
Lehrstuhl für Theoretische Informationstechnik

Exercise 5 in Advanced Methods of Cryptography
- Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe
2014-11-21

Solution of Problem 14
Recall the RSA cryptosystem: n = pq, p 6= q prime and e ∈ Zϕ(n) with gcd(e, ϕ(n)) = 1.
The public key is (n, e).
Our pseudo-random generator based on RSA is:

a) Select a random seed x0 ∈ {2, . . . , n− 1}.

b) Iterate: xi+1 ≡ xe
i mod n, i = 0, . . . , t.

c) Let bi denote the last h bits of xi, where h = blog2blog2(n)cc.

d) Return the pseudo-random sequence b1, . . . , bt of h · t pseudo-random bits.

Solution of Problem 15
Recall Example 10.2: Select q prime, such that p = 2q + 1 is also prime (Sophie-Germain-
primes). Chose a, b as primitive elements modulo p. A message m = x0 + x1 · q, with
0 ≤ x0, x1 ≤ q − 1 is then hashed as

h(m) = ax0bx1 mod p .

This function is slow but collision free.
Claim. If m 6= m′ and h(m) = h′(m), then k = loga(b) mod p can be determined.
In other words, we show that if m 6= m′ with h(m) = h′(m) are known, the discrete
logarithm k = loga(b) mod p can be determined, which is known to be computationally
infeasable. I.e., it is infeasable to find m 6= m′ with h(m) = h′(m).

Proof. (proof by contradiction) Let m = x0 + x1 · q, m′ = x′0 + x′1 · q.

h(m) = h′(m)
⇔ ax0bx1 ≡ ax′0bx′1 mod p

⇔ ax0akx1 ≡ ax′0akx′1 mod p

⇔ ak(x1−x′1)−(x′0−x0) ≡ 1 mod p



Since a is a primitive element modulo p,

k(x1 − x′1)− (x′0 − x0) ≡ 0 mod (p− 1)
⇔ k(x1 − x′1) ≡ x′0 − x0 mod (p− 1) . (?)

As m 6= m′, it holds that x1 − x′1 6≡ 0 mod (p− 1). Show that k = loga(b) mod p can be
efficiently computed. Assume 1 ≤ k, k′ ≤ p− 1 fulfill (?). Then,

k(x1 − x′1) ≡ x′0 − x0 mod (p− 1) ∧ k′(x1 − x′1) ≡ x′0 − x0 mod (p− 1)
⇒ (k − k′)(x1 − x′1) ≡ 0 mod (p− 1) .

It holds −(p − 2) ≤ k − k′ ≤ p − 2 and x1 6= x′1 and −(q − 1) ≤ x1 − x′1 ≤ q − 1. Let
d = gcd(x1 − x′1, p− 1), then, with (?), d | x′0 − x0.

(i) d = 1: k−k′ ≡ 0 mod (p− 1)⇔ k = k′ mod (p− 1) has one solution for 1 ≤ k, k′ ≤
p− 1.

(ii) d > 1: With (?)

k

(
x1 − x′1

d

)
≡ x′0 − x0

d
mod

(
p− 1

d

)
(??)

It holds gcd
(

x1−x′1
d

, p−1
d

)
= 1. With (i), it follows that (??) has exactly one solution

k0, which can be determined by using the Extended Euclidean algorithm as in (i).

r

(
x1 − x′1

d

)
+ s

(
p− 1

d

)
= 1

⇒ r︸︷︷︸
k0

(
x1 − x′1

d

)
≡ x′0 − x0

d
mod p− 1

d

Recall p − 1 = 2q ⇒ d ∈ {1, 2, q, 2q} ⇒ d ∈ 1, 2 as (x1 − x′1) ≤ q − 1. Check, if
ak0

[
or ak0+ p−1

2
]

︸ ︷︷ ︸
d=2 analogously

≡ b mod p.



Solution of Problem 16
Given: two hash functions with output length of 64 bits and 128 bits.

a) How many messages have to be created, such that the probability of a collision exceeds
0.86?
Birthday paradox: k objects, n bins, pk,n, the probability of “no collision”, is bounded
by

pk,n ≤ exp
(
−k(k − 1)

2n

)

⇒ 1− pk,n ≥ 1− exp
(
−k(k − 1)

2n

)
≥ p

⇔ exp
(
−k(k − 1)

2n

)
≤ 1− p

⇔ k2 − k + 2n loge (1− p)

=
(

k − 1
2 + 1

2
√

1− 8n loge (1− p)
)
·
(

k − 1
2 −

1
2
√

1− 8n loge (1− p)
)
≥ 0

With n = 264 ≈ 1.844 · 1019 and p = 0.86, we get k64 ≈ 8.517 · 109, and with
n = 2128 ≈ 3.403 · 1038, we get k128 ≈ 3.658 · 1019, where k64 and k128 denote the
number of messages needed to get a collision with probability of p = 0.86.

b) The following solution is an example and other solutions are possible. The main aspect
of this exercise is to show the growth in resources for generating collisions the longer
the hash function is.

Hardware resource 64 bit hash function 128 bit hash function
hash function executions k64 = 8.517 · 109 k128 = 3.658 · 1019

memory size k64 · 64 bits ≈ 63.5GiB k128 · 128 bits = 5.45 · 1011GiB
comparisons 0 + 1 + 2 + . . . + (k64 − 1) 1

2k128 (k128 − 1) ≈ 6.69 · 1038

= ∑k64−1
i=0 i = 1

2k64 (k64 − 1)
≈ 3.63 · 1019


