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Abstract—In this paper, we provide an alternative derivation
of the optimal power allocation for distributed passive radar
systems in closed-form. Our approach provides new insights to
the nature of the power allocation problem and extracts some
optimality conditions which are in turn used to achieve a new
algorithm with reduced complexity for a reliable sensor selection.
Finally, we show the computational complexity and the run-time
of the proposed algorithm against the previously available one
by analytic and simulative comparisons.

I. INTRODUCTION

Nowadays, many applications benefit from the idea of
distributed sensor networks for purposes of observation and
communication. The range of these applications especially
covers health care, traffic monitoring, radio astronomy, particle
physics, and military applications [1], [2], where a distributed
passive multiple-radar system (DPMRS) is needed. As an
interesting example, we can mention the ’IceCube Neutrino
Observatory’ at the south pole, where a sensor network with
more than 5000 sensor nodes (SNs) is deployed to observe
certain characteristics of sub-atomic particles [3]. Since the
operation of the whole sensor network is mostly intended to
consume minimum resources while keeping the individual cost
and maintenance of SNs low, an energy efficient operation is
highly desirable. Hence, the related problem of optimal power
allocation and corresponding energy-aware system design has
been addressed in many works, e.g., in [4], [5] and [6]. In
particular, the optimal power allocation scheme for DPMRSs
is provided by [1] which is the main platform for the present
work.

As it is studied in [1], the optimal power allocation
problem for DPMRSs results in a similar solution as the well-
known method of water-filling (WF) solution [7]. This method
requires an iterative search to obtain the optimal operation
mode of each SN. The main contribution of the present work is
to derive a sorting mechanism that maps this iterative process
into an incremental search over the reliability of each SN. As a
result, optimal separation of the sensor nodes can be achieved
via an iterative bi-section search which significantly reduces
the required number of iteration-steps. Finally, we discuss the
computational complexity and the run-time of the proposed
algorithm against the previously available one by analytic and
simulative comparisons.

The remaining part of the present paper is organized as fol-
lows. In Section II, we describe the investigated system model.
Section III presents a short overview of the previously existing

optimal solution to the power allocation problem. In Section IV
we extend the known proof of the optimization problem by a
new alternative proof to extract the novel iterative algorithm
for optimal sensor selection. An extensive complexity analysis
is performed in Section V. An overview of the key results of
the present work is summarized in Conclusion.

II. SYSTEM MODEL

We investigate a network of K amplify-and-forward (AF)
passive SNs, cooperating to achieve a single global observation
via a fusion center (FC). Both communication and sensing
channels (Rayleigh frequency-flat fading) are assumed to be
wireless and static during the observation process. In order
to incorporate the limitations of the network and single node
power consumption, we apply a total as well as individual
power constraints on the function of SNs. The final goal of
each observation process is to classify (or detect) a target signal
r ∈ C. Each observation process can be segmented into three
parts: sensing process, communication process and information
fusion. Table 1 represents the used notations for different
signals and system parameters. The detailed description of the
system function has been explained in [1, Section II]. io

A. Operation of SNs

If a target signal r is present, each SN receives and
amplifies the incoming signal by an amplification coefficient
uk ∈ C. The communication with FC is performed by
using orthogonal waveforms for each SN so that data from
the different SNs can be separated and processed in FC. The
process of each SN can be described as

xk := (rgk +mk)uk (1)

and

Xk := E{|xk|2} = |uk|2
(
R|gk|2 +Mk

)
, R := E{|r|2},

(2)

where E{·} represents mathematical expectation. The sensing
channel coefficient, transmit signal and its power from the SN
with index k is respectively denoted by gk, xk ∈ C and Xk,
and mk ∈ C represents the additive white noise on the sensing
process with variance Mk. The limit of each SN power is
modeled as

Xk ≤ Pk ⇔ |uk|2
(
Mk +R|gk|2

)
≤ Pk, (3)978-1-4799-5863-4/14/$31.00 c©2014 IEEE



TABLE I. USED SYMBOLS AND NOTATIONS

Notation Description
K number of all nodes
r, R target signal and its power
r̃ the estimate of r

gk, hk complex-valued sensing and communication channel coefficients
mk, nk complex-valued zero-mean AWGN at each SN and FC
Mk , Nk variances of mk and nk

uk, vk complex-valued amplification factors and fusion weights
Xk communication power of kth SN

Ptot, Pk sum and individual output power-range constraint for SNs
FK the index-set of all K nodes
K0, the index-set of all inactive nodes
Ksat the index-set of all nodes operating with maximum power
K the index-set of all active nodes (not saturated and not inactive)

while the limit of the network power consumption is described
by

K∑
k=1

Xk ≤ Ptot ⇔
K∑
k=1

|uk|2
(
Mk +R|gk|2

)
≤ Ptot. (4)

B. Fusion Center

The transmitted signal of each SN passes through the
communication channel, hk ∈ C, and is combined with
additive white Gaussian noise nk ∈ C at the FC. A linear
combination rule with weights vk ∈ C is then applied at the
FC to achieve an estimation r̃ from the observed target signal
r by the SNs. This is described as

yk := (hkxk + nk) vk, (5)

and results in

r̃ :=

K∑
k=1

yk = r

K∑
k=1

gkukhkvk +

K∑
k=1

(mkukhk + nk) vk.

(6)

While linear processing and fusion strategies are not neces-
sarily optimal, they are very simple and facilitate a feasible
analytic approach to an optimum solution. In the present work,
we assume availability of the perfect channel information for
both sensing and communication channels. In general, it is
rather difficult to estimate the sensing channel in an accurate
way. Hence the presented results can be treated as theoretical
limits for the operation of a realistic system.

III. OPTIMAL POWER ALLOCATION WITH ITERATIVE SET
EXAMINATION

In this section we define our optimization strategy and
discuss the available solution to the defined problem.

A. Optimization problem

Our objective and system constraints are identical to those
in [1]. In order to achieve a good estimation of the observed
signal, the estimate must be as close as possible to the actual
target signal. Hence the objective V is chosen as the minimum
mean squared error (MMSE) and is given by

V := E{|r̃ − r|2} =
K∑
k=1

|vk|2
(
Mk|uk|2|hk|2 +Nk

)
. (7)

Furthermore, we limit our solution set to unbiased estimators
which by considering (6) follow the identity

K∑
k=1

ck = 1, ck := gkhkukvk. (8)

By including the defined power constraints (3) and (4) we may
now formulate our optimization problem as

min
uk,vk, k∈FK

V

s.t.
∑
k∈FK

ck = 1,
∑
k∈FK

Xk ≤ Ptot,

Xk ≤ Pk, ∀k ∈ Fk. (9)

B. Available solution

The optimal solution to the above-mentioned problem is
presented in [1], assuming real-valued amplification coeffi-
cients (uk ∈ R+). For the detailed description of the solution
please refer to [1, Section III], equations (11-58). As it is
been explained, the solution relies on the separation of the
function of SNs into the nodes with zero allocated power
(inactive status, Xk = 0), the nodes with maximum allocated
power (saturated, Xk = Pk) and nodes with active status
(0 < Xk < Pk). While the presented procedure provides
the optimal solution in closed form, the separation of nodes
into correct status is only performed via an iterative search
and examining the nodes combination. This process gets more
complicated and occasionally leads to long searching periods
as the number of the nodes increases. In the following we try
to address this problem accordingly.

IV. OPTIMAL POWER ALLOCATION WITH SORTING
MECHANISM

We start our solution by studying the optimality conditions
on the phase of the involved variables. As an initial result we
show that the real-valued assumption in [1] does not reduce
the optimality of the solution. For a given (feasible) power
allocation (Xk, k ∈ Fk), our problem can be accordingly
formulated as

min
uk,vk,k∈FK

V, s.t.

K∑
k=1

ck = 1, (10)

where ck := gkhkukvk as in (8). The following lemma
provides important information on the phase of our system
parameters in the optimum point:

Lemma 1: For any optimal choice of system parameters
(uk, vk,∀k ∈ FK), the following parameter update is feasible
and does not degrade (increase) the objective value in (10):

∀k ∈ Fk :

vk,new := |vk|
(gkhk)

∗

|gkhk|
(∑

k∈FK
|gkhkukvk|

) , uk,new := |uk|,

(11)

where (·)∗ represents conjugation.

Proof: It is clear that (11) does not violate the power
constraints (3) and (4) as the absolute value of amplification



factor uk and consequently Xk are kept constant. Furthermore
it is easily verified that the unbiased condition (8) still holds:∑

k∈FK

gkhkuk,newvk,new =

∑
k∈FK

|gkhkukvk|∑
k∈FK

|gkhkukvk|
= 1. (12)

On the other hand, due to (8) and triangular inequality we
have: ∑

k∈FK

|gkhkukvk| ≥
∑
k∈FK

gkhkukvk = 1, (13)

which shows that the variable update (11) does not increase the
norms of vk and uk and hence does not increase the objective
value (7).

The above lemma provides us with few useful results.
Firstly, it shows that the real-valued assumption for uk, k ∈
FK does not reduce the optimality. Secondly, it provides us
with an optimal choice of ∠vk and simplifies our optimization
problem into finding |uk|, |vk|, k ∈ FK by assuming

uk ∈ R+, vk = |vk|∠ (gkhk)
∗
, (14)

where ∠(·) represents the phase. We continue our solution by
recalling the identity (2) which together with (14) result in a
unique uk ∈ R+

uk =

√
Xk

R|gk|2 +M
. (15)

This accordingly simplifies our problem into

min
|vk|,k∈FK

V, s.t.

K∑
k=1

|gkhk| · uk · |vk| = 1, (16)

which is now a convex optimization problem over |vk|, ∀k ∈
Fk. By relaxing the range of |vk| and formulating the respec-
tive Lagrangian function we have

L (|vk|, λ) =
∑
k∈FK

|vk|2
(
Mku

2
k|hk|2 +Nk

)
+ λ

(
1−

K∑
k=1

|gkhk| · uk · |vk|

)
. (17)

We should note once again that above formulation follows
assuming a fixed (pre-defined) values for Xk, k ∈ Fk. In
any stationary point of the defined Lagrangian function the
first derivative must vanish with respect to |vk|:

∂L

∂|vk|
= 2|vk|

(
Mku

2
k|hk|2 +Nk

)
− λ|gkhk|uk = 0, (18)

which by multiplying the value |vk| and summing up over
k ∈ Fk and incorporating (8) we achieve

λ = 2V, |vk| = V
|gkhk|uk

Mku2k|hk|2 +Nk
. (19)

Similarly, by multiplying the term |gkhk|uk

Mku2
k|hk|2+Nk

and summing
up over k ∈ Fk and incorporating (8) we obtain

V =

(
K∑
k=1

|gkhk|2u2k
Mku2k|hk|2 +Nk

)−1
. (20)

At this point by recalling the given power values, Xk, k ∈ Fk,
and incorporating (15), we obtain a direct relation between the
allocated power values and the resulting objective as

V −1 =

K∑
k=1

Jk(Xk), Jk(Xk) :=
Xkα

2
k

Xk + β2
k

, (21)

where αk :=
√
|gk|2
Mk

and βk :=
√

Nk(R|gk|2+Mk)
Mk|hk|2 . Note

that each Jk(Xk) can be interpreted as the the independent
contribution of each SN to the objective value (V −1). Due
to the fact that (21) holds for any feasible power allocation
scheme, our original problem (9) is now reduced to finding
the optimal power assignment for each node:

max
Xk, k∈FK

K∑
k=1

Jk(Xk), s.t.

K∑
k=1

Xk ≤ Ptot, 0 ≤ Xk ≤ Pk.

(22)

In the following we provide some insights into the problem
(22) which will be later used for a more efficient design.

Lemma 2: The objective in (22) is increasing and jointly
concave with respect to Xk, k ∈ Fk.

Proof: Since the contribution of the each SN’s power on
the objective is independent of the power of other nodes (i.e.,
∂Jk(Xk)
∂Xl

= 0, l 6= k) we have:

Ĵk (Xk) :=
∂
(
V −1

)
∂Xk

=
∂Jk(Xk)

∂Xk
=

α2
kβ

2
k

(Xk + β2
k)

2 > 0, (23)

and

∂2
(
V −1

)
∂Xk

2 =
∂Ĵk
∂Xk

=
−2α2

kβ
2
k

(Xk + β2
k)

3 < 0, (24)

∂2
(
V −1

)
∂Xk∂Xl

= 0 k 6= l, (25)

where (23) explains the increasing nature of the objective with
respect to each Xk. Furthermore, equations (24) and (25) show
that the Hessian matrix of the objective (22) with respect to
allocated power values (X1, · · · , XK) is a diagonal matrix
with non-positive elements. This is the certificate for jointly
concave nature of V −1 with respect to the Xk, ∀k ∈ FK .

Lemma 3: For an optimal power allocation (X1, · · · , XK),
the values of Ĵk(Xk), k ∈ K are equivalent for all active
nodes. We call this value as water level and denote it as L:
Ĵk(Xk) = L, ∀k ∈ K.

Proof: Active status is defined with the power range 0 <
Xk < Pk for the corresponding node. If there exists a pair
of active nodes where Ĵk(Xk) < Ĵl(Xl), k, l ∈ K, then
we can enhance the objective while preserving the feasibility.
This can be done by decreasing an arbitrarily small power
from the node with smaller slope in the objective (node k)
and equally increase the power at the other one (node l), so
that the total power consumption is remained constant. Hence
unequal values of Ĵk(Xk), k ∈ K may never happen in an
optimum point.

Lemma 4: In the optimality, node with index k is inactive
if Ĵk (0) ≤ L.



Proof: Proof is achieved via contradiction. If a node with
Ĵk (0) ≤ L is active in the optimality, due to Lemma 3 there
will be a power value, Xk > 0, which satisfies Ĵk (Xk) =
L. On the other hand, due to Lemma 1, Jk is concave over
Xk. As the result we have Ĵk (Xk) < Ĵk (0) which together
with the initial assumption, Ĵk (0) ≤ L, leads to the following
contradicting statement:

L = Ĵk (Xk) < Ĵk (0) ≤ L. (26)

This concludes that the aforementioned node can not be active.
On the other hand, if the node with Ĵk (0) ≤ L is saturated
(Xk = Pk) in the optimality, due to Lemma 2 we have:

Ĵk (Pk) < Ĵk (0) ≤ L, (27)

which shows that the slope of the objective with respect to
the power of the discussed node is smaller than all active
nodes. Hence we can reduce power from this node and add
to the currently active nodes and enhance the objective value.
Together with the last argument, this concludes the inactive
status of the node where Ĵk (0) ≤ L.

Lemma 5: In the optimality, node with index k is saturated
if Ĵk (Pk) ≥ L.

Proof: The proof is similar to Lemma 4, with reversed
arguments and inequality signs.

In the following we define an iterative search procedure,
by choosing L as our search parameter applying the results
of the above Lemmas. The significance of the Lemmas 4, 5
lies in the fact that they define clear boarders on how variation
of water-level (L) affects the segmentation of the nodes into
different status (inactive, active, saturated). In the other words,
we observe that variation of L only affects the segmentation
of the nodes if it passes the boarders defined in Lemmas
4, 5 (Ĵk (0) , Ĵk (Pk) , ∀k ∈ FK). Hence by sorting all 2K
values of Ĵk (0) , Ĵk (Pk) , ∀k ∈ FK into a single monotonic
sequence (namely, the sequence B as: B1 ≤ B2 · · · ≤ B2k),
we have 2K + 1 incremental regions to examine for the valid
L. This incremental search can be efficiently done via a bi-
section search. As it has been explained, for each step of this
examination if the L is located on a node’s inactive region,
i.e., Ĵk (0) ≤ L, we have Xk = 0 and we have Xk = Pk in
case of saturation (Ĵk (Pk) ≥ L). For the nodes with active
status we have

L = Ĵk (Xk) =
α2
kβ

2
k

(Xk + β2
k)

2

⇒ Xk =
αkβk√
L
− β2

k, (28)

which by taking a sum over all active nodes results in

L =

( ∑
k∈K αkβk

Ptot −
∑
k∈Ksat

Pk +
∑
k∈K β

2
k

)2

. (29)

The above equality provides us with a unique L, and con-
sequently from (30) the power allocation values Xk in each
step. In each step of our bi-section search, if the assumed
region in the sequence B (and consequently the separation of
the nodes into active, inactive, and saturated status) is correct,
the resulted L will also point into the same region. If this is

not the case, whether the resulted water-level is pointing to
the higher or lower region determines the direction of update
for the next bi-section search step. The detailed description
of this process is presented in Algorithm 1 which provides us
with an optimal power allocation strategy. The optimal set of
uk, vk, k ∈ K is accordingly achieved via (15), (19) and (20)
with a similar formulation as in [1].

Algorithm 1 Efficient classification process for SNs via pro-
posed sorting mechanism.

1: B1 ≤ · · · ≤ B2K ← sort
{
Ĵk (0) , Ĵk (Pk) , ∀k ∈ FK

}
B see (23)

2: imin ← 1, imax ← 2K + 1
3: repeat
4: i← b imin+imax

2 c
5: K0 ←

{
k ∈ FK |Bi ≥ Ĵk (0)

}
B see Lemma 4

6: Ksat ←
{
k ∈ FK |Bi+1 ≤ Ĵk (Pk)

}
B see Lemma 5

7: K← FK \ (Ksat ∪K0)
8: Premain ← Ptot −

∑
k∈Ksat

Pk
9: if K = ∅ then

10: if Premain = 0 then
11: break
12: else if Premain < 0 then
13: imin ← i
14: else if Premain > 0 then
15: imax ← i
16: end if
17: end if
18: L ←

( ∑
k∈K αkβk

Ptot−
∑

k∈Ksat
Pk+

∑
k∈K β

2
k

)2
B see (29)

19: if L > Bi+1 or Ptot <
∑
k∈Ksat

Pk then
20: imin ← i
21: else
22: imax ← i
23: end if
24: until (L > Bi and L < Bi+1)
25: Xk ← αkβk√

L − β
2
k, k ∈ K B see (28)

26: return (Ksat,K0, Xk, k ∈ K)

V. COMPLEXITY ANALYSIS AND COMPARISON

In this part we compare the solution offered in [1] with
the proposed Algorithm 1 in terms of the computational
complexity and convergence speed. While the method in [1]
also achieves an optimal solution in closed form, the resulted
solution has the similar structure to the famous water-filling [7]
solution for power allocation. Hence it requires an iterative
examination of the nodes in order to obtain their optimal
status (see Section III). The convergence speed of this process
suffers as the number of SNs increase. Furthermore, due to the
absence of the achieved boarders in Section IV, Lemma 4,5,
the corresponding convergence speed depends on the accuracy
of the decisions in each iteration. In its extreme case, this
leads to a significantly slower convergence if the nodes active
region (i.e., [Ĵk (0) , Ĵk (Pk)], k ∈ FK) are not overlapping
and hence the corresponding decision in each iteration is valid
for only one node. In such situation, the effectiveness of the
proposed sorting mechanism in Algorithm 1 becomes more
clear since it facilitates a bi-section search with a guaranteed



TABLE II. ANALYTIC COMPLEXITY COMPARISON FOR TWO
ALGORITHMS.

K Algorithm 1 Proc. in [1]

Add/Subtract ξ1 (3K + 2) + 3K + 1 ξ2 (3K + 1) +K

Multiplication ξ1 + 8K + 1 ξ2K + 6K

Division 2ξ1 + 5K ξ2 + 2K

Square-root K + 1 K

Compare ξ1 (3K + 7) +K log2K ξ2 (10K + 4)

convergence speed (upper-bounded by log2(K)+1 iterations).
In the following we study the computational complexity gains
achieved via Algorithm 1. As the first step we study the
required examination iterations to achieve correct classification
of the nodes, denoted as ξ1 for Algorithm 1 and as ξ2 for the
process in [1] (see figure 1). For the proposed method in [1],
this is done both by averaging ξ2 for 1000 channel realizations
as a Monte Carlo simulation ([1]-Average), and as the achieved
ξ2 for the most computationally demanding choice of channel
coefficients and power constraints which leads to the lengthiest
search period ([1]-WorstCase). The same simulation approach
is also applied to the Algorithm 1 (Alg.1-Average, Alg.1-
WorstCase, respectively). Unless otherwise is stated, we use
R = 1, Nk = 1, Mk = 1 and assume Pk = 1W,k ∈ FK as
the values for our system parameters. We also define the power
ratio ρ := K

Ptot
which is an indication of how tight the network

operation is bounded by the SNs collective power consumption
(Ptot). As we observe from Fig.1, while the required iterations
is rather constant in different scenarios for Algorithm 1, the
different system parameters lead to significantly lengthier and
variable search iterations for the process in [1]. A deeper view
of the required computational load for the two algorithms is
presented in Table II. The comparison is made with respect
to the required processor instructions (addition/subtraction,
multiplication, division, comparison). Note that the values
of ξ1, ξ2 are largely different (ξ1 � ξ2) and dependent on
the system parameters (see Fig.1). As another comparison,
the required CPU time on a system with Core i5 processor
and 8 GB of RAM is also reported for the corresponding
algorithm implementations. Please see [8] for the detailed
implementation of two algorithms. The benefit of the proposed
sorting mechanism in providing a reduced complexity and
robust process (with respect to different system parameters)
is observed from both simulations in Fig.1 and Fig.2.

VI. CONCLUSION

For achieving a high performance with a distributed radar
system an allocation of each sensor node to its correct op-
erating status is necessary. It is apparent that sensor nodes
with a better situation of sensing and communication channels
should be allocated with more power compared to others. In
order to optimally separate all sensor nodes into the three
possible operating modes (inactive, active and saturated) and
select the most reliable sensor nodes, we have derived a new
algorithm which is based on a simple sorting mechanism of
sensor nodes. The new algorithm maps the problem under
consideration onto an incremental and iterative search over
defined quality regions. This results in the fast convergence of
the separation process and significantly reduces the required
computational complexity.
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Fig. 1. Required search iterations for optimal node separation (ξ1, ξ2)
vs. number of SNs (K). A higher convergence speed is observable for the
procedure in Algorithm 1.
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Fig. 2. Required CPU time [sec] vs. number of SNs (K). CPU time is
reduced as a result of smaller required iterations in Algorithm 1.
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