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Solution of Problem 32
Useful sources to study the Kerberos protocol are, e.g.:

• Trappe, Washington - Introduction to Cryptography with Coding theory (Chapter 13)

• http://en.wikipedia.org/wiki/Kerberos_(protocol)

Unilateral authentication by the Kerberos protocol with a ticket granting server:

1. User logon, A requests client authentication at T to use G:
A→ T : A, G

2. T grants client authentication for A at G:
T generates session key kAG.
T generates a ticket granting ticket (TGT ): TGT = G, EkT G

(A, t1, l1, kAG).
T → A : EkAT

(kAG), TGT

3. A requests client authentication for service at G:
A recovers kAG using the shared key kAT .
A generates an authenticator aAG = EkAG

(A, t2).
A→ G : aAG, TGT

4. G grants service to A:
G recovers A, t1, l1, kAG from the TGT using kT G.
G recovers A, t2 from aAG using kAG.
G checks if the time stamp is within the validity period (t2 − t1) < l1.
G verifies A if authenticator and the ticket are correct.
G generates session key kAB and service ticket ST using kBG: ST = EkBG

(A, t3, l2, kAB).
G→ A : ST, EkAG

(kAB)

5. A communicates with B with the authenticated service of G:
A recovers kAB using kAG.
A generates authenticator aAB = EkAB

(A, t4).
A→ B : aAB, ST
B recovers A, t3, l2, kAB from ST using kBG.
B recovers A and t4 from aAB using kAB.
B checks if the time stamp is within the validity period (t4 − t3) < l2.
B verifies A if authenticator and service ticket are correct.
Then, A is successfully authenticated to B.



Solution of Problem 33

a) The secret service (MI5) chooses an arbitrary seed s ∈ Zn per iteration.
The MI5 calculates the quadratic residue y ≡ s2 mod n:

MI5 → JB: y

JB calculates the four square roots of y modulo n using the factors p, q of n.
JB chooses a square root x:

JB → MI5: x

The MI5 verifies that x2 ≡ y mod n.
Since JB has no information about s, he chooses the x with probability 1

2 , such that
x 6≡ ±s mod n.
If the MI5 receives such an x, n can be factorized:

y ≡ s2 ≡ x2 mod n

⇒ s2 − x2 ≡ 0 mod n

⇒ (s− x)(s + x) ≡ 0 mod n.

The probability that JB always fails by sending x ≡ ±s mod n in all 20 submissions is:

1
220 = 1

1048576 ≈ 10−6.

b) Zero-knowledge property: No information about the secret may be revealed during
the response.
However, in this protocol it is even possible, that the full secret s is revealed. Hence,
this is not secure a zero-knowledge protocol!

c) A passive eavesdropper E can only obtain the values x and y. E only knows the
square roots ±x of y modulo n, which is useless in the next iteration. This knowledge
is not sufficient to factorize n.



Solution of Problem 34
Parameters: n = pq with p, q ≡ 3 mod 4, and p, q secret primes.
Each user chooses an arbitrary sequence of seeds s1, ...sK ∈ {1, ..., n− 1},
with gcd(si, n) = 1 and publishes: vi = (s2

i )−1 mod n.
A public hash function is applied:

H : {0, 1}∗ → {(b1, ..., bK) | bi ∈ {0, 1}}

Signature generation:

(i) A chooses an arbitrary value r ∈ {1, ..., n−1} and calculates x ≡ r2 mod n. (witness)

(ii) A calculates: h(m, x) = (b1, ..., bk) (challenge)
and afterwards y ≡ r

∏K
j=1 s

bj

j mod n (response)

(iii) The signature of m is (x, y):
A→ B : m, x, y

Verification:

(i) B calculates h(m, x) = (b1, ..., bK). (challenge)

(ii) B calculates z ≡ y2 ∏K
j=1 v

bj

j mod n. (response)

(iii) B accepts the signature if z = x holds.

Proof that this signature and verification scheme is correct:

z = y2 ∏K

j=1 v
bj

j ≡ r2︸︷︷︸
≡x

∏K

j=1 s
2bj

j

∏K

j=1 v
bj

j︸ ︷︷ ︸
≡1

≡ x mod n. �


