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Abstract—We investigate the symmetric Degrees-of-Freedom
(DoF) of a homogeneous multiple-input multiple-output (MIMO)
3-way channel with MT transmit antennas and MR receive
antennas at each user. The 3-way channel extends the two-way
channel to three users, who exchange six messages in total, i. e.,
there is one message from each user to each of the two other
users. We assume that each user operates in a perfect full-duplex
mode. Genie-aided upper bounds on the DoF of the channel are
derived and it is shown that those are achievable by combining
MIMO interference alignment, null-space beam-forming and
zero-forcing. A particular gain from this homogeneous setup is
that the symmetric DoF allocation providing complete fairness
among all users is sum-DoF optimal.

I. INTRODUCTION

A natural communication scenario with multiple users is
multi-way device-to-device (D2D) conferencing. Especially in
wireless multi-user communication networks, this will involve
multiple simultaneous transmissions causing interference that
impairs the maximal achievable data rates per user. The D2D
approach [1]–[3] intends to increase the spectral efficiency of
direct link multi-way networks without the utilization of base
stations for data transmission (except for low-rate top-level
control mechanisms). As a countermeasure to deal with the
impairment caused by interference, all transmission signals
must be carefully designed so that interference is minimized.
For multi-way conferencing situations with eminently high
and almost symmetric rate demands, as in video conferences
for instance, using devices homogeneously equipped with
the same number of antennas is beneficial. Moreover, the
homogeneity provides a more convenient approach to derive
efficient communication schemes and it is evident that such
communication scenarios provide higher symmetric rate gains
than heterogeneous scenarios.

We employ multiple-input multiple output (MIMO) inter-
ference alignment (IA) as introduced in [4] and [5] providing
a key method to efficiently achieve high data rates in the
presence of multi-user interference. Many works dealing with
MIMO IA mainly investigate the degrees-of-freedom (DoF)
[6] as a capacity approximation which becomes accurate in the
high signal-to-noise ratio (SNR) regime. The DoF of several
unidirectional multi-user interference networks have already
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Fig. 1. The homogeneous MIMO 3-way channel (or ∆- channel) with MT

transmit and MR receive antennas at each user Ti, with i = 1,2,3.

been studied thoroughly. A particular focus is set on the DoF
for MIMO IA with constant channel coefficients. For instance,
the DoF of the 2-user MIMO interference channel using zero-
forcing are provided in [6], the DoF and the DoF region
of the 2-user MIMO X- channel are considered in [5], [7],
respectively, where MIMO IA was used. In several studies,
the devices are assumed to have homogeneous antenna con-
figurations. For instance the DoF of a (homogeneous) 3-user
MIMO interference channel with M antennas per transmitter
and N antennas per receiver are derived in [8], [9]. The
DoF of the general MIMO K-user interference channel with
a heterogeneous number of antennas at the transmitters and
receivers is yet unknown and quite challenging to derive so far.

In this work, we investigate a MIMO 3-way channel as
depicted in Figure 1. It can be considered as an extension of
Shannon’s two-way channel [10] to three users with multiple
antennas. Three full-duplex users intend to exchange messages
with each other directly. A related 3-user multi-way channel
has been considered earlier in the context of multi-way relay
channels: The DoF of the MIMO 3-way relay channel, also
known as the Y - channel, is studied in [11] and [12]. The
Y - channel is a relay-aided counterpart to the 3-way channel.
We consider multi-way communications without a dedicated
relay node contrary to [11] and [12]. The single-input single-
output (SISO) variant of the 3-way channel is studied in [13],
where the sum-capacity is characterized within 2 bits. The
result of [13] states that the sum-capacity can be approached
by letting the two strongest users communicate while leaving
the third one silent - this is clearly not a fair scheme. In
the present MT ×MR setup for MT transmit antennas and
MR receive antennas, each subchannel is equally strong (i. e.,
with the same rank). We derive cut-set bounds and genie-aided
upper bounds to obtain a sum-DoF bound of the channel. We
propose a MIMO IA and zero-forcing scheme to show that the
derived sum-DoF upper bound is achievable. Moreover, the



achievable schemes use symmetric DoF allocations providing
completely fair rates among each user. We also observe an
interesting symmetry within the parameter plane of the sum-
DoF in terms of MT and MR.

Organization. The system model of the MIMO 3-way
channel is provided in Section II. In Section III, cut-set
and genie-aided upper bounds on the DoF are derived. The
transmission schemes based on IA, null-space beamforming
and zero-forcing are described in Section IV, achieving the
sum-DoF of the channel for a symmetric DoF allocation per
user. We briefly discuss the mentioned symmetry of the sum-
DoF parameter plane for MT and MR in Section V.

Notation. We denote matrices by boldface upper case
letters, e. g., A, and vectors by boldface lower case letters,
e. g., a. The length-N sequence (a(1),⋯,a(N)) is denoted
by aN . AT denotes the transposed matrix of A, A† its left
Moore-Penrose pseudo-inverse, and span(A), and rank(A)
denote the column-span, and the rank of a matrix A, respec-
tively. An n×n identity matrix is denoted by In and an a× b
zero matrix by 0a×b. Furthermore, let (a)+ = max{0, a}, for
a ∈ R. We will use distinct i, j, k ∈ K for the set of user indices
K ∶= {1,2,3} unless otherwise stated.

II. SYSTEM MODEL

The MIMO 3-way channel comprises three full-duplex1

users Ti with user-indices i in the set K = {1,2,3}. A message
from Ti to Tj is denoted by Wji and has rate Rji for i ≠ j ∈ K.
Each user Ti desires to communicate a message to the two
other users Tj and Tk. User Ti is equipped with MT ∈ N
transmit antennas and with MR ∈ N receive antennas.

The signal transmitted at time-instant n from Ti is a vector
xi(n) ∈ CMT×1 satisfying a power constraint P . The channel
matrix for the MIMO channel from Ti to Tj is denoted
Hji ∈ CMR×MT and i.i.d. randomly generated from a contin-
uous probability distribution. The coefficients are assumed to
be constant throughout the whole duration of the transmission.
The received signal at Tj is a vector yj(n) ∈ CMR×1. yj(n)
is a superposition of the transmitted signals from Ti and Tk,
weighted by Hji and Hjk, respectively, and by i.i.d. complex
additive white Gaussian noise zj ∼ CN (0MR×1,IMR

):

yj(n) =Hjixi(n) +Hjkxk(n) + zj(n). (1)

After receiving yj(n), Tj constructs xj(n + 1) as:

xj(n + 1) = Ej,n(Wij ,Wkj ,y
n
j ), (2)

where Ej,n is the encoding function of Tj at time-instant n,
and sends xj(n + 1) in the next transmission. After N
transmissions, where N is the length of one transmission block
(codeword), Tj decodes Wji and Wjk as follows:

(Wji,Wjk) = Dj(Wij ,Wkj ,y
N
j ), (3)

where Dj is the decoding function of Tj . All channel matrices
are perfectly known at each user. Henceforth, we will neglect
the time-instant n for notational simplicity unless necessary.

1We assume perfect full-duplex operation, and hence, there is no residual
loop-back self-interference at each receiving user Ti.

Since we investigate the DoF [6] of this network, we define
the DoF of a message Wji by:

dji = lim
P→∞

Rji

log(P )
. (4)

The sum-DoF are computed by:

dΣ = d12 + d21 + d13 + d31 + d32 + d23. (5)

III. CONVERSE

Cut-set bounds: We begin with considering the cut-set
bounds for the MIMO 3-way channel:

dji + dki ≤ min{MT,2MR}, (6)
dij + dik ≤ min{2MT,MR}. (7)

The right-hand side of (6) is the rank of the MIMO channel
between Ti and a receiver formed by enabling full cooperation
between Tj and Tk, with channel matrix [HT

jiH
T
ki]T. A

similar interpretation holds for the second bound. Combining
(6) and (7) provides the sum-DoF bound:

dΣ ≤ min{3MT,3MR}. (8)

Genie-aided bounds: We first assume that MR ≥ MT.
Assume every node can obtain its dedicated messages with
an arbitrary small probability of error. Hence, T2 can decode
W21,W23 reliably from its available information, i. e., from
yN

2 , W12 and W32, as shown in (3). Furthermore, we provide
W31 to T2 as side-information. We also provide T2 with the
correction-noise signal:

z̃N
2 = zN

1 −H13H
†
23z

N
2 , (9)

as side-information2. Now, T2 knows its decoded W21 and
W31 by side-information. With W21, W31, user T2 can
generate x1(1). By subtracting H21x1(1) from y2(1), and
multiplying the result with H†

23, T2 can recover a noisy
observation of x3(1) given by x3(1) +H†

23z2(1). Next, T2

multiplies this noisy observation by H13, and adds H12x2(1)
and z̃2(1) to it to obtain y1(1). Thus, T2 obtains the first
instance of yN

1 . Knowing y1(1), W21 and W31, T2 can
generate x1(2) (cf. equation (2)). Using x1(2) again with
y2(2), T2 can generate y1(2) and x1(3). T2 proceeds this
way until all instances (up to the N - th instance) of yN

1 have
been generated. Now, having yN

1 , W21, and W31, i. e., the
same information as T1, T2 can decode W13 (cf. equation
(3)). Therefore, given W31 and z̃N

2 as side-information, T2

can decode W21, W23 and W13. Hence, the DoF of these
messages are almost surely upper bounded by:

d21 + d23 + d13 ≤ rank([H21 H23]) (10)
= min{MR,2MT}. (11)

We can apply a similar approach to bound:

d31 + d32 + d12 ≤ rank([H31 H32]) (12)
= min{MR,2MT}, (13)

2The pseudo-inverse H†
23 exists almost surely, since H23 is an MR×MT

matrix with MR ≥MT.



by providing W21 and the correction noise-signal:

z̃N
3 = zN

1 −H12H
†
32z

N
3 (14)

to T3. As a result, T3 can construct yN
1 and decode W12

reliably. Combining (11) and (13), bounds the sum-DoF to:

dΣ ≤ min{2MR,4MT}. (15)

For the contrary case, we assume that MR < MT holds.
We enhance the number of receive antennas at all receivers to
M̊R =MT. The effective channel output at T3 becomes:

ẙ3(n) = H̊31x1(n) + H̊32x2(n) + z̊3(n), (16)

with the extended MT ×MT matrices3 H̊31, H̊32, and the
extended MT ×1 noise vector z̊3(n). We can apply the upper
bounds derived in (11) and (13) now, leading to:

d21 + d23 + d13 ≤MT, (17)
d31 + d32 + d12 ≤MT, (18)

dΣ ≤ 2MT. (19)

Combining these bounds with the cut-set bounds yields:

dΣ ≤ min{2MR,4MT,3MR,3MT}
= min{2MR,3MT}, if MT ≤MR, (20)

dΣ ≤ min{2MT,3MR,3MT}
= min{2MT,3MR}, if MT >MR. (21)

Theorem 1. The DoF of the MIMO 3-way channel with MT

transmit and MR receive antennas at each user Ti are:

dΣ =
⎧⎪⎪⎨⎪⎪⎩

min{2MR,3MT}, if MT ≤MR,

min{2MT,3MR}, if MT >MR.
(22)

IV. ACHIEVABILITY

The following communication schemes provide achievabil-
ity of the upper bounds in Theorem 1. Note that, symbol-
extensions over multiple time-slots are used on constant
MIMO channels to achieve non-integer DoF per user, cf.
[7], [11].

A. Case MT ≤MR with dΣ = 3MT

The dominant term in (22) yields 3MT if 3MT ≤ 2MR

holds. We use the following symmetric DoF allocation:

d ∶= dij = dji. (23)

We further decompose the symmetric DoF d further for IA
(tilde-notation, d̃) and for beam-forming (bar-notation, d̄):

d̄ ∶= d̄ij = d̄ji, (24)

d̃ ∶= d̃ij = d̃ji, (25)

d ∶= d̄ + d̃. (26)

3The inverses exist almost surely.

In other words, we demand that bidirectional signals pair-
wise occupy the same number of DoF. According to the
assumptions on MT and MR, the following bounds must hold:

0 ≤ 2d ≤MT, (27)
0 ≤ 3d ≤ min{MR,2MT}, (28)

so that all upper bounds provided in Section III are satisfied.
Messages Wji are encoded into complex-valued symbol

streams ũji ∈ Cd̃×1 and ūji ∈ Cd̄×1. These symbol streams
are pre-coded at the transmitters and post-coded at the recei-
vers, so that the proposed sum-DoF are achieved. For pre-
coding, we use beam-forming matrices Ṽ ji ∈ CMT×d̃ and
V̄ ji ∈ CMT×d̄. Transmit signals xi are constructed from the
pre-coded symbol streams as:

xi = [Ṽ ji V̄ ji] [ ũji

ūji
] + [Ṽ ki V̄ ki] [ ũki

ūki
] . (29)

First, we consider the intersection space of the two incident
subchannels at the receiver of Tj . The number of dimensions
for span(Hji) ∩ span(Hjk) is computed by Lemma 1 as
given in the appendix. It has 0 ≤ (2MT − MR)+ ≤ 1

3
MR

dimensions, since 3MT ≤ 2MR. We fix

d̃ = (2MT −MR)+ (30)

and design Ṽ ji such that the two dedicated signals remain
distinct, while interference is aligned at each receiver:

span(HjiṼ ki) = span(HjkṼ ik). (31)

After this first part of pre-coding, a number of:

M̄T =MT − 2d̃ ≥ 0, (32)

M̄R =MR − 3d̃ ≥ 0, (33)

transmit and receive dimensions remains available at each user,
respectively. Since the complete intersection space is already
consumed by IA, we have (2M̄T − M̄R)+ = 0 and hence,
2M̄T ≤ M̄R holds. The remaining DoF are allocated by:

d̄ = 1
2
M̄T, (34)

for all k ∈ K. The beam-forming matrices V̄ ji and V̄ jk

are chosen such that the two signals xi and xk are received
linearly independent at Tj . This allocation satisfies both upper
bounds. The received signals at Tj yield:

yj = (Hji[Ṽ ji V̄ ji] [ ũji

ūji
] +Hjk[Ṽ jk V̄ jk] [ ũjk

ūjk
])+

(Hji[Ṽ ki V̄ ki] [ ũki
ūki

] +Hjk[Ṽ ik V̄ ik] [ ũik
ūik

]) + zj .

The first sum in brackets describes the dedicated signals. The
second sum in brackets describes the interfering signals at
Tj (with HjiṼ ki and HjkṼ ik aligned). The signal and
interference subspaces are linearly independent, since the
composite MR × (3d̃ + 4d̄) matrix

[Hji[Ṽ ji V̄ ji Ṽ ki V̄ ki]Hjk[Ṽ jk V̄ jk V̄ ik]], (35)

has full column rank, almost surely, due to:

3d̃ + 4d̄ = 2MT − (2MT −MR)+ <MR. (36)



In the post-coding step, each receiver Tj uses a composite
zero-forcing matrix N j = [NT

jiN
T
jk]T to separate and decode

its two dedicated signals and to eliminate the interfering
signals. The received signals yj are filtered by the two corre-
sponding zero-forcing matrices N ji,N jk ∈ Cd×MR , with:

N ji[Hjk(Ṽ jk+V̄ jk+Ṽ ik+V̄ ik)+HjiV̄ ki]=0d×(2d+d̄), (37)

N jk[Hji(Ṽ ji+V̄ ji+Ṽ ki+V̄ ki)+HjkV̄ ik]=0d×(2d+d̄), (38)

so that filtering with N jiyj and N jkyj provides dji+djk = 2d
noisy interference-free streams of dedicated signals at Tj :

N jiyj =N jiHji [Ṽ jiũji + V̄ jiūji] +N jizj , (39)

N jkyj =N jkHjk [Ṽ jkũjk + V̄ jkūjk] +N jkzj . (40)

Thus, each user Tj can decode its two dedicated streams with:

dji + djk = 2d = 2(d̃ + d̄) =MT. (41)

Altogether, 3MT DoF in the first term of (22) are achieved:

dΣ ≤ 6d = 3MT.

B. Case MT ≤MR with dΣ = 2MR

On the other hand, the dominant term in (22) yields 2MR

if 2MR ≤ 3MT holds. Then, span(Hji) ∩ span(Hjk) at Tj

has 2MT −MR > 1
3
MR dimensions. We allocate:

d = d̃ = 1
3
MR. (42)

for all i ∈ K. This allocation satisfies all upper bounds:

0 ≤ 2d ≤MT, (43)
0 ≤ 3d ≤MR, (44)

and no remaining dimensions are left at the receivers. The
symbol streams ũji ∈ Cd̃×1 are pre-coded by the beam-
forming matrices Ṽ ji ∈ CMT×d̃ and aligned analogously to
(31). Hence, the received signal at Tj is:

yj = (HjiṼ jiũji +HjkṼ jkũjk)+ (45)

(HjiṼ kiũki +HjkṼ ikũik) + zj .

The composite MR × 3d̃ - dimensional matrix:

[HjiṼ ji HjkṼ jk HjiṼ ki], (46)

has full column rank, almost surely, so that dedicated and
interfering signals are linearly independent.

For post-coding, the zero-forcing matrices are chosen as:

N ji(HjkṼ jk +HjiṼ ki) = 0d̃×2d̃, (47)

N jk(HjiṼ ji +HjkṼ ik) = 0d̃×2d̃, (48)

such that the filtered signals yield:

N jiyj =N jiHjiṼ jiũji +N jizj , (49)

N jkyj =N jkHjkṼ jkũjk +N jkzj . (50)

Each user Tj can decode noisy but interference-free versions
of its two dedicated streams and achieves:

dji + djk = 2d̃ = 2
3
MR, (51)

so that the sum-DoF are:

dΣ = 6d = 2MR. (52)

Thence, the upper bound min{2MR,3MT} is shown to be
achievable.

C. Case MT >MR with dΣ = 2MT

The upper bound (22) yields 2MT, if 2MT ≤ 3MR holds.
Again we use the symmetric DoF allocation as defined in (23)
to (26). In this case, the following upper bounds must hold:

0 ≤ 2d ≤MR, (53)
0 ≤ 3d ≤MT. (54)

Since MT > MR, zero-forcing beam-forming as in [11] and
[12] is applicable, we allocate:

d̄ =MT −MR < 1
2
MR (55)

dimensions. Analogous to Section IV-A, we pre-code the
symbol-streams ūji and ũji to construct the transmit signal
xi as in (29). The beam-forming matrix V̄ ki has MT × d̄
dimensions and is designed to cast the interfering signal into
the (MT −MR) - dimensional null-space of Tj :

HjiV̄ ki = 0MR×d̄. (56)

For the next step, the number of remaining transmit and receive
dimensions per user available for IA are:

M̃T =MT − 2(MT −MR) = 2MR −MT, (57)

M̃R =MR − 2(MT −MR) = 3MR − 2MT. (58)

Since 2M̃T > M̃R holds, the remaining dimensions suffice
for IA. Furthermore, since 3M̃T > 2M̃R, more than 1

3
M̃R

dimensions are available for IA between each user pair (cf.
Lemma 1). To establish a fair scheme, we set:

d̃ = 1
3
M̃R =MR − 2

3
MT. (59)

The beam-forming matrices Ṽ ki and Ṽ ik, each with MT × d̃
dimensions, are chosen such that the bidirectional interference
signals are aligned at receiver Tj , as analogously done in (31).
Due to zero-forcing beam-forming, the symbol streams ūki

and ūik are not received at Tj , so that we obtain:

yj = (Hji[Ṽ jiV̄ ji] [ ũji

ūji
] +Hjk[Ṽ jkV̄ jk] [ ũjk

ūjk
])+ (60)

(HjiṼ kiũki +HjkṼ ikũik) + zj .

The signal and interference subspaces are linearly independent,
almost surely, since the composite matrix:

[Hji[Ṽ ji V̄ ji Ṽ ki] Hjk[Ṽ jk V̄ jk]], (61)

of MR × (3d̃ + 2d̄) dimensions (HjiṼ ki and HjkṼ ik are
aligned) has full column rank.

For post-coding at the receivers, we use zero-forcing matri-
ces N ji of d×MR dimensions as given in (37) and (38), but



for differently allocated d according to (60). Analogously, the
following signals are obtained after filtering:

N jiyj =N jiHji [Ṽ jiũji + V̄ jiūji] +N jizj ,

N jkyj =N jkHjk [Ṽ jkũjk + V̄ jkūjk] +N jkzj .

Tj decodes two noisy but interference-free dedicated streams:

dji + djk = 2d = 2(d̃ + d̄) = 2
3
MT, (62)

so that the sum-DoF of 2MT are achieved:

dΣ = 6d = 2MT. (63)

D. Case MT >MR with dΣ = 3MR

In the case 2MT ≥ 3MR, the upper bound (22) yields 3MR.
Now it suffices to use zero-forcing beam-forming only. IA is
actually not necessary for this case. We allocate the DoF:

d = d̄ = 1
2
MR (64)

for all k ∈ K, satisfying (53) and (54). We use the beam-
forming matrices V̄ ji with MT × d̄ dimensions and cast
interference to the null-space of the undesired receivers:

HjiV̄ ki = 0MR×d̄. (65)

The received signal at receiver Tj is:

yj =HjiV̄ jiūji +HjkV̄ jkūjk + zj . (66)

The dedicated signals are linearly independent, almost surely,
since the composite MR × 2d̄ matrix has full column rank:

[HjiV̄ ji HjkV̄ jk]. (67)

For post-coding at receiver Tj , we use the zero-forcing
matrices N ji and N jk of d̄ ×MR dimensions each so that
(47) and (48) hold. We obtain the following filtered signals:

N jiyj =N jiHjiV̄ jiūji +N jizj , (68)

N jkyj =N jkHjkV̄ jkūjk +N jkzj . (69)

Each receiver Tj can decode:

dji + djk = 2d = 2d̄ =MR, (70)

and achieves the sum-DoF of:

dΣ = 6d = 3MR. (71)

As min{2MT,3MR} is also shown to be achievable, the
proof of Theorem 1 is concluded now. Furthermore, complete
fairness is always maintained among all users.

V. SYMMETRY

The parameter plane of the symmetric DoF depicted in
Figure 2 provides a symmetry along the intersecting line
MT = MR for all parameters MT and MR. At that line,
the antenna parameters of the achieved DoF are swapped
since null-space beam-forming and linear independent beam-
forming are swapped.
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Fig. 2. The parameter plane with 0 ≤ MT ≤ 6 transmit antennas and 0 ≤

MR ≤ 6 receive antennas of the sum-DoF dΣ is partitioned into four sectors.

APPENDIX

Lemma 1. If A1 and A2 are both complex MR × MT

random matrices, respectively, whose entries are drawn ran-
domly i. i. d., then there exists a (2 min{MT,MR} −MR)+-
dimensional intersection subspace between the two column
spaces of A1 and A2, almost surely.

The proof is similar to [12, Lem. 1] and omitted here. Note
further that rank(Ai) = min(MT,MR) holds for i = 1,2.
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