts of the
proposed preamble increases. Additionally, it offers considerable
computational savings compared to the existing time-domain
SNR estimators.

Index Terms—OFDM, SNR estimation, Zadoff-Chu sequence

I. INTRODUCTION

An important task in the design of future Orthogonal
frequency division multiplexing (OFDM) system is to exploit
frequency selective channels by adaptable transmission param-
eters (bandwidth, coding/data rate, power) to preserve power
and bandwidth efficiency according to the channel conditions
at the receiver. In order to achieve such improvements, an
efficient and exact signal-to-noise ratio (SNR) estimation algo-
rithm is requisite. The estimated SNR can be further exploited
to improve the correction of carrier frequency offset (CFO),
which arises due to the mismatch between the transmitter and
receiver oscillators. The noise power estimate can be further
utilized for channel estimation [1] and soft decoding [2].

The SNR estimators are well studied for single carrier
transmissions [3] and most of these algorithms can be directly
applied to OFDM systems in additive white Gaussian noise
(AWGN) [4]. For packet based communications, the pilot
symbols (preambles) used for synchronization and equaliza-
tion can be utilized for the SNR estimation without the
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additional throughput reduction. In [5], we proposed a low-
complexity periodic-sequence (PS) estimator based on the
second-order moments of received samples in the frequency-
domain, which utilizes the preamble structure proposed by
Morelli and Mengali in [6]. The time periodic structure of
this preamble corresponds to a comb-type structure in the
frequency-domain wherein loaded subcarriers are separated
by a certain number of nulled subcarriers, which are used
to estimate the average noise power. Combined with the
average signal plus noise power estimation obtained from the
used (loaded) subcarriers, the average noise power estimate is
utilized for the average SNR estimation.

However, as discussed in [7], in an imperfectly synchronized
system, the CFO introduces the inter-carrier interference (ICI)
causing the performance degradation of the frequency-domain
SNR estimation methods. Therefore, either the CFO has to be
compensated prior to the SNR estimation or SNR has to be
estimated in the time-domain since the CFO impacts only the
phase of the received time-domain samples [8].

The authors in [9] proposed the time-domain low-
complexity SNR estimator (TLSE) based on the preamble
containing two identical halves. However, the TLSE has been
shown to be prone to performance degradation caused by the
CFO. In [10], the authors introduced a maximum likelihood
(ML) time-domain method for the joint estimation of the
CFO, noise power and SNR, named JMLE, based on the time
periodic preamble structure in [6]. However, the complexity of
the JMLE increases with the number of periodic parts. Another
approach is to design an SNR estimator robust to the CFO
such that CFO acquisition can be applied afterwards, possibly
by utilizing the previously estimated SNR. Accordingly, the
authors in [8] proposed the time-domain preamble-based SNR
estimator (TPSE) based on the time periodic structure [6]
utilized by both the PS and JMLE estimators. The TPSE shows
the good performance in the presence of the CFO at the cost
of an increased complexity.

In this paper we propose a novel low complexity time-
domain SNR estimator for the frequency-flat channel. The
proposed estimator, named TDZCE, is based on the comb-
type time-domain Zadoff-Chu (ZC) sequence structure utilized
for the preamble and shows the robust performance in the
presence of the CFO. Due to the good correlation properties,
ZC sequences have been extensively used in various parts of
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the LTE standard. Moreover, Beyme and Leung have recently
proven in [11] that a ZC sequence and its DFT are time-scaled
conjugates of each other, up to a constant factor. This leads
us to the heuristic reasoning that, besides having the time
periodic structure, the preamble also contains zero samples
in the time-domain, i.e, the comb-type structure of nulled
and loaded subcarriers in the frequency-domain corresponds
to “nulled“ and “loaded“ samples in the time-domain. Since
the CFO introduces only a phase offset to the time-domain
received samples, applying the second order moment methods
from the PS estimator [5] on nulled and loaded time-domain
samples results in the SNR estimation irrespective of the CFO.
Furthermore, the analysis of the statistical properties of the
TDZCE can be utilized for improving the system procedures
based on the SNR estimate.

The contribution of this paper is threefold: At first, we
propose the time periodic preamble structure based on the ZC
sequence; secondly, based on the given preamble we derive
a low-complexity time-domain SNR estimator robust to the
presence of the CFO; finally, we derive statistical properties
of the proposed estimator.

The remainder of this paper is organized as follows. Section
II introduces the system model and specifies the SNR estima-
tion problem. In Section III, we propose the preamble struc-
ture, address the corresponding TDZCE estimator, and derive
its statistical properties. Simulation results and computational
complexity analysis are presented in Section IV. Finally, some
concluding remarks are given in Section V.

II. SYSTEM MODEL

The OFDM symbol contains the complex data symbols
C(n) on the nth subcarrier, for n = 0, . . . , N−1, each with the
average power E{|C(n)|2} = σ2

s . The corresponding discrete
time-domain transmitted signal after the N -point IDFT is
given by

c(k) =
1√
N

N−1∑
n=0

C(n)ej2πkn/N , 0 ≤ k ≤ N − 1, (1)

where E{|c(k)|2} = σ2
s is the signal power in the time-

domain, which is due to the linearity of the IDFT transforma-
tion equal to the signal power in the frequency-domain, i.e.,
σ2
s = σ2

S . At the receiver the received signal in the presence
of the CFO can be expressed as

r(k) = c(k)e
2πεk
N + w(k), k = 0, . . . , N − 1, (2)

where ε is the CFO normalized to the subcarrier spacing and
w(k) is sampled circularly symmetric complex AWGN with
variance σ2

w, i.e, w(k) ∼ SCN(0, σ2
w). Assuming that the

channel is constant during the frame, the average SNR is given
by

ρav =
E{|y(k)|2}
E{|w(k)|2} =

σ2
s

σ2
w

. (3)

III. TDZCE ESTIMATOR

A. Preamble Structure

The preamble consisting of Q identical parts, each con-
taining Np = N/Q samples is proposed as shown in
Fig. 1a. The corresponding frequency-domain representation
is shown in Fig. 1b. We further assume that Q divides N ,

������
������
������

������
������
������

���������
���������
���������

���������
���������
���������

�����
�����
�����

�����
�����
�����

√
QσsC∗

λ−1 (0)cλ(0)

√
QσsC∗

λ−1 (Q)cλ(0)

√
QσsC∗

λ−1 (2Q)cλ(0)

√
QσsC∗

λ−1 (N − Q)cλ(0)

(a)

(b)

√
QσsCλ(N − Q)

Q sub
arriers

N/Q samples

Q samples

√
QσsCλ(0)

√
QσsCλ(Q)

√
QσsCλ(2Q)

Fig. 1. Preamble structure in the (a) time and (b) frequency-domain.

so that the number of loaded subcarriers Np is an integer.
Starting from the 0th, each Qth subcarrier is modulated
with a Zadoff-Chu (ZC) sequence symbol Cλ(mQ) with
|Cλ(m)| = 1 for m = 0, 1, . . . , Np − 1. The remainder of
Nz = N − Np = (Q−1)

Q N subcarriers is not used (nulled).
To maintain the total energy level over all symbols within the
preamble, the transmit power is scaled by the factor Q yielding
a total transmit power of Qσ2

S at the loaded subcarriers.
Write n = mQ+ q, m = 0, . . . , Np − 1, q = 0, . . . , Q− 1.

The transmitted signal on the nth subcarrier is given by

C(n) = C(mQ+ q) =

{√
Q · σsCλ(mQ), q = 0

0, q = 1, . . . , Q− 1
.

(4)
Due to the IDFT properties, the time-domain representation of
the preamble with Q identical parts can be written as

c(k) = c(k + q
N

Q
), k = 0, . . . ,

N

Q
− 1, q = 1, . . . , Q− 1.

As shown in Appendix A, the time-domain representation of
the preamble in (4) is given by

c(k) = c(mQ+q) =

{√
QσsC

∗
λ−1(mQ)cλ(0), q = 0

0, q = 1, . . . , Q− 1
.

(5)
Both the frequency-domain and time-domain representations,
given by (4) and (5), respectively, have the property that every
Qth sample is “loaded”, i.e., it is different from zero.

B. The Proposed SNR Estimation
Furthermore, according to (2), the kth received time sample

can be written as

r(k) = r(mQ+ q) =

{
rp(m), q = 0

rz(mQ+ q), q = 1, . . . , Q− 1
,

where
rp(m) = c(mQ)e

2πεmQ
N + w(mQ) (6)

denotes the received time-domain samples containing the
phase shifted signal and additional noise component and

rz(mQ+ q) = w(mQ+ q) (7)

represents the time-domain samples containing only noise.
The empirical second-order moment of the time-domain

received samples containing the signal and noise component
is given by

M̂2,p =
1

Np

Np−1∑
m=0

|rp(m)|2 (8)
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with the expectation E
{
M̂2,p

}
= Qσ2

s + σ2
w.

Similarly, the empirical second moment of the received
samples containing only the noise component

M̂2,z =
1

Np(Q− 1)

Np−1∑
m=0

Q−1∑
q=1

|rz(mQ+ q)|2 (9)

has expectation E
{
M̂2,z

}
= σ2

w.
In summary, the average SNR ρav can be estimated by

forming

ρ̂av =
1

Q

M̂2,p − M̂2,z

M̂2,z

=
1

Q

(
M̂2,p

M̂2,z

− 1

)

=
1

Q

(
(Q− 1)

∑Np−1
m=0 |rp(m)|2∑Np−1

m=0

∑Q−1
q=1 |rz(mQ+ q)|2

− 1
)
,

(10)

where, by the strong law of large numbers, M̂2,p and M̂2,z

are strongly consistent unbiased estimators of QS + W and
average noise power W , respectively.

C. Statistical Properties

To derive the statistical properties of the average SNR
ρ̂av in (10), it can be shown that 2Np

M̂2,p

σ2
w

and 2Nz
M̂2,z

σ2
w

are noncentral chi-squared and central chi-squared random
variables, respectively.

Let rz(mQ + q), for m = 0, 1, . . . , Np − 1 and
q = 1, . . . , Q − 1, denote independent circular symmetric
complex Gaussian random variables with zero means and
identical variances σ2

w, i.e., rz(mQ+q) ∼ SCN(0, σ2
w). Then,

Z = 2
σ2
w

∑Np−1
m=0

∑Q−1
q=1 |rz(mQ+ q)|2 = 2Nz

M̂2,z

σ2
w

has a
central chi-squared distribution, χ2

νz , with νz = 2Nz degrees
of freedom. Therefore, Z ∼ χ2

νz , with the pdf given by

fZ(z) =
1

2
νz
2 Γ
(
νz
2

)z νz2 −1e−
z
2 , z ≥ 0, (11)

where Γ(u) is the Gamma function [12].
Let rp(m), for m = 0, 1, . . . , Np − 1, denote in-

dependent circular symmetric complex Gaussian random
variables with expected values

√
Qσs and identical vari-

ances σ2
w, i.e., rp(m) ∼ SCN(

√
Qσs, σ

2
w). Then,

P = 2
σ2
w

∑Np−1
m=0 |rp(m)|2 = 2Np

M̂2,p

σ2
w

has a noncentral chi-
squared distribution, χ2

νp,λ
, with νp = 2Np degrees of free-

dom and noncentrality parameter λ = 2Q
σ2
S

σ2
w

= 2QρavNp.
Therefore, P ∼ χ2

νp,λ
, with the pdf given by

fP (p) =
1

2

( p
λ

) νp−2

4
e
p+λ
2 I νp

2
−1(
√
pλ), p ≥ 0, (12)

where Ia(u) is the modified Bessel function of the first kind
and order a [12].

Furthermore, given Z = 2Nz
M̂2,z

σ2
w

as a central chi-squared
random variable with νz = 2Nz degrees of freedom and
P = 2Np

M̂2,p

σ2
w

as a noncentral chi-squared random vari-
able with νp = 2Np degrees of freedom and noncentrality
parameter λ = 2QρavNp, the random variable V =

M̂2,p

M̂2,z
is

noncentral F -distributed. From the empirical second order mo-
ments M̂2,p and M̂2,z given in (8) and (9), respectively, it can

be noticed that the different sets of data samples are used for
the estimation. Therefore, M̂2,p and M̂2,z can be considered
as independent random variables, thus giving random variables
P and Z also as independent, respectively. According to [13],
having P and Z stochastically independent, a noncentral F -
distributed random variable V is obtained when dividing a
noncentral chi-squared random variable P ∼ χ2

νp,λ
by a

central chi-squared random variable Z ∼ χ2
νz ,

V =
P/νp
Z/νz

. (13)

Replacing P,Z, νp, and νz in (13) directly yields

V =

(
2NpM̂2,p

σ2
w

)
/(2Np)(

2NzM̂2,z

σ2
w

)
/(2Nz)

=
M̂2,p

M̂2,z

. (14)

The F -distributed random variable V in (13) has a pdf given
by

fV (v) = e−
λ
2

∞∑
k=0

(λ
2

)k

k!

(
νp
νz

)
1
2
νp+k

B
(
νp+2k

2
, νz

2

)v νp2 +k−1

·
(

1 +
νp
νz
v

)− 1
2
(νp+νz)−k

,

(15)

where B(u, v) is the Beta function, which can be represented
by the Gamma functions [12].

The mean and the variance of the F -distributed random
variable V , defined in (13), are given by

E(V ) =
νz(νp + λ)

νp(νz − 2)
, νz > 2, (16)

and

Var(V ) = 2

(
νz
νp

)2
(νp + λ)2 + (νz − 2)(νp + 2λ)

(νz − 2)2(νz − 4)
, νz > 4,

(17)
respectively [13]. Replacing νp and νz in (16) and (17) yields

E(V ) =
2Nz · 2Np(1 +Qρav)

2Np · 2(Nz − 1)

=
1 +Qρav

(1− 1
Nz

)
, Nz > 1,

(18)

and

Var(V ) = 2

(
Nz
Np

)2 4N2
p (1 +Qρav)2 + 4Np(Nz − 1)(1 + 2Qρav)

4(Nz − 1)2 · 2(Nz − 2)
,

=
1

Nz

(1 +Qρav)2 + 1
Np

(Nz − 1)(1 + 2Qρav)

(1− 1
Nz

)2(1− 2
Nz

)
, Nz > 2,

(19)

respectively. Comparing (10) with (14), the estimated average
SNR ρ̂av can be obtained by transforming the random variable
V

ρ̂av =
1

Q

((
M̂2,p

M̂2,z

)
− 1

)
=

1

Q
(V − 1) . (20)

Its expectation E(ρ̂av) is given by

E(ρ̂av) =
1

Q

(
E

(
M̂2,p

M̂2,z

)
− 1

)
=

1

Q
(E (V )− 1)

=
1

Q

(
Qρav +

1 +Qρav
Nz − 1

)
= ρav +

1
Q

+ ρav

Nz − 1

≈ ρav,

(21)
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Fig. 2. Pdf of SNR estimate for true SNR = 10 dB, N = 256, and the
number of periodic parts Q = 2, 4, and 8.

for N >> 1, which is a regular case for real OFDM systems.
Similarly, using the transformation (20), the mean square error
(MSE) of the estimated average SNR is given by

MSE(ρ̂av) = E
(
(ρ̂av − ρav)2

)
≈ Var(ρ̂av)

=
1

Q2
Var(V ).

(22)

Inserting (19) into (22), for Nz = Q−1
Q N and Nz = N

Q yields

MSE(ρ̂av) ≈
(1 +Qρav)2 + (Q− 1− Q

N
)(1 + 2Qρav)

NQ(Q− 1)(1− Q
(Q−1)N

)2(1− 2Q
(Q−1)N

)
.

By using the transformation of the F -distributed random
variable V in (20), the pdf of the estimated average SNR ρ̂av
can be derived as
fρ̂av (ρ̂av) = Q · fV (1 +Qρ̂av)

= Q · e−
λn
2

∞∑
k=0

(λn
2

)k

k!

(
νp
νz

)
1
2
νp+k

B
(
νp+2k

2
, νz

2

)
· (1 +Qρ̂av)

νp
2

+k−1

(
1 +

νp
νz

(1 +Qρ̂av)

)− 1
2
(νp+νz)−k

.

(23)

Replacing λ, νp, and νz in (23) and having Nz = Q−1
Q N ,

yields

fρ̂av (ρ̂av) =
e−Nρav · (Q− 1)

N(1− 1
Q

)

QN−1
· (1 +Qρav)

N
Q
−1

(1 + ρav)N

·
∞∑
k=0

ρkav ·
(
N
Q

)k
k! ·B

(
k + N

Q
, Q−1

Q
N
) (1 +Qρav

1 + ρav

)k
.

(24)

Figure 2 shows the pdf of the estimated average SNR, given
in (24) for true SNR = 10 dB. It can be seen that the
simulation results agree with the derived analytical model.
Moreover, increasing the number of periodic parts Q improves

TABLE I
THE COMPLEXITY COMPARISON OF CONSIDERED SNR ESTIMATORS.

Estimator TLSE [9] TPSE [8] JMLE [10] TDZCE
FLOPs 5N 7.5N + 4 4N(Q+ 2) + 12Q 4N + 2
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100

Average SNR [dB]

N
M

SE
ρ
a
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NCRB (N = 256)
TLSE
TPSE (Q = 2)
TPSE (Q = 4)
TPSE (Q = 8)
TDZC (Q = 2)
TDZC (Q = 4)
TDZC (Q = 8)

Fig. 3. NMSE of the estimated average SNR in a frequency-flat channel,
N = 256, ε = 5 · 10−2.

the accuracy of SNR estimation, i.e., the pdf curve becomes
more concentrated around the true SNR value for the higher
Q values.

IV. SIMULATION RESULTS

The performance of the TDZCE is evaluated and compared
with the performance of the JMLE, TLSE, and TPSE us-
ing the Monte-Carlo simulations. OFDM system parameters
consider N = 256 subcarriers and cyclic prefix length of
32 samples while the channel is assumed to be flat fading.
Without loss of generality, we set ε = 5 · 10−2. The eval-
uation of the accuracy of ρ̂av performance is done in the
terms of the normalized MSE (NMSE), which is defined as
NMSEρav = E

{
(ρ̂av − ρav)2

}
/ρ2av .

The performance of the TDZCE is evaluated for different
number of the preamble’s periodic parts, i.e., Q = 2, 4 and
8. Fig. 3 shows the NMSEav as a function of the SNR for
the considered estimators. In order to assess the absolute
performances of the estimators, they are compared with the
Normalized Cramer-Rao bound (NCRB), which is the lower
bound for the normalized variance of any unbiased estimator,
see [14]. The TLSE performs poorly in the presence of the
CFO experiencing the increasing NMSEav in the high SNR
region as a consequence of the estimation bias. Furthermore,
the TPSE performs closely to the proposed TDZCE and its
accuracy is independent of the number of the periodic parts
Q. By increasing Q, i.e., by introducing more nulled samples
in the preamble, the accuracy of the TDZCE approaches the
NCRB. The reason for this is that more samples are used for
the average noise power estimation (9) while loaded samples
are getting higher power due to the scaling by Q, thus resulting
in more accurate estimate in (8). The accuracy of the JMLE
estimator is not shown in Fig. 3 due to the clarity because it
performs identically to the PS (TDZCE), as indicated in [10].

To compare the computational complexity of TDZCE,
JMLE, TLSE, and TPSE we analyze floating point operations
per second (FLOPs) required to perform one SNR estimate.
Implementing the TLSE, as investigated in [10], requires 5N
FLOPs and depends on the number of periodic parts Q. Table I
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shows that the TPSE and JMLE are more complex, requiring
7.5N +4 [8] and 4N(Q+2)+12Q [10] FLOPs, respectively.
Moreover, the JMLE complexity depends on the number of
periodic parts Q. As shown in (10), the TDZCE requires 2N
real additions and 2N + 2 real multiplications, which results
in 4N+2 FLOPs and makes the TDZCE less computationally
complex compared to the other estimators. Furthermore, the
TDZCE depends only on the number of subcarriers N and
provides computational savings of approximately 80% (for
M = 4), 45%, and 20% when used instead of the JMLE,
TPSE, and TLSE, respectively.

V. CONCLUSION

We have proposed a novel low-complexity time-domain
SNR estimator based on the property that ZC sequence and
its DFT are the time-scaled conjugates of each other, up to
a constant factor. The comb-type time-domain structure of
the proposed preamble allows us to utilize our previously
proposed moment based SNR estimator, which results into
its robustness to the CFO when applied to the time-domain
samples. Moreover, we have derived statistical properties of
the TDZCE, which can be further utilized to improve the
performance of the CFO acquisition, channel estimation, or
soft-decoding procedures. Simulation results show that the
accuracy of the TDZCE approaches the NCRB irrespective of
the CFO value and outperforms the considered time-domain
SNR estimators. Moreover, the TDZCE offers non-negligible
computational savings compared to other methods available in
the literature.

APPENDIX

The λth root ZC sequence of even-numbered length N is
defined as [15]

Cλ(n) = e−
jπλn2

N , n = 0, . . . , N − 1. (25)

To construct the comb-type structure of the preamble given
in (4), every Qth subcarrier is loaded with the appro-
priate member of the ZC sequence given in (25), where
Cλ(mQ) = e−

jπλm2Q2

N for m = 0, . . . , Np − 1. The IDFT
of C(n) can be written as

c(k) =
1√
N

N−1∑
n=0

Cλ(n)e
j2πkn
N =

√
Qσs√
N

Np−1∑
m=0

Cλ(mQ)e
j2πkmQ

N

=
√
Qσscλ(k), k = 0, . . . , N − 1,

(26)

where cλ(k) denote the IDFT of the ZC sequence given by

cλ(k) =
1√
N

Np−1∑
m=0

Cλ(mQ)e
j2πkmQ

N , k = 0, . . . , N − 1. (27)

By replacing (25) in (27), it yields

cλ(k) =
1√
N

Np−1∑
m=0

e−
jπλm2Q2

N e
j2πkmQ

N

= e
jπλ−1k2

N
1√
N

Np−1∑
m=0

e−
jπλ(mQ−λ−1k)2

N

=
C∗λ−1(k)
√
N

Np−1∑
m=0

Cλ(mQ− λ−1k), k = 0, . . . , N − 1,

(28)

where ∗ presents the complex conjugation and λ−1 is the
modular multiplicative inverse of λ, i.e., an integer with the
property λ · λ−1 = 1 mod N .

By following the approach given in [11], [16] and having the
property that every Qth member of the sequence is different
from zero, it is shown that

Cλ(mQ− λ−1k) =

{
Cλ(mQ), k = mQ

0, k 6= mQ
. (29)

Therefore, by applying (29) to (28), we obtain

cλ(k) =

{
C∗λ−1(k) 1√

N

∑Np−1
m=0 Cλ(mQ), k = mQ

0, k 6= mQ

=

{
C∗λ−1(k)cλ(0), k = mQ

0, k 6= mQ
.

(30)

Finally, by substituting (30) in (26), the time-domain repre-
sentation of preamble is given by

c(k) =

{√
QσsC

∗
λ−1(k)cλ(0), k = mQ

0, k 6= mQ
. (31)
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