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Abstract—In Long Term Evolution (LTE) networks, resource
allocation and link adaptation rely on the channel quality
indicator (CQI), which is a quantized representation of the signal
interference plus noise ratio (SINR). Since CQI is measured
by user equipment (UE) and sent to eNodeB via a feedback
channel, in time varying channel, feedback delay should be
compensated with prediction based on previous knowledge. In
this work, several known prediction schemes are studied. More-
over, an adaptive CQI feedback scheme based on the sample
autocovariance function is proposed. Simulation results show
the proposed prediction scheme outperforms the other known
prediction schemes in terms of overall prediction accuracy and
system throughput. In addition, the performance is evaluated for
systems both with and without hybrid automatic repeat request
(HARQ), to investigate the influence of HARQ.

I. INTRODUCTION

To improve the throughput of LTE systems, link adaptation
based on adaptive modulation and coding scheme (AMC), is
utilized to adjust the coding rate to fit the current channel state
information (CSI) [1]. In addition, resource allocation also
plays a crucial role in LTE networks, in which the transmit (Tx)
power distribution and sub-channels assignment to UEs are
optimized in order to maximize downlink capacity. Both link
adaptation and resource allocation rely on the 4-bit quantized
CQI reported by each UE to eNodeB in the uplink. CQI
indicates the downlink signal to interference plus noise ratio
(SINR) at the UE side. A CQI value appropriately derived
from SINR ranges from O to 15. It suggests to the eNodeB
the highest achievable efficiency of the downlink transmission
under a specific channel condition, while assuring a block error
rate (BLER) lower than 10% [2].

The importance of CQI in LTE network can be seen from
its influence on system throughput. Moving UEs experience
time varying mobile channels. And there is an unavoidable
delay between a CQI report being generated at the UE and
being used at the eNodeB. The feedback delay consists of
measuring delay, propagation delay and processing delay.
Therefore, there is always a mismatch between reported CQIs
and realtime CQIs. An overestimated CQI can lead to trans-
mission with high data rate in a poor channel and eventually
an undecodable frame, whereas an underestimated CQI can
diminish the downlink transmission throughput. Furthermore,
in terms of resource allocation for multi-users, a sub-channel
might not be assigned to an UE with a good channel quality
but to an UE with a very optimistically reported CQI. Hence,
the both CQI underestimation and overestimation lead to the
decline in system throughput.
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In case of an undecodable frame, another frame will be
transmitted using HARQ to provide extra information for
decoding. Without HARQ, the throughput performance is
consistent with prediction accuracy. However, with HARQ, it
is not necessarily the case. The reason is, every retransmission
of HARQ can be considered as an improvement in signal
strength. And the bandwidth efficiency of LTE does not grow
linearly to the SINR. Therefore, a retransmitted larger packet
can carry more information than a few smaller packets without
retransmission.

In previous works, several prediction schemes at the both
eNodeB and UE side are investigated for only single-user
systems. On one hand, the prediction can be performed at
the eNodeB when reported CQIs with delay are used to
predict current CQIs. On the other hand, the prediction can
be performed at the UE, where the SINRs currently available
in the observed time window are used to predict the SINR
after the feedback delay. Subsequently, the predicted SINRs
are mapped into CQIs, which will be used at the eNodeB
directly for link adaptation and resource allocation. A simple
extrapolation scheme, which requires no prior knowledge of
the statistics of the channel, is proved to be very accurate
for low speed users. However, it has numerical problem when
users move faster [3]. A short-term average studied in [4]
can provide good throughput for high speed users however
performs poorly for low speed users. Wiener filtering can also
be used for CQI prediction [5]. However, without a good model
for the autocorrelation function, only sample autocorrelation
can be used. Therefore, Wiener filtering has relatively high
complexity.

In this work, existing prediction schemes are firstly ad-
dressed and compared. Beyond that, a technique to adapt pre-
diction schemes to UE speed is proposed. Using the proposed
adaptation technique, the optimum prediction scheme can be
chosen and thus the system performance can be improved.
The impact of HARQ on channel quality indicator feedback
is also investigated based on throughput and latency, which
distinguish this work from most of the existing works, which
mostly only focus on throughput. The performance of the pro-
posed schemes is tested in a multi-cell multi-user environment.
Simulations confirm that the adaptive prediction scheme does
not only provide superb prediction accuracy and throughput
performance, but also reduces transmission latency.

This paper is organized as follows: The system model is
introduced in Section II. Prediction algorithms followed by
adaptation method are presented in Section III. Numerical
results and analysis are shown in Section IV. And finally
conclusions are given in Section V.
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Fig. 1. SNR-CQI mapping function

II. SYSTEM MODEL

In LTE system, the transmission resource is divided into
physical resource blocks (PRB). A PRB has one slot of 0.5
ms in time domain and 180 kHz (12 sub-carriers) in frequency
domain. The transmission time interval (TTI) is defined with a
duration of 1 ms and it is also the time needed to transmit one
subframe. A subframe consists of 2 PRB in time domain. In
multi-user cellular networks, the sub-channel state presented
by SINR can be measured for every subframe at the UE side,
and the instantaneous received SINR on the kth sub-channel
between UE m and its serving cell n at time ¢ is given as:

Po|Hym (t, K)|?
> jzn PilHjm(t, k)[> + No

where j denotes the index of neighboring cells of cell n.
P, is the Tx power of cell n, assuming the Tx power is
uniformly distributed among sub-carriers and constant over
time. |H, mn(t, k)|* is the channel power response, and N
is the power of the additive white Gaussian noise (AWGN).

'Ym(tak) = (1)

To reduce signaling overhead, the SINRs on a few con-
secutive sub-carriers, called sub-band, are compressed into an
equivalent effective signal to noise ratio (SNR) in AWGN
channel before feedback. The CQI messages are accordingly
generated on sub-band level. The equivalence between SINR
and effective SNR in AWGN channel is justified by reaching
similar BLER with similar SNR. The SNR-BLER relationship
in AWGN channel can be obtained by simulation using the
modulation and coding schemes (MCS) specified in the CQI
table Table I. The commonly used compression technique is
exponential effective SINR mapping (EESM), more details
about EESM can be found in [6].

Once the effective SNR is obtained, CQI can be derived
using a simple stair function as showed in Fig. 1. The stair
function is generated by using the effective SNR values from
simulations with the constraint of BLER < 0.1.

HARQ is an effective technique to combat burst errors
in wireless channels. In addition, it also plays an important
role in compensating channel prediction errors. In case of
a transmission failure, the UE detects the error and sends
back a non-acknowledgement signal to trigger the HARQ

TABLE 1. THE 4-BIT CQI TABLE IN LTE [2]
CQl index [ Modulation | Code rate X 1024 | Efficiency [bit/s/Hz]

0 out of range
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

mechanism. By using a hybrid of forward error correction
(FEC) and automatic repeat request (ARQ), different copies
of the encoded data can be sent several times and combined
to provide better decoding performance. In other words, each
retransmission in HARQ is equivalent to an enhancement of
effective SNR.

In this work, a low-complexity HARQ simulation model
proposed in [7] is adopted. The SNR gain A~ is modeled as a
linear function of the number of retransmissions ¢, modulation
order and effective code rate (ECR) &, which can be found in
Table I. The dependency of SNR gain on 7, the modulation
order and ECR is given as:

Ay =pi - €+ € 2

where p; and €; are modeling parameters, as specified in
Table II.

TABLE II. HARQ MODEL PARAMETERS FOR EACH RETRANSMISSION
Modulation i - 102 €
1 0.0804 2.89
4-QAM 2 0.1628 4.57
3 0.2006 5.62
1 0.0420 1.17
16-QAM 2 0.8435 0.74
3 0.9464 1.15
1 0.8996 -1.23
64-QAM 2 1.2288 -1.71
3 1.2728 0.15

III. PREDICTION ALGORITHMS

The noise of the feedback CQI comes from different
sources: The compression of SINR information from different
subcarrier into a 4-bit CQI value, the inaccurate SINR estima-
tion, as well as the feedback delay. Due to the scope of this
work, SINR before compression is assumed to be noiseless,
in order to isolate the effects of the feedback procedure. The
prediction algorithms are dedicated to compensate the noise
caused by feedback delay.

The prediction of SINR is based on a collection of past
observations, which is defined as the prediction window.
A general expression of prediction algorithms with a finite
prediction window can be written in an autoregressive (AR)
form

|
A

Am(t +7) = w(l)ym (t = 1), 3
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where 7 is the feedback delay, p is the prediction window
size, w is weighting factor. For different user speeds, different
weighting factors can be used to optimize the prediction.

1) Wiener filtering: The sample temporal autocorrelation
of a finite observation period [t — g, t] is defined as

Ty (t, A) = E{yim () (' + A1)}, )

where ¢’ € [t — tg,t — At], At is time difference between two
samples and ¢y, > At is essential. Sub-band index b is dropped,
since the temporal correlation and frequency correlation are
independent [8].

Due to the complexity of the multi-cell structure, analytical
expression of the autocorrelation function (ACF) of SINR
is difficult to obtain. Unlike channel impulse response, the
temporal statistics of SINR in a multi-cell scenario is rarely
studied in literature. In [9], the second order statistics of SINR
in a multi-cell scenario are derived analytically. However, the
analytical expression is very complicated and the accuracy of
the model degrades as the speed of UE increases. In this work,
assuming <y is a stationary process, the sample autocorrelation
with larger ¢y is closer to theoretical value. Using the sample
correlation, an order p Wiener filter can be obtained with the
general form, using At equal to the feedback delay 7. The
mean square error (MSE) of the predicted SINR can be written
as

e(t) = E{(ym(t +7) — Fm(t +7))2}. (5)

The minimum MSE (MMSE) can be found by letting the

derivative be equal to zero
0e(t)
ow

=0. (©6)

And the following equation can be obtained [5]:

Rw=r @)
where
w = [w(0),w(1), - w(p— 1", ®)
7~(t,0) Ty (2, 1) Ty (tp—1)
R_ Ty (t,1) T+(t,0) Tvv(t7:17 2) )
Tyy(t,p — 1) Ty (t,p—2) -+ 144(¢,0)
and

r=[ry(t,7), (T + 1) (T +p— D] (10)

The MMSE prediction filter can be obtained by taking the
inverse of R

WWiener = Rilr- (11)

Wiener filtering is more effective when the correlation is
stronger. Therefore, for UEs with higher speed, the perfor-
mance of Wiener filtering drops.

2) Short-term average: For UEs moving with very high
speed, the autocorrelation becomes too weak and thus not
helpful for prediction. In this case, an uniform weighting factor

1
WAverage = — (12)
p
is supposed to offer a good prediction with very low compu-
tational complexity [4].

Since the purpose of short-term average is to average out
fast fading but preserve slow fading, the size of the prediction
window is quite important for short-term average. Window size
too small is not enough to compensate for fast fading, whereas
window size too large ignores slow fading.

3) Extrapolation: It is suggested in [3] that a simple
extrapolation can provide a good prediction for UEs moving
slowly. For very slow UEs, extrapolation can provide almost
perfect prediction. However, for the UEs with higher speed, it
can have severe numerical problem. In addition, extrapolation
does not rely on correlation functions. Hence, the prediction
window of extrapolation can be much shorter than of Wiener
filtering.

4) Adaptive feedback scheme: Since each of the three
aforementioned prediction schemes have their best operating
range, a feedback scheme adapted to UE speed can combine
their advantages. To enable the adaptive feedback scheme, the
autocovariance of the SINR is studied. The autocovariance is
given by

Cory(t, At) = 1y (B, At) — iy (8) piy (t + AL) (13)

where fi(t) and p, (t+ At) are average SINR at ¢ and ¢+ At,
respectively. Assuming At is small enough, we have

Hy = U'y(t) = Nw(t + At) (14)

and p, can be approximated by the sample mean measured in
the observation period [t — t¢, t].

There are two factors influencing the variation of SINR,
namely, distance related path-loss and fading process. In a very
short period, the location of the UE can be treated as static. In
this case, the normalized autocovariance of SINR can be very
well approximated by a squared zero order Bessel function of
the first kind _

Cyy(At) = J5 (27 foAl), (15)

where fp is the maximum Doppler frequency [9].

In practice, the autocovariance of SINR follows a similar
pattern. But as the speed goes up, the static location ap-
proximation becomes less valid. Thus, the measured sample
autocovariance is biased from (15), especially for larger At,
as shown in Fig. 2. Nevertheless, the speed of UE can
be roughly estimated through the sample autocovariance of
SINR, and thus the best prediction scheme can be chosen
accordingly. Furthermore, although the complexity is very low,
the prediction accuracy of short-term average is not higher
than Wiener filtering, even for extremely high speed (v > 400
km/h) [10]. Thus, only Wiener filtering and spline function
extrapolation are considered in the adaptive feedback scheme.

Since for very small At, the autocovariance is a monotonic
function of the moving speed, a fixed threshold can be set to
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Fig. 2. Normalized sample autocovariance of SINR and its approximation
for different speeds and threshold

determine the most suitable feedback scheme. In this work,
the threshold is set to Cypiq(At) = 0.97 at fixed At = 2 ms.
These values are empirically calibrated through experiments.
The sample covariance C.(At) is measured for the same At
and compared with Cypiq(At). For C. (At) > Cinia(At), low
speed is assumed and extrapolation is used, otherwise Wiener
filtering is used. Therefore, the CQI is well predicted for both
low speed and high speed UEs.

IV. NUMERICAL EVALUATION

Unlike the channel impulse response, the variation of
SINR is associated with more facts, including the location,
moving direction of the users, interference from other cells,
etc. Therefore, it is difficult to analyze the performance of the
prediction algorithms theoretically. In this work, the evaluation
is purely simulation based.

The feedback schemes are tested in simulations with multi-
cell environment. Standard simulation setup for a LTE system
operating at 800 MHz is considered [11]. In total 19 eNodeBs,
each equipped with 3-sector antennas, make up a network with
57 cells in hexagonal layout. 27 randomly moving UEs are

TABLE III. SIMULATION PARAMETERS
Channel model | Rayleigh fading channel
Total bandwidth | 4.32 MHz

Sub-carrier bandwidth 15 kHz

Number of sub-carriers pro PRB 12
Number PRBs pro sub-band | 4
Number of sub-bands 6
Total eNodeB transmit power | 46 dBm
Inter-eNodeB distance 500 m
Observed window size 10 ms
HARQ maximum 3 retransmissions
HARQ retransmission delay 8 ms
UE noise figure | 9 dB
UE mobility model random motion
UE’s speed level | 3,10,20,30,40,50,120,150,250 km/h
Path-loss model | L = 15.3 + 18.8log,, d

Power delay profile | Exponential
Shadow fading | Not considered
Channel knowledge | perfect

Simulation length 10,000 sub-frames
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Fig. 3. MSE performance of prediction schemes for different speeds

dropped in a central cell for evaluation, where all the other 56
cells provide interferences. The mobility model restraint these
users from leaving the serving cell. The UEs are divided into
9 different groups, according to their speeds. These speeds are
given in Table III. SISO and full-buffer are assumed for the
sake of simplicity. The UEs measure the SINR for every sub-
frame and perform prediction. The feedback delay is set to 8
ms. Fixed feedback schemes are compared with the proposed
adaptive feedback scheme. In addition, the performance of
feedback without prediction is also provided as reference.
Important parameters of the simulations are summarized in
Table III.

Due to the extent of this paper, we do not focus on optimal
power and rate allocation algorithms, but apply constraints
from LTE standards. Tx power on sub-bands is equally dis-
tributed during a TTI, and the resource allocation is simplified
to sub-band assignment based on UEs signal quality, i.e. CQI.
To achieve high system throughput, the best CQI scheduling
scheme is adopted, where in each TTI the resource blocks are
assigned successively to the user with the best CQI [12].

In Fig. 3, MSE of predicted CQI and actual CQI is
compared for different speeds, where the adaptive prediction
scheme is overlapped with extrapolation scheme in the low
speed range (0 to around 30 km/h), and with Wiener filtering
in the high speed range (above 30 km/h). And the overlapped
area is the optimal operating range for those two prediction
schemes. Therefore, the proposed adaptive prediction scheme
can give the best overall accuracy for prediction. On the other
hand, the accuracy of extrapolation decreases dramatically
when the speed is higher than 50 km/h. And the short-term
average is worse than no prediction for low speed, and less
accurate than Wiener filtering for high speed.

The throughput performance is compared in Fig. 4, where
the throughput without considering HARQ is almost consistent
with the MSE result. Though extrapolation gives the poorest
overall MSE, it has almost perfect prediction for low speed
UEs. Therefore, its average throughput is better than using
no prediction. The short-term average is only good for high
speed UEs, but the advantage is insignificant. Regarding
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throughput, the overall performance of short-term average is
even worse than no prediction. Wiener filtering has good
prediction accuracy, and accordingly, the average throughput is
also good. The proposed adaptive prediction scheme is the best
prediction scheme in sense of average throughput, because the
optimal prediction scheme is always chosen for a given speed.
Since HARQ is equivalent to a SINR gain, the throughput is
improved if HARQ is applied. The advantage of using HARQ
is also clearly shown in Fig. 4. For all the prediction schemes,
a performance improvement can be observed.

Moreover, although HARQ can improve throughput, re-
transmissions cause latency. More retransmissions typically
mean larger latency. The proportion of sub-frames used for
the original packets and the three retransmissions are listed
in Fig. 5. It can be seen that for Wiener filtering and the
adaptive prediction scheme, the proportions of the original
transmissions and the 1st retransmissions are significantly
larger than the other prediction schemes. As the number of
retransmissions go up, the average latency for a successful
transmission becomes larger. Therefore, another conclusion
can be made here is that the adaptive prediction scheme also
has the smallest latency.

V. CONCLUSION

In this work, a simple technique for adapting CQI feedback
scheme to the moving speed of the UE is proposed. The pro-
posed adaptation technique utilizes the property of the sample
autocovariance of the SINR to estimate the moving speed of
the UE, and switch between Wiener filtering and extrapolation
accordingly. Since extrapolation gives very accurate estimates
for low speed users whereas Wiener filtering is most effective
for users with higher speed, the adaptive CQI feedback scheme
offers overall the best performance in sense of both prediction
accuracy of CQI and system throughput.

In addition, the role of HARQ in CQI prediction and
feedback is discussed. By applying a simplified HARQ model,
latency in systems with HARQ is evaluated. Simulation results
confirm that the proposed adaptive feedback scheme gives
smaller latency comparing to non-adaptive schemes, in the
presence of HARQ.
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